
An Inference Mechanism for Point-Interval Logic

Mashhood Ishaque
Computer Science Department
Tufts University, Medford, MA

mishaq01@cs.tufts.edu

Faisal Mansoor and Abbas K. Zaidi
System Architectures Lab

George Mason University, Fairfax, VA
{fmansoor, szaidi2}@gmu.edu

Abstract

We present a new inference algorithm for Point-Interval
Logic. The mechanism removes the incompleteness
of previously reported inference mechanism for Point-
Interval Logic. We also show how this inference mech-
anism can be used to prune the search space for an in-
stance in Generalized Point-Interval Logic.

Introduction
Point-Interval Logic (PIL) is a tractable subclass of Allen’s
interval algebra [1] which is used for modeling temporal in-
formation. The temporal information given in the form of
a set statements in PIL (conjunction of statements), is con-
verted into graph representation called Point Graph (PG),
and checked for consistency (there is a mapping on timeline
that satisfies all constraints). Once we have a consistent PG,
we can answer temporal queries by executing various graph
search algorithms on the PG representation.

The language of PIL has been shown to capture the tem-
poral aspects of time-sensitive mission planning [5, 9, 10],
project management [3], and criminal forensics [4]. It is
important to have a complete and efficient inference mech-
anism to effectively solve problems of interest in the men-
tioned application domains. In this paper we describe a new
inference mechanism for PIL, which removes the incom-
pleteness of the previous mechanism reported in [8, 10].

The paper has been organized as follows: in Section 2
we briefly describe PIL and its PG representation, in Sec-
tion 3 we present the new inference mechanism; in Section
4 we show how to use the inference mechanism to prune
the search space for instances in Generalized Point-Interval
Logic; and finally in Section 5 we identify future research
directions.

Point-Interval Logic and Point Graphs
We begin with a brief description of Point-Interval Logic and
Point Graphs for making this presentation self-contained;
same description can also be found in [3, 8, 9, 10]. PIL is a
formal logic for reasoning with temporal events. It has two
types of variables: points (events) and intervals (activities
with duration). An intervalX implicitly defines two points

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sX andeX that represent the start and end of the interval,
respectively. The PIL is a pointisable logic [6], i.e. every re-
lation between the temporal variables can be represented in
terms of relationships between their start/end points. In Fig-
ure 1 we show examples of some temporal relationships be-
tween two intervals; for all possible relationships, see [3,9].
PIL also provides constructs to represent quantitative tem-
poral information. In PIL a point variable can be assigned a
stamp that represents its occurrence on the timeline. Simi-
larly, an interval can be assigned a length that represents its
duration on the timeline.

sX eX sY eY

eX;sYsX eY

sX;sY eX eY

sX eX sY eY

X before Y

X meets Y

X starts Y

sX sY eX eY X overlaps Y

Interval X, Y

X < Y

X m Y

X s Y

X o Y

Figure 1: Interval-Interval Relationships in PIL

Point Graph is the knowledge representation scheme for
Point-Interval Logic. In a PG, each node represents a point
on the timeline, and edges represent the relationship be-
tween points. There can be two kinds of edges in a PG: ‘less
than‘ (LT) edge and ‘less than or equal to‘ (LE) edge. An LT
edge between two nodesp andq depicts that the point rep-
resented by the nodep occurs on the timeline strictly before
the point represented byq. An LE edge, on the other hand,
depicts that the point corresponding to nodep can either oc-
cur before or at the same moment as the point corresponding
to q. In Figure 2 we show a set of PIL statements and the cor-
responding PG representation. In Figure 3 we show the steps
involved in constructing a PG from a set of PIL statements.

Inference Mechanism
In this section, we describe the new inference mechanism
for PIL. This inference mechanism is implemented in the
form of various graph algorithms that operate on the PG
representation of a given temporal input. These inference al-
gorithms assume that the temporal information has already
been checked for consistency. The resulting inference mech-
anism improves upon the previous inference mechanism for

Proceedings of the Twenty-First International FLAIRS Conference (2008)

