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Abstract

We present a Bayesian blackboard system for tempo-
ral perception, applied to a minidomain task in musical
scene analysis. It is similar to the classic Copycat archi-
tecture (Hofstadter 1995) but is derived from rigourous
modern Bayesian network theory (Bishop 2006), with
heuristics added for speed. It borrows ideas of prim-
ing, pruning and attention and fuses them with modern
inference algorithms, and provides a general theory of
hierarchical constructive perception, illustrated and im-
plemented in a minidomain.

Introduction
Real-time perception of musical structures is an exemplar
of hierarchical temporal perception, and is a useful domain
in which to demonstrate general theories of scene analysis
which emphasize the temporal element. Time is notably ab-
sent in many other test domains for scene analysis, espe-
cially static visual scenes as opposed to video.

We use perception of semi-improvised musical perfor-
mance from an ‘almost-known’ grammar as a specially se-
lected minidomain to illustrate a theory of temporal hierar-
chical perception. A minidomain is a simplified but non-
‘toy’ problem which is chosen to capture properties of a
general task. Here we aim to illustrate ideas about general
temporal perception and have chosen a relatively simple but
non-trivial task in which to work.Semi-improvisedmusic is
generated by a performer from a probabilistic contextsen-
sitivegrammar, based on a stochastic context-free grammar
(SCFG) such as

p(SONG → V ERSE,CHORUS, V ERSE) = 1

p(V ERSE → A, A, B) = 0.75

p(V ERSE → B, B, A, A) = 0.25

p(CHORUS → K, L, K, L) = 1; p(A → c) = 1

p(B → c, g) = 1; p(K → f, am) = 1; p(L → f, g) = 1

In addition to these context-free term-rewriting probabili-
ties, music superimposes various global probability factors.
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The most notable is the globalkeywhich acts to prefer co-
herent sets of chords and notes throughout the whole mu-
sical scene. Similarly, melodic themes are often repeated
throughout a performance, with a bias to preferring rewrite
rules that have previously been applied. This is typically
the case in jazz, rock and many non-Western art musics:
a composition is a fluid entity consisting of recognizable
chunks and conventions which are combined in real time by
the player. At the structural level, performers may decide
on the fly to insert extra verses and choruses if the perfor-
mance is going well and the audience is wanting more; or
to cut out sections if it is going badly. At the low level of
chords, rhythm players are likely to improvise around the
standard chords, with different changes having probabilities.
An almost-knowngrammar means that the performance is
generated from a grammar which is mostly similar to the
grammar known by the perceiver, but may include additional
and differing rules and differing probabilities. The perceiver
must thus allow for the fallibility of its own knowledge of
the grammar and be prepared to learn new rules on the fly.

The context-sensitive nature of the global factors, and the
required allowance for one’s own failure preclude the use
of the fast dynamic programming algorithms used in sim-
plified language processing tasks such as the Inside-Outside
algorithm, and more general scene analysis techniques are
needed. Indeed this was a reason for selection of the mi-
crodomain as representative of general scene analysis.

We consider musical scenes comprised of observations
of low-level chords, assuming one chord per bar, and that
chords are the terminals of the almost-known grammar, and
influenced by global key. This minidomain task is enough
to capture and illustrate the general context-sensitive and
‘almost-known’ requirements of general scene analysis. In
particular we do not consider perception of melodies or in-
dividual notes in the present work. Our architecture, Thom-
Cat, is largely inspired by the Copycat blackboard system
(Mitchell 1993a), which itself was explicitly based upon
(and cites) Ising models, Gibbs sampling and simulated an-
nealing (Hofstadter 1987). This statistical mechanics basis
is generally under-appreciated due to Copycat’s use of non-
standard terminology and heuristics. ThomCat is an explic-
itly Bayesian version of the Copycat architecture applied to
the music minidomain. Creation and destruction of hypothe-
ses by agents is translated into a simple rule which restricts
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the search space of the Gibbs sampler at each step to the
neighbors of active nodes in the previous step. Rivalry is
dealt with in the rigorous Bayesian sense of hypothesis com-
parison, and makes use of a central ‘thalamus’ lookup table
for speed. ThomCat shows how to view and extend Copycat
with modern machine learning concepts, and provides a use-
ful method for high-level musical understanding. It may be
of interest to music psychologists who could try setting its
probabilities to model human perception; and to neuroscien-
tists as a rough plan for some neural functions. While we
focus on the domain of musical understanding, the architec-
ture could be carried over to other forms of scene analysis.

