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Abstract

Important advances in automated planning have been made
recently, especially with the development of domain-
configurable planning systems. These planners use a domain-
independent search engine for planning, but they have also
the ability to exploit domain-specific planning knowledge.
Examples of such planners include the well-known TLPLAN
(Bacchus & Kabanza 2000), TALPLANNER (Kvarnström &
Doherty 2001), and SHOP2 (Nau et al. 2003).
One challenge for domain-configurable planners is that they
require a domain expert to provide planning knowledge to
the system. When this knowledge is not accurate, complete,
poorly expressed, the performance of these planners dimin-
ishes considerably and very quickly, even in simple plan-
ning benchmarks. In this paper, we present a preliminary
report on our research aimed to mitigate this issue by com-
bining the use of domain-specific knowledge and domain-
independent heuristic search. We describe H2O (short for
Hierarchical Heuristic Ordered planner), a new Hierarchi-
cal Task-Network (HTN) planning algorithm that can heuris-
tically select the best task decompositions by using domain-
independent state-based heuristics.
Our experiments in the DARPA Transfer Learning Program
demonstrated the potentialities of H2O: given HTNs gener-
ated by a machine-learning system, which were much less
optimal than an expert would encode, H2O was able to solve
problems that SHOP2 could not.

H2O: HTN Planning with Heuristic Search
For modeling structured domain knowledge, one of the best-
known approaches is HTN planning. An HTN planner for-
mulates a plan by decomposing tasks (i.e., symbolic rep-
resentations of activities to be performed) into smaller and
smaller subtasks until primitive actions are reached. The ba-
sic idea was developed by (Sacerdoti 1975; Tate 1977), and
the formal underpinnings were developed in (Erol, Hendler,
& Nau 1996). The more recent SHOP2 planner (Nau et
al. 2003) has been very successful both in solving planning
benchmarks (Fox & Long 2002) and as a deployed system
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in many real-world applications (Nau et al. 2005). The pri-
mary difference between SHOP2 and most other HTN plan-
ners is that SHOP2 plans for tasks in the same order that
they will be executed, and thus it knows the current state at
each step of the planning process. This reduces the com-
plexity of reasoning by removing a great deal of uncertainty
about the world and allows for substantial expressive power.

In this paper, we used the same definitions of states, prim-
itive and nonprimitive tasks, planning operators, actions, in-
ference axioms, plans, and HTN planning problems as in
SHOP2 (Nau et al. 2003). We extended the definition of an
HTN method (i.e., an operational procedure that describes
how nonprimitive tasks are decomposed into their subtasks)
to include a goal expression, i.e., a single logical atom that
will be true in the state of the world when/if all of the sub-
tasks are successfully accomplished in the current state.1 A
method’s goal expression describes the possible goal states
reachable by the planner from the current state by accom-
plishing the current task. This enables us to use domain-
independent heuristics during task decomposition.

H2O starts with an initial set T of high-level tasks. At
each iteration, the algorithm chooses a task t from T that
does not have any predecessors. If t is a primitive task, then
H2O generates an action for it. If t is not primitive, then the
planner selects an HTN method for t, decomposes t into its
subtasks using that method, and inserts the subtasks into T
while ensuring the ordering and variable-binding constraints
that are imposed by the method are met correctly in the up-
dated T . Then, the planner recursively calls itself to process
any other nonprimitive task in T in the same way as above.
This recursive process continues until all nonprimitive tasks
are decomposed into primitive tasks (i.e., actions). At that
point, the primitive task network corresponds to a solution
plan and H2O returns it.

An important difference between H2O and SHOP2 is the
way H2O selects an HTN method for a task t. SHOP2
chooses one of the alternative methods based on the order
they are specified in the input, applies that method to gen-
erate subtasks, and backtracks in the case of failure. In
H2O, this is a point of heuristic selection: H2O does not re-

1The use of goal expressions associated with HTN methods is
originated from the previous work on ICARUS, a machine-learning
system capable of producing hierarchical knowledge similar to
HTNs (Nejati, Langley, & Könik 2006).
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Figure 1: One of the Escape problems used in the Transfer
Learning program. The explorer agent, e, first need to col-
lect the hammer, nails, and logs (H, N, L). It then combines
the nails and the logs to build a bridge across the water (W),
and then breaks the rocks (R) to clear a path to the exit, E.

quire the expert-encoded method ordering as input; instead,
it heuristically selects the best applicable method for t.

H2O takes as input a domain-independent heuristic func-
tion and uses it computes how close the goal of the method
is to the state in which the decomposition is performed.
Given the current state and the goal expression of a method,
the heuristic function computes a score value of using that
method for the current task in the current state. The planner
can compute a score using any heuristic function originally
developed for existing state-space search planners, such as
Manhattan Distance heuristic and the distance-based heuris-
tics as in FF (Hoffmann & Nebel 2001).

Implementation and Experiments
We have used H2O in the DARPA Transfer Learning (TL)
program. One of the benchmark problems used in the eval-
uations is illustrated in Figure 1, where the objective is to
explore across a n ×m grid to reach the exit square, pick-
ing up and constructing tools to cross barriers along the way.
For further details on the TL benchmarks and H2O’s perfor-
mance on them, see (Waisbrot 2007).

In the experiments, the HTN methods and our axioms
were produced by the ICARUS machine-learning system
(Nejati, Langley, & Könik 2006). For example, the top-
level tasks learned by ICARUS in the above scenario were
((HOLDING TOOLS) (COMPROMISED ?WATER) (DE-
STROYED ?ROCKS) (ATEXIT)).2 Here, picking up the
nails using the method (HOLDING NAILS) would decom-
pose into a task for taking the agent to (LOCATION 2 6),
but without any understanding of how close this was to the
agent, or in which direction it was, the planner plots a sub-
optimal course around the grid to accomplish that task.

When run with SHOP2, the available HTNs exhausted its
stack space before solving the majority of the problems since
they induced frequent backtracking and had a large branch-
ing factor. H2O, on the other hand, was able to alleviate

2ICARUS annotates its output methods with the main effect that
each of the method was intended to produce. We used these anno-
tations as the goal expressions of the methods.

this problem by using a simple Manhattan Distance heuris-
tic. For each goal that involved moving to a grid location,
the heuristic directed decomposition to follow the shortest
path. With the machine-generated HTNs providing high-
level control of tasks and the Manhattan distance heuris-
tic providing low-level control, H2O solved the benchmark
problems rapidly (Waisbrot 2007). In the scenario of Fig-
ure 1, for example, H2O was able to generate a solution
in 6.7 seconds, whereas SHOP2, which cannot exploit any
heuristics, failed after nearly 20 minutes.

Conclusions
We have described H2O, a planning algorithm that com-
bines heuristic search with HTN planning. For each task
to be decomposed, the planner heuristically selects the best
decomposition among the possible ones induced by the set
of applicable HTN methods. This combination is particu-
larly promising when the HTNs are inaccurate, incomplete,
or poorly expressed, produced by either a machine learning
system or a human who is not an expert in the particular
domain or at HTN writing.

We are currently developing a general theory of using
heuristic search in the context of HTN planning and per-
forming an extensive evaluation of the approach.
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