600

A C
5

B

Point A, B, C

A < B

B ≤ C

Stamp (A) = 100

Length (A, B) = 5

100

Stamp

Length

LT edge

LE edge

Figure 2: Point Graph for a Set of PIL Statements

Interval X, Y, Z

X o Y

Length (sX, sY) = 10

Length (sY, eX) = 8

Z o Y

Length (sZ, sY) = 5

Length (sY, eZ) = 8
5

sZ sY

8
sY eZ

sX sY

10

eX eY

sX sY

8
sY eX

sZ sY eZ eY

a) Convert each PIL statement into a Point Graph

b) Unify individual Point Graphs into a single Point Graph

c) Fold the branch nodes (outdegree > 1) in the Point Graph

d) Fold the join nodes (indegree > 1) in the Point Graph

sX sY eX eY

sZ eZ

10 8

5 8

Unify the nodes with

same labels.

sX sY eX;eZ eY

sZ

8

5

10 Fold branch and join

nodes. Before we fold

the Point Graph, we must

check it for consistency.

sX

sZ

5
5

sY eY
8

Once we have a

folded and consistent

Point Graph, we can

use it to draw inferences.

eX;eZ

Figure 3: Steps for Constructing a Point Graph

PIL [8,10], which was not complete. The old inference
mechanism was based on the idea of finding directed paths
between two points in a PG, causing it to miss some tem-
poral relations that can be inferred even in the absence of
directed paths. We illustrate the incompleteness in Fig. 4.

The new inference mechanism implements the tempo-
ral queries by the following functions; all of which run in
O(m + n) time, wheren is the number of nodes andm is
the number of edges in the PG.

• queryRelation(p, q) - returns the relationship between
the two temporal variables.

• queryLength(p, q) - returns the length of the interval de-
fined by the two points.

• queryStamp(p) - returns the time stamp for the point.

A

D

B C
10

5

E

A occurs 5 units before D on

the time line, while B occurs

at least 10 time units before D.

Thus we can infer that B < A.

The previous inference mechanism

for Point-Interval logic could not

infer any relation between A and B

since there is no directed path from

either B to A or A to B.

Figure 4: Illustration of Incompleteness

Inferring Relationship Between Two Variables
A relationship query asks for the temporal relationship be-
tween two variables (of type point or interval). There are
three kinds of relationship queries based on type of the tem-
poral variables.

• Inferring the relationship between two points.

• Inferring the relationship between a point and an interval.

• Inferring the relationship between two intervals.

Since PIL is a pointisable logic[6], all of the above queries
can be answered using a constant number of point-point
queries. For example, we can infer the relationship between
two intervalsX [sX, eX] andY [sY, eY] by looking at the
relationships among their end points. Once we have iden-
tified the relationships(sX, sY), (sX, eY), (eX, sY) and
(eX, eY), we can translate this information into a set of pos-
sible relationships between the two intervals using a lookup
table. Since there are six possible point-point relationships
{≤, <, =,≥, >, ?}, the lookup table for interval-interval re-
lationships has about64 = 1296 entries. We have com-
puted these lookup tables manually. In Table 1 we show an
snippet of the lookup table for interval-interval relationship.
The subscripti denotes an inverse relationship; for example,
XfiY also meansY fX .

(sX, sY) (sX, eY) (eX, sY) (eX, eY) (X, Y)
< < < < {<}
< < = < {m}
< < > < {o}
< < > = {fi}
< < > > {di}
< < > ? {o, fi}
< < > ? {di, fi}
< < > ? {o, di, fi}

Table 1: Lookup Table for Interval-Interval Relationships

Since we have already shown that all relationship queries
can be reduced to point-point relationship queries, we will
only talk about the point-point queries. The incompleteness
in the previous inference mechanism resulted from the fact
that the mechanism only looked for directed path between
two points. But a relationship between two points might still
exist even if there is no directed path. We can discover such
relationships if we look for the directed path from the two
query points to all nodes that are reachable from both points.
We not only look for a directed path, but a directed path with
the greatest length. Once we have calculated the longest

601

directed paths from both query points to all reachable nodes,
we look at each of those nodes to see if there is sufficient
information to infer a relationship. We also calculate the
greatest lower bound on the path fromp to q if p < q or vice
versa, in the process. We can find the longest path between
two nodes in a directed acyclic graph using topological sort
[2] in O(m + n) time. Note that finding the longest path in
an undirected graph is NP-Hard. For the sake of clarity and
brevity we only give the version of queryRelation(p, q) that
decide whetherp < q or not.

A

D

B C
10

5

E

The longest path from B to D

has length at least 10 units, while

the longest path from A to D is

exactly 5 units. Thus we conclude

that B < A.