Since Kant, perception has been seen as the process of in-
terpreting low level sense data (e.g. pixels in an image or
chords in a musical performance)asinstantiations of known
concepts in perceptual space (which may be spatial or tem-
poral or both). The relativistic ideas of (Whorf 1956) em-
phasized that different subjects may have different sets of
concepts through which to view the data, learned from dif-
ferent, unique sets of experiences. (James 1907) emphasized
the Pragmatist view that the subject should learn and use the
concepts which are the most useful in its typical environ-
ments. The use of our minidomain can provide insight into
these ideas by showing quantitatively how they may be im-
plemented. In our miniomain, the sense data consist of chord
likelihoods in musical bars, and the concepts to be instanti-
ated are the musical structures found in the grammar, along
with the concepts of different musical keys.

A key distinction to be made is between perceptionof
time and perceptionin time. Time in the former refers to
the states of the world over time, while the latter refers to
the times at which computations and inferences are made.

We give a model of temporal perception which maintains
and beliefs about aregionof time and updates them as new
information arrives and is processed. We note than confu-
sion between perceptionof andin has led to many apparent
philosophical problems such as those raised by the experi-
ments of (Libet 2004) in which future events appear to be
perceived before they occur. Our model of temporal percep-
tion shares theof andin distinction with the Multiple Drafts
analysis of (Dennett 1998) but differs in that like Blackboard
systems, and Copycat in particular, it constructs a single co-
herent scene interpretation at each inference step rather than
multiple drafts. We restrict on-line inference to a temporal
window around the current time, ‘freezing’ the results out-
side it. This is a simple version of a ‘spotlight of attention’
(Crick 1984) and gives insight into how attention could work
in general scene analysis.

ThomCat currently runs best using Gibbs sampling simi-
lar to Copycat (though extended to use cluster sampling), but
we see that once Copycat’s architecture is brought into the
Bayesian network framework, the path is opened for other
modern inference algorithms such as Variational Bayes to
run on the same structures. The ability for unseen rules to be
perceived in terms of free-floating known components pro-
vides a framework to further extend the architecture to learn
new rules and probabilities.

Formal task specification
The task is perceive a sequence of incoming chord obser-
vations as the maximum a posteriori (MAP) single coherent
structure which generated them, or as close an approxima-
tion to it as possible. We assume that a musical bar (mea-
sure) and chord detector module is available. At each bar
t, we receive a set of chord likelihoods{(ci, λi}

Nt

i=1, where
ci are chord symbols (such asem, g, c) andλi are likeli-
hoodsλi = P (D|ci) with D being the raw data received by
the chord detector, such as a sound wave or MIDI stream.
We allow for major and minor chords from each of the 12
possible root notes.

We are given a prior SCFG generation model, modified
to become context sensitive with a set of key coherence fac-
tors and to allow for ‘almost-known’ structures generated by
rules which are missing from the grammar. The SCFG is a
set of rewrite rules of the formXi → {Yk}k, pi, π

∅
i whereX

are symbols. If a symbol ever appears as the left hand side
(LHS) Xi of some rulei then it is called a non-terminal. If
it does not appear in this way it is called a terminal, and is
assumed to be a lowest-level chord symbol such asem, g,
c. The probabilitypi is P ({Yk}k|Xi, ), that is, the proba-
bility that the LHS term is rewritten as the RHS sequence
rather than as some other RHS sequence, given that the LHS
already exists.

Theπ∅
i values arefree-floating probabilities, used in un-

derstanding ‘almost-known’ structures which allow the pos-
sibility of occasional new rules being used in the perfor-
mance which are not known to be part of the grammar. We
consider the case of new rules whose RHS are comprised of
known symbols. To allow the possibility of learning such
rules, we must first be able to perceive the sequence of RHS
structures as existing in perceptual space, but with no parent
structure (e.g. theK in fig. 2 ). Such percepts are called
free-floating, and we allow each known symbolXi to free-
float with probabilityπ∅

i . This is an important feature in
general scene analysis tasks. For example, in visual scenes
there is usually no explicit top-level grammatical structure,
rather the scene is made of objects at arbitrary positions in
space, which in turn are comprised of hierarchies of sub-
objects. This is a key difference between scene analysis and
language processing, the latter almost always assuming the
existence of some top level ‘sentence’ structure which ulti-
mately generates everything in the linguistic ‘scene’.

We assume that the whole performance is in a single mu-
sical keyκ, which affects the chord observations via compat-
ibility factors,

∏

i φ(κ, ci) so the total probability of a scene
interpretation is given by the probability product of all the
rewrite and floating rules used in the derivation, multiplied
by this factor and normalized. We assume a flat prior over 12
keys (assuming relative major and minors to be equivalent).

We require quasi-realtime inference, meaning that com-
plexity should not increase as the performance progresses.
(Though as we present ThomCat as perceptual model rather
than a practical application, we do not currently require it
to run in real-time on a desktop PC). Scene analysis is gen-
erally used to make predictions of the near-future, so to il-
lustrate this we will require a near-optimal prediction of the
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Figure 1: A network instantiated from the test grammar

musical structure of the next bar, and preferably a rough pre-
diction of the structure of the entire future performance.

Architecture: static structures
We view the scene generation process as (causal) Bayesian
networks as shown in the example of fig. 1. The existence of
each musical structure (called ahypothesis), such as aSONG
causes its components to exist, with a probability given by
the grammatical rewrite rule. Each possible hypothesis can
also exist as a free-floater, with a probability1 π∅. The prob-
ability of a hypothesis is given by the noisy-OR function of
its parents and its free-floating probability,

P (h|pa(h)) = 1− (1− π∅
h)

∏

x∈pa(h)

I(x)(1 − P (h|x))

wherex ranges over the parentspa(h) of hypothesish, and
I(x) is an indicator function which is 1 if hypothesisx is
true and 0 if it is false.

The lowest level hypotheses are the chords reported by
the external bar and chord classifier. To handle these in the
same framework as the rest of the grammar, we construct a
lowest-level set of nodes called ‘observed bars’ orObsBars
which represent the raw data observed by the external classi-
fier. ObsBars then have transition probabilities conditioned
on the reported possible chordsci, P (obsBar|ci) which are
set to the reported likelihoods from the classifier.

The dashed links in the figure connect pairs of mutually
exclusive, orrival hypotheses. As a single coherent explana-
tion of the scene is required, we cannot allow the existence
of pairs of hypotheses which overlap in time and level of
explanation. Formally, these links represent pairwise prob-
ability factors,φ(h1, h2) = 1 − I(h1)I(h2), which when
multiplied into the scene joint distribution, set scenes with
overlapping rivals to have probability zero, and have no ef-
fect otherwise.

1In our microdomain these are probabilities as the possible
structure locations and sizes are discretized by the bars. In more
general scene analysis this is not the case, and probabilitydensities
would be used over continuous space and size.

The hypotheses are of the form ‘there is a structure of type
X which exists in temporal space starting at timet and hav-
ing lengthL’. In general, grammars allow the same type
X to exist having different lengths, depending on how it
becomes expanded later. In our framework this is impor-
tant because such alternative expansions give rise to rival
hypotheses such as the twoV ERSE structures at the start
of the figure, of lengths four and six bars. So hypotheses
do not use the raw grammars as seen so far, but instead
make use of compiledlengthenedgrammars (l-grammars),
constructed from SCFGs. l-grammars split up SCFG rules
which can exist in different lengths into sets of individual
rules which make the lengths explicit, and convert the tran-
sition and free-float probabilities appropriately. Details of
the l-grammar conversion process using an offline message
passing algorithm are given in the appendix. Here we show
the result of the l-grammar compilation for the previous ex-
ample SCFG:

S16 → V4C8V4 : p = 1.0, π
∅ = 0.253

S18 → V4C8V6 : p = 0.5, π
∅ = 0.084

S18 → V6C8V4 : p = 0.5π
∅ = 0.084

S20 → V6C8V6 : p = 1, π
∅ = 0.028

V4 → A1A1B2 : p = 1, π
∅ = 0.15

V6 → B2B2A1A1 : p = 1, π
∅ = 0.05

C8 → K2L2K2L2 : p = 1, π
∅ = 0.2

A1 → c1 : p = 1, π
∅ = 0.05; B2 → c1g1 : p = 1, π

∅ = 0.05

K2 → f1am1 : p = 1, π
∅ = 0.05; L2 → f1g1 : p = 1, π

∅ = 0.05

The π∅ in the unlengthenedgrammar are here assigned
automatically based on the hierarchical level of the rule.
We assume that large-scale structures are more likely than
lower-level structures to appear as free-floaters: the per-
former is very likely to play a top-levelSONG and is more
likely to insert an extraV ERSE into that song than to in-
sert extraA andB riffs into theV ERSE and extra bars of
chords into those riffs.

In addition to musical structure hypotheses, we also
model beliefs about the global key. There are 12 possible
keys, each is either true or false, and all are mutual rivals
so that only one key is allowed in a single coherent scene.
Undirected links are added to the chord-level hypotheses,
connecting them to the 12 key nodes and applying the pair-
wise compatibility potentials. A flat prior is placed over the
keys by giving each key an equalπ∅ probability factor.