The longest path (backward) from

A to D is exactly 10 units. While

the longest path from B to D is

at least 15 units. Thus we conclude

that A < B.

D

B

10

E

A

15

The longest path from A to D

has length at least 5 units, while

the longest path (backward) from

B to D is at least 10 units. Thus we

conclude that A < B and greatest

lower bound on path length is 15.

A

D

B C
10

5

E

Figure 5: Inferring Relationship Between Points A and B

Since a path can contain edges with or without the length
information, comparing two paths needs some explanation.
We maintain for each path two parameters: the length of
path so far, and a flag to indicate if the path has some edge(s)
without the length information. If both the paths that are be-
ing compared, contain edges without length information, we
cannot decide which path is longer. Otherwise we take the
one with greater path length. If the lengths of two paths are
equal and one of the paths contains a LT edge without length,
then the path with LT edge is longer. While running the
topological sort, the longest path is the one with the great-
est length regardless of whether it contains any edge without
length information. Figure 5 shows examples of how to infer
the relationship between two points.

Theorem 1. Inference mechanism correctly infers the rela-
tionship between two points, if it can be inferred at all.

Proof. Letp andq be the two points between which we want
to infer the relationship. We can have only the following four
situations involvingp andq:

• p and q are not connected
In this case we do not have sufficient information to infer
any relationship betweenp and q, and inference mech-
anism answers that relationship betweenp and q is un-
known.
• p has directed path to q or vice versa

We just consider the case whenp has a directed path (with
at least one LT edge without length information) toq,
which impliesp < q. Sincep has directed path toq,

Algorithm 1 queryRelation(p, q)

Using topological sort find the longest paths fromp andq
to every reachable node in the directed graph.
Again using topological sort find the longest paths from
p andq to every reachable node in the directed graph ob-
tained by reversing the direction of every edge.
Store at each node in the graph the information about
the length and direction (forward/reverse) of the longest
paths.
pathLengthglb(p, q)← 0
for all nodesv in the graphdo

if forwardPath(p, v) and backwardPath(q, v) then
relation(p, q)← ‘ < ‘
pathLengthlb(p, q) ← pathLengthglb(p, v) +
pathLengthglb(v, q)

else if forwardPath(p, v) and forwardPath(q, v) then
if pathLengthglb(p, v) > pathLengthglb(q, v)
then

relation(p, q)← ‘ < ‘
pathLengthlb(p, q) ← pathLengthglb(p, v) −
pathLengthglb(q, v)

end if
else if backwardPath(p, v) and backwardPath(q, v)
then

if pathLengthglb(v, p) < pathLengthglb(v, q)
then

relation(p, q)← ‘ < ‘
pathLengthlb(p, q) ← pathLengthglb(v, q) −
pathLengthglb(v, p)

end if
end if
if pathLengthlb(p, q) > pathLengthglb(p, q) then

pathLengthglb(p, q)← pathLengthlb(p, q)
end if

end for

the inference mechanism can find a node,q in this case,
for which length of path fromp to q is greater than that of
the (zero length) path fromq to q . Thus the mechanism
correctly concludes thatp < q

• p and q have directed paths to some common node v
If for all such nodesv both the directed paths contain at
least one LT edge without length information, we cannot
conclude anything, and neither can the inference mecha-
nism. Suppose w.l.o.g. the path fromp has exact length,
we can compare it with the greatest lower bound on the
length of the path fromq. If the length of the path fromp
is less than the greatest lower bound, then we can con-
clude thatp > q (farther on the timeline). Otherwise
the nodev does not have enough information for us to
conclude anything and we look at other reachable nodes.
Thus inference mechanism correctly identifies the rela-
tionship betweenp and q whenever sufficient temporal
information is available.

• some node v has directed paths to both p and q
Same argument as above.

602

The claim that the inference mechanism determines the
greatest lower bound on the length of the path or exact length
if it exists, comes from the ability of topological sort in find-
ing the longest path between two nodes in a directed acyclic
graph.

Inferring Length of an Interval

A length query asks how far apart are the two query points
on the timeline. If the exact length of the interval defined by
the two points cannot be inferred, we try to find the tightest
lower and upper bounds. The queryLength algorithm given
here cannot be used to find the least upper bound on a path’s
length. For establishing the least upper bound the inference
mechanism contains an exponential time algorithm, which
is not discussed here. Figure 6 shows an example of how to
find the length of a query interval.