Discussion of the static structure
The model is a causal Bayesian network in the sense that it
respects Pearl’sdo semantics (Pearl 2000). It is a ‘position-
in-time’ model rather than a ‘dynamic state model’, as it
conceives of the nodes as existing in a temporal space, and
makes inferences about what exists in each part of space. (In
contrast, hierarchical dynamic-state models such as (Mur-
phy 2001) would represent the explicit set of structures ac-
tive at each individual time point. Algorithmically this can
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be made to perform the same inference computations as the
position-in-time model, but is less satisfactory as a theory
of perception: position-in-time models construct an explicit
phenomenal space and populate it with objects, which fits
well with subjective perceptual experience.) We also note
here the presence of much causal independence (Zhang &
Poole 1996) in the network which might be exploitable by
inference algorithms we choose to run on it.

The multiple hypotheses that may be instantiated from
these lengthened rules are similar to those which appear
in the context-free Inside-Outside algorithm, which instan-
tiateseverypossible rule ateverypossible start time and
everypossible length. The l-grammar method is generally
more efficient as it only ever instantiates hypotheses which
can actually ever exist. For example, in our example gram-
mar, there is no way that aSONG of length less than 12
can ever exist, so it is wasteful to consider such hypothe-
ses. This speedup is especially important when we move
away from polynomial solvable context free structures to
NP-hard context sensitive ones. Ideally, we would instanti-
ate all possible hypotheses allowable by the l-grammar, giv-
ing rise to a single, large Bayesian network (not as large as
that used by Inside-Outside – but lacking polynomial-time
dynamic programming algorithms) and run inference on it.
However such a network would still grow asO(RT 2) like
Inside-Outside, withR the number of lengthened rules and
T the total number of bars, both of which are likely to be
large in music and other domains of scenes, rendering even
approximate inference impractical (Dagum & Luby 1993).
Worse still, to generalize away from the music microdomain
to continuous scene analysis domains such as vision, an in-
finite continuum of hypotheses would be needed which is
clearly uncomputable.

Architecture: structural dynamics
Rather than instantiating all possible hypotheses from the
outset, we turn to the classical AI architecture of Blackboard
Systems for heuristics. Blackboard systems such as Copycat
aimed toconstructa single unitary percept by allowing mul-
tiple agents to add, change and remove parts of the percept.
Each agent, when called upon, searches the blackboard for
any changes it could contribute. If the changes improve the
percept, they are made; if they make it worse, they may be
made anyway, according to some heuristic, to help escape
from local minima. Randomizing the orderings of agents to
call upon also adds stochasticity which helps to escape such
minima. In Copycat, the acceptance probabilities are made
using simulated tempering, based on statistical mechanics.
Factors in the scene (analogous to our rewrite probabilities,
free-float priors, chord likelihoods, rivalry and key compat-
ibilities factors) define energy contributions, and the objec-
tive is to minimize the energy. Changes proposed by agents
are accepted with approximate Gibbs probabilityP =
1
Z

exp(−E/T ) whereT is a variable temperature parameter
(Copycat’s exact tempering equations are found in the func-
tions get-temperature-adjusted-probability
andupdate-temperature in source fileformulas.l
in (Mitchell 1993b)). Extending the simulated annealing
algorithm to tempering, Copycat defined temperature as a

function of the current ‘stuckness’ of the inference: if there
is little change, suggesting a local minimum, then tempera-
ture is increased to escape from it.

Classical blackboard systems always maintained a single
coherent state, even if that state is unlikely and is part of a
path between local minima. Each proposal in sequence was
either accepted and updated on the blackboard, or rejected
and forgotten. In Copycat, proposals occur rapidly and re-
peatedly, resulting in a ‘flickering halo’ (Hofstadter 1995)
of accepted proposals flashing briefly into existence around
the local minimum. This set of nearby potential but usually-
unrealized percepts is analogous to William James’ notion of
the fringe of awareness: the set of percepts whichcouldbe
easily perceived if required – and which may now be quanti-
fied using psychophysical priming experiments, which show
faster responses to fringe members than to non-members
(Wiggs & Martin 1998). In Copycat and other classical
blackboards, this fringe is an implicit notion, defined by an
observer of the program to be the set of hypotheses which
tend to flicker around the current solution.

ThomCat provides a new formulation of the fringe, de-
rived from a heuristic to make its structures tractable. We
discussed above how instantiating all possible hypotheses is
intractable. But luckily there is some domain knowledge in
scene analysis tasks that may inform a heuristic to limit the
size of this search spaceat each stepof inference. The im-
plicit search space will remain the same, but at any point
during inference, only a small subset of it will be instanti-
ated and used to run inference. Recall that the task is to seek
MAP solutions, not full joints. Consider a candidate solu-
tion setX of hypotheses that together explain the data (i.e. a
set of nodes all having value ‘true‘). Now consider solution
setX ′ = X ∩ xd wherexd is a ‘dead’ hypothesis. Adead
hypothesis is one with no ‘true’ parents or children. Re-
call that all hypotheses in our models havesmall free-float
priors, in this caseπ∅(xd). Because the hypothesis is float-
ing, setting its value to ‘true’ will always decrease the total
network configuration probability. So as we only seek the
MAP solution we know that we can exclude configurations
with floating nodes from consideration and computation.

This fact gives a rigorous foundation for aBayesian black-
boardapproach. We treat the hypothesis nodes as objects on
a blackboard, which may be inserted and removedduring
inference. Cuesin ‘true’ low-level hypothesesprime (i.e.
instantiate) higher-level hypotheses and vice-versa, known
as bottom-up and top-down priming respectively. This gives
rise to a ‘spreading activation’ of hypotheses, starting at the
lowest level of received observations, and spreading up the
levels of abstraction, and down again to their top-down pre-
dictions. Some of these top-down predictions will even-
tually reach the lowest level of perception and provide us
with the ‘what chords comes next’ prediction that is our ul-
timate goal. Note then that hypotheses from the exhaustive
set now fall intothreeclasses: instantiated-and-‘true’ (the
current percepts, as in classical blackboards); instantiated-
but-‘false’ (the fringe, now explicitly instantiated); and unin-
stantiated.

Priming may be done by any associative hashing-type
function, which rapidly and approximately maps from a
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V ERSE4 → A1A1B2

K1

B2A1

Figure 2: A missing child, and a floating replacement

central object to its fringe. In classic blackboard systems,
Hopfield-like association networks and semantic networks
were popular; classical neural networks are also useful hash
functions for priming. The grammatical nature of the mu-
sic minidomain allows an especially simple form of prim-
ing: when a (lengthened) term is asked to prime, we simply
search the grammar for all rules containing it in their LHS
or RHS, and instantiate them at the appropriate locations.
Pruning (uninstantiation; ‘fizzling’ in Copycat) is performed
in two ways. First,Conwaypruning (after Conway’s Game
of Life) removes hypotheses which are ‘false’ and have no
‘true’ neighbors. Second, a garbage-collection sweep re-
moves any resulting islands of nodes having no chain of con-
nectivity to observed data.

In music as with most scene domains, it is unlikely
that an object (hypothesis) would exist without one of
its constituent parts. Initially it may appear that the
model lacks a mechanism for penalizing such omissions.
In a visual example, aTABLE with a missingLEG
is improbable. But if there was data andinstantiated
hypotheses only about three legs, and the scene prob-
ability was π∅(TABLE)

∏3
i=1 P (LEGi|TABLE), then

this scene would be assigned ahigher probability than
a similar scene with data about four legs, because the
latter scene would include an extra term in the prod-
uct. To handle such cases, we may wish to include ex-
tra probability factors into the joint (as with keys) which
specifically penalize the absence of components. The
former visual scene would then be assigned probability
1
Z

π∅(TABLE)φmc

∏3
i=1 P (LEGi|TABLE) whereφmc

is an explicit ‘missing component’ penalty. Early imple-
mentations of our system included such penalties, but they
are in fact superfluous in the music minidomain because we
are guaranteed that every bar will contain some chord, and
require some explanation. Fig. 2 shows an example: the
hypothesis corresponding to ruleV ERSE4 → A1A1B2 is
instantiated, but one of theA structures is missing, and a
free-floatingK takes its place in explaining that bar. How-
ever for theK to be ‘true’ it must have been generated by
the free-float prior, which is small compared to the top-down
prior on its rivalA, so the scene as a whole does receive a
penalty. In practice, theA will generally be instantiated any-
way if the parentV ERSE is ‘true’ due to the fringe prim-
ing method, in which case a penalty will be received because
P (A|V ERSE) is high so1− P (A|V ERSE) is low.

Inference
We have used hypothesis states ‘true’ and ‘false’ informally,
as the discussion has been on the network structure and con-
struction. We now consider inference over the structures,

which gives meaning to these node states. In the present
implementation, hypotheses contain an abstractinferlet ob-
ject, which provides a standard event-based API which may
be implemented by various inference algorithms. Events in-
clude ‘hypothesis just created’, ‘request made to run a local
inference step (fire)’, and ’tell me if you are ‘true’ or ‘false”.