A

D

B C
10

5

E

E and D are the two nodes

reachable from both A and

B. Based on paths to E we

cannot infer anything.

But node D allows us to

conclude that length of path

from B to A is at least 5 units.

Figure 6: Inferring Length of the Interval [B, A]

Algorithm 2 queryLength(p, q)

queryRelation(p, q)
Length(p, q)←?, Lengthglb(p, q)←?
if queryRelation returnsp < q then

Lengthglb(p, q)← pathLengthglb(p, q)
if pathLengthglb(p, q) is exactthen

Length(p, q)← Lengthglb(p, q)
end if

end if

Theorem 2. Inference mechanism finds the exact length of
interval if it can be inferred. Also the algorithm establishes
the tightest lower bound for the interval length.

Proof. The proof follows from the correctness of queryRe-
lation algorithm.

Inferring Stamp of a Point

A stamp query asks where the query point (event) occurs on
the timeline. If the exact stamp of the given point cannot
be inferred, we answer the query is in the form of tightest
lower and upper bounds. Figure 7 shows an example of how
to find the stamp of a query point.

Theorem 3. Inference mechanism is complete for stamp
queries i.e. if the time stamp of a point can be inferred,
the queryStamp algorithm find that time stamp. Also the al-
gorithm establishes the tightest lower and upper bounds for
time stamp of a point.

A

D

B C
10

5

E

100
Greatest lower bound on

the length of the path from

B to A = 5

Stamp(B) cannot be inferred.

but Stamp(B) is less than 95

Figure 7: Inferring Stamp of the Point B

Algorithm 3 queryStamp(p)

Find the nodess and t with smallest and largest time
stamp respectively using breadth first search.
Stamp(p)←?, Stampglb(p)←?, Stamplub(p)←?
queryRelation(p, s)
if queryRelation returnsp > s then

Stampglb(p)← Stamp(s) + pathLengthglb(s, p)
if pathLengthglb(s, p) is exactthen

Stamp(p)← Stampglb(p)
return

end if
else

Stampglb(p)← Stamp(s) + pathLengthglb(s, p)
return

end if
queryRelation(p, t)
if queryRelation returnsp < t then

Stamplub(p)← Stamp(t)− pathLengthglb(p, t)
end if

Proof. A node corresponding to a query can have an exact
time stamp iff there is a directed path of exact length be-
tween itself and some node with a time stamp or it has a
stamp itself. Since in a consistent and folded PG all the
nodes with stamps form a directed path with exact length, a
query node can have an exact stamp iff there is a directed
path of exact length between itself and the node with the
smallest time stamp. Since we have already established the
correctness of queryRelation in finding an exact length path
between two nodes whenever it exists, we can conclude that
queryStamp always find the exact stamp of a node whenever
possible.

We now prove that the algorithm finds the tightest lower
and upper bounds. Lets andt be the nodes with the small-
est and largest time stamps respectively. If the query point
occurs befores, we cannot infer any lower bound on the
time stamp (unless we can infer an exact stamp in which
we are not interested in lower and upper bounds). Similarly
no upper bound can be inferred for a point that occurs after
t. Thus we find the lower bound on the time stamp of the
point that occurs afters by adding the greatest lower bound
on the length of the path froms to query point and the time
stamp ofs. The correctness follows from the fact that the
queryRelation always correctly discovers the greatest lower
bound on the length of a path. Similar argument applies to
the calculation of least upper bound on the time stamp.

603

Generalized Point-Interval Logic
PIL is a tractable subclass of Allen’s Interval Algebra. But
the tractability comes at the cost of expressiveness. For
example, the disjointedness relation between two intervals
cannot be expressed in PIL. To overcome this deficiency we
can generalize PIL by allowing statements in logic to con-
tain disjunctions between relations; we refer to this logic
as Generalized Point-Interval Logic (GPIL). Table 2 shows
an instance of GPIL. Deciding consistency in GPIL is NP-
Complete, since GPIL subsumes Allen’s Interval Algebra
[1] (hence NP-Hard), and solution to a GPIL instance can
be verified in polynomial time (hence NP).