The nearest inference method to classical blackboard sys-
tems is annealed Gibbs sampling, in which each instanti-
ated node has a single Boolean state, updated according to
the Gibbs probabilities given its Markov blanket. In this
case, ‘true’ and ‘false’ are simply these Boolean Gibbs states
at the moment the node is queried. We extend standard
Gibbs to sample fromclustersof coparents rather than sin-
gle nodes. The rivalry links impose a strong form of causal
independence on the network: we know a priori that pairs
of rivals will never be on together, so we need not consider
these scenarios – they are not part of the ‘feasible set’. Care
is taken to ensure that all probabilities are soft to ensure de-
tailed balance of the sampler.

Unlike Copycat, ThomCat runs online, updating its per-
cept on the arrival of each new bar (about 2s of music). In-
ference runs under an annealing cycle: at the initial arrival
of the chord likelihood data, the temperature is raised to its
maximum. Sampling and cooling run during the bar, and a
schedule is chosen so that it reaches near-freezing just before
the arrival of the next bar. At this point the Gibbs distribu-
tion is almost a Dirac Delta, at a local (and hopefully global)
maximum scene probability. An additional ‘collapse’ step
is performed which sets this to an exact Delta, yielding the
MAP estimate.

We have implemented two other inference algorithms,
Bethe and Variational Bayes (Bishop 2006), using different
inferlet classes. These algorithms maintain local distribu-
tionsQi(hi) over hypotheseshi rather than simple Boolean
states, and are updated according to the Markov blankets
mb(hi). Variational Bayes locally minimizes the relative en-
tropyKL[Q||P ] by node updates of the form

Q(hi)← exp〈log P (hi|mb(hi))〉Q(mb(hi))

and the Bethe variational method assumes the Bethe approx-
imation to the free energy leading to updates of the form

Q(hi)← 〈P (hi|mb(hi))〉Q(mb(hi)).

(The Bethe updates are the same as Pearl used in polytree-
structured networks, but applied to the loopy case as an
approximation.) In noisy-OR networks, the expectations
lack analytic solutions and must be computed by brute-
force summation over the2|mb(hi)| configurations of the
Boolean Markov blanket nodes (The QMR approximation of
(Jaakkola & Jordan 1999) gives a method for faster approx-
imation in particular cases of noisy-OR messages, which
could perhaps be extended to ThomCat’s networks). The no-
tion of hypotheses being ‘true’ or ‘false’ as used in the prim-
ing mechanism now becomes vaguer, and we use the heuris-
tic that hypotheses withQi(hi) > 0.5 are classed as ‘true’
for this purpose only. Many typical grammars have trou-
blesome symmetries in their generating probabilities, which
can cause variational methods to get stuck between two so-
lutions, or converge very slowly. Empirically it was found
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that adding a small stochastic component to each node’s
P (hi|pa(hi)) at each step is a useful way to break these
symmetries and allow convergence to a single solution.

Attention
We require that inference complexity does not increase over
time as the scene grows, so we cannot keep growing the net-
work and running inference on all of it as more and more
data is received. Rather, it is better to focusattentionon a
fixed-size area of interest. Attention in this case means com-
puting power used to run inference on nodes. It is not usually
useful to focus on distant past events, rather we should fo-
cus on the region around the current events. However occa-
sionally we may have to backtrack, as both current and past
events are influenced by their shared high-level parents. It is
also likely that in these ‘mind-wandering’ moments a higher
temperature will be needed to break out of any minima: we
must allow inference to become more fluid and risk-taking
at these times. This could occasionally result in a minor
‘paradigm shift’ where the large-scale structure of the per-
ceptual theory is overturned and replaced with something
better. Similarly, for some tasks we may need to make time
for ‘blue-sky’ thinking about objects in the distant future:
when driving a car or preparing a jazz solo it is useful to
have at least a rough map of where the whole journey is go-
ing in order to inform percepts and plans about immediate
actions. But these distant past and future percepts change
rarely – because little recently-received evidence is relevant
for changing them – so do not need to be attended to often.