Interval A, B, C
(A m B) or (A o B) or (A d B)
(C < B) or (C> B) (disjointedness constraint)
(C s A) or (C f A)
(A < D) or (A > D)

Table 2: An Instance of Generalized Point-Interval Logic

CMI Algorithm
Assuming P6=NP we cannot expect to find a polynomial time
algorithm to decide whether the given instance of GPIL is
consistent. Instead we suggest a modified branch-and-bound
algorithm called ”Consistency Maintaining Inference-Based
(CMI) Algorithm” to explore the search space (takes expo-
nential time in the worst case). The CMI algorithm uses the
inference mechanism of PIL, as the bounding function to
prune the search space. Given a set of statements in GPIL,
the CMI algorithm incrementally adds one PIL statement for
each GPIL statement while always maintaining a consistent
(hence the name) set of PIL statements.

Suppose we are given a setS = {s1, s2, ..., sn} of GPIL
statements, and the CMI algorithm is about to process the
GPIL statementsi+1. We have a consistent set of PIL state-
mentsCi corresponding to statements froms1 to si. Sup-
pose the statementsi+1 is of the form(Xr1Y) or (Xr2Y)
or ... (XrkY) whereX andY are temporal variables and
{r1, r2, ..., rk} are relations. The CMI algorithm queries
the inference mechanism onCi for the set of possible re-
lationships betweenX andY . The intersection of the set
of possible relations from inference engine with the set
{r1, r2, ..., rk} gives the set of relations that can be added
to Ci while still maintaining consistency. We can pick any
relation sayrj from this intersection set and add the PIL
statementXrjY to Ci to getCi+1. If we can proceed in
this manner all the way toCn it implies the GPIL instance
is consistent andCn is a satisfying assignment.

However, if the intersection set is empty we cannot pro-
ceed and we need to backtrack to statementsi. We delete the
last PIL statement added toCi, and then add the PIL state-
ment corresponding to next relation from the intersection set
of the previous stage. If the intersection set at the previous
have been completely explored we backtrack even further.
If we cannot backtrack any further then the given GPIL in-
stance is inconsistent. It should be pointed out that revising
(adding/deleting) a set of PIL statements is very efficient [7].

Algorithm 4 CMI (S, i)

{The algorithm is invoked by calling CMI(S, 1), and re-
turns true if the instance is satisfiable}
(X, Y)← Variables insi

R1 ← Relations insi

R2 ← queryRelation(X, Y)
sort(R1 ∩R2)
{sort according to desired heuristics}
for all relationrjǫ(R1 ∩R2) do

addStatement(X, rj, Y)
if i = n then

return true
else if CMI (S, i + 1) then

return true
else

deleteStatement(X, rj , Y)
end if

end for
return false

Figure 8 shows the search space for instance in Table 2.
The green nodes are those for which the set of relations cor-
responding to the path from the root form a consistent set.
A path from root to a green leaf node represent a satisfying
assignment. The yellow (double-circles) nodes are the first
nodes on any path from root that makes the path inconsis-
tent. CMI algorithm is forced to backtrack upon reaching
a yellow node. Notice the red (smaller-circles) nodes are
never explored, and thus the inference mechanism prunes
the search space.

A m B A o B A d B

C > BC < B C < B C < BC > BC > B

C s A C s A C s AC s AC s AC s A

C f AC f AC f AC f AC f AC f A

B < D

B > D

Figure 8: Search Space Exploration

Incorporating Heuristics in CMI Algorithm

CMI algorithm only explores the pruned search space (green
and yellow nodes). The order in which these reachable
nodes are explored can be controlled by plugging-in any

604

desired heuristics in CMI algorithm. A heuristics can ei-
ther determine the order in which the statements ofS are
processed (inter-statement), or the order in which relations
within an statement are added (intra-statement). To incorpo-
rate an intra-statement heuristics with CMI algorithm, sort
the statements inS accordingly and then run the CMI algo-
rithm. To plug-in an intra-statement heuristics in CMI algo-
rithm, change the function used for sorting(R1 ∩R2). Here
we describe two intra-statement heuristics that we used for
the experimental evaluation of CMI algorithm.

Succeed-First heuristics selects the least-constrained re-
lation first. A relation is less constrained when it contains
less information. For example the relation ’<’ is less con-
strained than the relation ’m’. The ordering of the relations
from least-constrained to most-constrained is given as:

{≤, <, o, d, m, f, s,=}

Fail-First heuristics selects the most-constrained relation
first. The ordering of the relations is just the reverse of
succeed-first ordering.