In the music minidomain, the region of interest consists of
a few bars either side of the most recently received bar: this
is where it is worth applying most effort to get good MAP
approximations. We typically take six bars of the recent past,
and two bars of the immediate future as the ‘window’ of at-
tention. Hypotheses having any part inside the window are
treated as active, and their inferlets participate in inference.
Interactions between attention and priming and pruning need
to be handled carefully. Fig. 3 shows an example of the win-
dow around the current time. It is important that the high
level nodes such asV ERSE still receive likelihoods from
out-of-attention past events that are ‘true’, such as the left-
mostA structure. Such information acts as part of the prior
when interpreting the current window. However, ‘false’ past
hypotheses can be pruned once they fall outside the window,
as they contribute no such prior and can never become ‘true’
again (unless a movable, ‘mind-wandering’ window was im-
plemented – but in that case they would become re-primed
when their region is attended to.) Similarly, new hypotheses
are not primed outside the window, including in the future.
We do however prime hypotheses in thenear future inside
the window, such as theK, f andam of fig. 3. Inference
runs as usual on these hypotheses (though there are noOb-
sBarsyet to provide bottom-level likelihoods) and the in-
ferred state gives a prediction of the future, which could be
used for example to schedule automated accompaniment ac-
tions to play along with the performer. The window moves
along by one bar each time anObsBaris received – at the
same time as the annealing schedule is reset to its starting
maximum temperature.

A1A1

c1
c1

c1 c1

g1

g1

em1

K2

am1

B2

window of attention

SONG14

V ERSE4 → A1A1B2 CHORUS4 → K2L2K2L2

f1

ObsBars up to current time

Figure 3: Attention includes the recent past and near future.

Practical issues
After naive implementation of the system with simple data
structures and profiling, it became apparent that structural
algorithms were consuming more processor time than infer-
ence proper, particularly during the single task of searching
for pairs of rivals in a global hypothesis list. A large speed
gain was made by constructing a central ‘thalamus’ topo-
graphical map of the temporal space, and using it to cache
the locations of all hypotheses to allow rapid lookup of ri-
vals. A similar performance gain was made by pre-caching
hash maps of all possible primes from each l-grammar rule
in a ‘hippocampus’ to avoid online lookup. The structures
are so-called due to their possible suggested similarly to the
corresponding biological structures. Once these speedups
were implemented, the number of inference rounds per
structural update was balanced so as to make the structural
updates insignificant with respect to inference proper.

Results
Fig. 4 shows snapshots of the Gibbs state during a Gibbs in-
ference run, using the grammar presented earlier. A deliber-
ate mistake was introduced in the performance: theg chord
in bar two has the highest likelihood, where theSONG
should generate ac. (a), (b) and (c) show annealing steps
on the first five bars. The soft probabilities allow some pairs
of rival nodes to be true together at high temperatures, but
as the network cools this becomes less probable. Its final
state (c) consists of a single free-floatingSONG, causing
a V ERSE component which causes riffs and chords. The
erroneousg chord is perceivedasa c due to large top-down
pressures. The globalKEY is identified asCmajor, fur-
ther encouragingc chords especially. (d) shows the state
later in the performance, when attention has moved along
with newly received bars, and now focuses on the new cur-
rent bar, 17. A new round of annealing has just begun, so the
window is at high temperature. Past hypotheses outside the
window have been pruned if false, and frozen if true. In the
latter case they still contribute likelihood to the large scale
SONG structures. The window thus contains a denser con-
centration of hypotheses undergoing inference, as the full
fringe of primed objects is active. By this stage in the per-
formance, the prior information from the past is very strong
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so correct convergence occurs in just a few annealing steps
following each new bar, if the performance coheres with the
current percepts. The attention window includes two bars
of the near future, which give the current prediction of what
happens next. We do not yet have significant comparison re-
sults, but early trials suggest Gibbs tends to beat variational
methods given similar time and hand-optimized annealing
schedules. This is perhaps due to large correlations between
node states, not well captured by variational methods.

Discussion
We have presented a model of hierarchical temporal percep-
tion in a musical minidomain. The model is intended to be
generalizable to other forms of scene analysis – such as vi-
sion – and the minidomain was selected to include general
features such as global context sensitivity and free-floating
structures. The blackboard heuristics of priming and prun-
ing are similar to those of Copycat, as are the Gibbs ac-
ceptance probabilities and annealing, but we have placed
these ideas on a Bayesian foundation, viewing them as ap-
proximation heuristics to exact probabilistic MAP inference.
The minidomain uses discretized bars of time which simpli-
fies hypothesis construction, but similar architectures could
prime and prune in a continuous space, for example in visual
scenes.