Experimental Evaluation of CMI Algorithm
We evaluated the performance of CMI algorithm on a set
of randomly generated but satisfiable instances of GPIL. We
compared the number of nodes in the search space explored
by the CMI algorithm (with the two heuristics) until it found
the first feasible solution, to the number of nodes in the
search space. We present the summary of our results in Ta-
ble 3, where each row is the average of about 20 random
instances.

Var./Stat. Stat. Succeed-First Fail-First Search Space
50 30 1382 5894 3.8 ∗ 107

50 40 144741 122022 3.8 ∗ 109

75 30 66864 49277 1.9 ∗ 108

75 40 254002 1374951 5.1 ∗ 1010

100 30 14382 16771 5.1 ∗ 108

100 40 40 3226 8.3 ∗ 1010

125 30 30 30 7.8 ∗ 107

125 40 40 40 7.3 ∗ 1010

Table 3: Number of Nodes Explored by CMI Algorithm

First column in the table represents the number of vari-
ables as a percentage of number of statements. Second col-
umn show the number of statements. The third and the
fourth column represent the number of nodes explored by
the Succeed-First and Fail-First heuristics, respectively. No-
tice that Succeed-First usually performs better that Fail-
First. Also notice as we increase the ratio of number of
variables to number of statements in a random instance, it
becomes easier to find a feasible solution, which is intuitive
since a less-constrained instance has more feasible solutions.
The last column represent the total number of nodes in the
search space.

Conclusions and Future Directions
In this paper we described a new inference algorithm for
Point-Interval Logic. Since language of PIL has already

been shown to have applications in mission planning, project
management, and criminal forensics, it is important to have
a complete and efficient inference mechanism for it. The
presented inference mechanism is complete, though the al-
gorithm to establish the least upper bound on the length of
an interval has exponential time complexity. So one obvi-
ous open problem is to find a polynomial time algorithm or
show that finding the least upper bound is NP-Hard. The
other direction of work would be to introduce new queries
that are built on the top of the basic relationship, length and
stamp queries, and to explore how various data structural
techniques can be used to speed up the query algorithms at
the cost of additional preprocessing. Also it would be in-
teresting to explore the performance of CMI algorithm on
instances resulting from real-life applications.

Acknowledgments
This work was supported by the Air Force Office of Sci-
entific Research (AFOSR) under Grants FA9550-05-1-0106
and FA9550-05-1-0388.

References
[1] Allen, J. F. 1983. Maintaining Knowledge About Tem-
poral Intervals.Communications of ACM26, 832-843.
[2] Cormen, T. H., and C. E. Leiserson, and R. L. Rivest,
and C. Stein, 2nd ed. 2001. Introduction to Algorithms.
MIT Press and McGraw Hill.
[3] Ishaque, M; A. K. Zaidi, and A. H. Levis 2007. Project
Management Using Point Graphs. In Proceedings of 5th
Conference on Systems Engineering Research.
[4] Ishaque, M, and A. K. Zaidi, and A. H. Levis 2006.
On Applying Point-Interval Logic to Criminal Forensics. In
Proceedings of Command and Control Research and Tech-
nology Symposium, 2006.
[5] Ishaque, M and A. K. Zaidi 2005. Time-Sensitive Plan-
ning Using Point-Interval Logic. In Proceedings of 10th In-
ternational Command and Control Research and Technology
Symposium.
[6] Ladkin, P. B., and Maddux, R. 1988. On binary con-
straint networks, Technical Report, KES.U.88.8, Kestrel In-
stitute, Palo Alto, Calif.
[7] Rauf, I., and Zaidi, A. K. 2002.On Revising Temporal
Models of Discrete-Event Systems. In Proceedings of 2002
IEEE International Conference on Systems, Man, and Cy-
bernetics, Hemmamat, Tunisia.
[8] Zaidi, A. K. and A. H. Levis 2001. TEMPER: A Tempo-
ral Programmer for Time-sensitive Control of Discrete-event
Systems.IEEE Transaction on SMC: 31, 6, 485-496.
[9] Zaidi, A. K. and Lee W. Wagenhals 2006. Planning Tem-
poral Events Using Point Interval Logic.Special Issue of
Mathematical and Computer Modeling: 43, Elsevier, 1229-
1253.
[10] Zaidi, A. K. 2001. A Temporal Programmer for Time-
Sensitive Modeling of Discrete-Event Systems. In Proceed-
ings of IEEE SMC 2000 Meeting, Nashville, TN, 2186-
2191.

605