The current implementation is slow, requiring more than
real-time for accurate perception. This is partly due to lack
of software optimization, but Gibbs sampling is inherently
slow, with even Copycat’s simplemicrodomain tasks taking
several minutes to run. Switching from sampling to varia-
tional methods removes the need to visit long sequences of
states but requires evaluation of exponential configurations
of Markov Blankets. It is possible that the inference algo-
rithms could be further tuned to improve accuracy, for ex-
ample using Metropolis-Hastings steps instead of Gibbs at
high temperatures; QMR-style variational approximations;
adjusted annealing schedules and tradeoff between attention
window size and accuracy. But the problem is inherently
NP-hard so will always require some approximation.

With further work, the MAP scenes could be used to gen-
erate and scheduleactions. The task of learning and tuning
new rules from scenes containing free-floaters could also be
researched. We touched upon the idea of movable ‘mind-
wandering’ attention: this could be explored, for example
if the listener realizes it made a mistake in the distant past,
it may ‘look’ back to what happened, andreconstructthe
past in the light of later data. Reconstruction is literal as
we prune away most past hypotheses when attention moves
on: so some limited memory of past events (either the low
level data or the high-level structures that were constructed)
could be used to start the inference, which could then also
incorporate messages from later events.

We tentatively suggest that parts of the ThomCat archi-
tecture could be implemented neurally as theories of bio-
logical computation. The cortical column is hypothesized
to function as some form of Bayesian network node, and
we suggest an analogous role to ThomCat’s structural hy-
potheses. This shows a clear distinction between ‘mean-
field’ and ‘spike coding’ neural models analogous to vari-

ational and Gibbs inference. Gibbs-like ‘spreading activa-
tion’ has been observed in V1 and Thalamus. We found
the use of a central ‘thalamus’ especially useful to speed
up rivalry lookups, and an associative ‘hippocampus’ which
primes fringe concepts ready for inference. Similar ‘hip-
pocampal’ associations could be useful in storing episodic
memories of the type required to reconstruct the past during
‘mind-wandering’ discussed above.

Like Copycat, ThomCat is intended to capture and refine
concepts about human perception, including the nature of
priming and pruning, attention, rivalry, and perception of
time and in time. It is a relativist, constructivist model, in
which different subjects may optimally perceive the same
dataasdifferent scenes depending on their known concepts
(in this case, grammatical rules) and priors within those con-
cepts. A strange consequence of this approach to music per-
ception in particular is that composition is a relatively sim-
ple task in comparison to listening well: a good listener is
one whose prior grammar is accurate for the genre, and who
does therefore not expect to hear unmusical scenes. Such
a listener should then be able to compose within the genre
simply by sampling forwards from the prior distribution –
a much simpler task than NP-hard ‘backwards’ inference!
(Fox 2006) used a ThomCat-like grammar to create varia-
tions on existing compositions parsed by human experts –
this approach could perhaps be fused with ThomCat to au-
tomate the perceptual part of the compositional process –
leaving the acceptance function still performed by humans
or to be further automated.

Python source code for ThomCat is available under the
GPL from5m.org.uk.

Appendix: lengthened grammar compilation To con-
vert a SCFG to an l-grammar we use a novel message-
passing scheme. First, a simple algorithm constructs all
possible lengths for each symbol, and creates all possible
lengthened rules, with no probability information. We then
performing the following for each of these rules.

create top level hypotheses node from the rule
while any leave nodes contain nonterminalsdo

for each leaf nodel do
x← the leftmost nonterminal inl
lookup all rules which rewritex
for each of these rulesr do

create child ofl: RHS ofr replacesx
end for

end for
end while
We then perform a top-down, dissipative (α) round of

message passing followed by an upwards agglomerative (β)
round withαn = αpar(n)TG(par(n)→G(n)) and

βn =

{ ∑

m∈ch(n) βm : for non-leaves
αn : for leaves

wheren ranges over nodes and we introduce the notation
G(par(n))→ G(n)) to indicate the ruleR in the unlength-
ened grammarG whose LHS is the symbol inpar(n) which
was substituted in the transition to the RHS ofR. At the end
of this process we obtainβ values in the first layer of chil-
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Figure 4: Snapshots of states during inference. Instantiated hypotheses are shown as hyphens (false states) and asterisks (true
states). The vertical lines show the start of the attention window, the present time, and the end of the window, from left to right.

dren which summarize the the probabilities of those param-
eterizations of the top-level rule, and sum to 1 (soβ at the
root node is 1). The childβ values are the required transition
probabilities to insert into the lengthened grammar. Hav-
ing formed the tree above and passed messages, it is simple
to obtain the lengthenedπ∅ by π∅(S9.5) = π∅(S).β(S9.5).
This works because the top-levelβ(LR) for lengthened
rulesLR compute the priorP (LR|R) whereR is the corre-
sponding unlengthened rules.
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