
Parallel Rollout for Online Solution of DEC-POMDPs

Camille Besse & Brahim Chaib-draa
DAMAS Laboratory

Department of Computer Science and Software Engineering
Laval University, G1K 7P4, Quebec (Qc), Canada
{besse,chaib}@damas.ift.ilaval.ca

Abstract

A major research challenge is presented by scalability of al-
gorithms for solving decentralized POMDPs because of their
double exponential worst-case complexity for finite horizon
problems. First algorithms have only been able to solve very
small instances on very small horizons. One exception is the
Memory-Bounded Dynamic Programming algorithm – an ap-
proximation technique that has proved efficient in handling
same sized problems but on large horizons. In this paper, we
propose an online algorithm that also approximates larger in-
stances of finite horizon DEC-POMDPs based on the Rollout
algorithm. To evaluate the effectiveness of this approach, we
compare the presented approach to a recently proposed algo-
rithm called memory bounded dynamic programming. Ex-
perimental results show that despite the very high complexity
of DEC-POMDPs, the combination of Rollout techniques and
estimation techniques performs well and leads to a significant
improvement of existing approximation techniques.

Introduction
Markov Decision Processes (MDPs) and their partially ob-
servable pendant (POMDPs) have proved useful for a sin-
gle agent that plans and acts under uncertainty. Decentral-
ized POMDPs (DEC-POMDPs) propose a natural extension
of these frameworks for cooperative, multiple and physi-
cally distributed agents (Bernstein, Zilberstein, & Immer-
man 2000). They actually capture situations in which agents
may have different partial knowledge about the state of the
environment and the other agents. Many distributed de-
cision problems in real life, such as multi-robot coordina-
tion, unmanned vehicles cooperation, information gathering
and load balancing can be modeled as DEC-POMDPs. Un-
fortunately, solving optimally finite-horizon DEC-POMDPs
is NEXP- complete (Bernstein, Zilberstein, & Immerman
2000) and even ε-approximation are NEXP-hard (Rabi-
novich, Goldman, & Rosenschein 2003). That’s why exact
algorithms have mostly theoretical significance. Seuken &
Zilberstein (Seuken & Zilberstein 2005) proposed a survey
of existing formal models, complexity results and planning
algorithms for the interested reader.

Several methods exist for solving DEC-POMDPs approx-
imately or exactly (Amato, Bernstein, & Zilberstein 2007;

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Hansen, Bernstein, & Zilberstein 2004; Nair et al. 2003;
Roth, Simmons, & Veloso 2005; Seuken & Zilberstein
2007b; Szer & Charpillet 2005). Unfortunately, these algo-
rithms cannot deal with problems with more than 10 states.
One exception is the Memory-Bounded Dynamic Program-
ming (MBDP) algorithm (Seuken & Zilberstein 2007b). As
opposed to the double exponential growth of the optimal al-
gorithm, MBDP’s runtime grows polynomially with the hori-
zon using some approximation on beliefs over other agents’
policies. As a result, this algorithm can solve small sized
problems with horizons that are multiple orders of magni-
tude larger than what was previously possible (e.g. horizon
1,000 for the multi-agent tiger problem). However, MBDP’s
efficiency still diminishes exponentially with the size of the
observation space, and even with very small problems (e.g.
around 5 observations) this can be prohibitive. Thus, Seuken
& Zilberstein (Seuken & Zilberstein 2007a) proposed an im-
provement of their algorithm by bounding also the number
of observations explored during the belief points selection
to the most likely to occur. Then, their algorithm becomes
polynomial in time and in space for a fixed number of agents.

In contrast to the work of Seuken & Zilberstein we
propose an online alternative way of approximating DEC-
POMDPs based on the rollout algorithm of Bertsekas (Bert-
sekas, Tsitsiklis, & Wu 1997) and memory bounded dy-
namic programming so that horizon length does not influ-
ence space or time complexity more than polynomially in
the horizon and the number of observations. The main in-
sights of this approach is that the Rollout algorithm is known
to improve substantially a given lower bound. Thus, once a
quick and good lower bound is computed, executing a one-
step-lookahead-greedy policy according to these heuristics
is straightforward. Results presented here show that, for
considered problems, this technique brings a significant im-
provement as soon as the lower bound lets room for it.

This paper is organized as follows: in a first part, a back-
ground on the DEC-POMDP model is done and some recalls
about the Rollout algorithm are given. Second, an approxi-
mation technique called particle filters is introduced in order
to improve Monte Carlo trials’ quality. Then, the parallel
Rollout approach for online DEC-POMDPs is described be-
fore presenting some experimental results.

Proceedings of the Twenty-First International FLAIRS Conference (2008)

619

Background on DEC-POMDP model
In this section we introduce the DEC-POMDP model and
present some techniques used in partially observable envi-
ronments that are related to our approach.

The formalism used here is based on decentralized
partially observable Markov Decision Processes (DEC-
POMDPs) (Bernstein, Zilberstein, & Immerman 2000). Re-
sults presented in this paper, however, can also be applied
to equivalent models such as the MTDP (Pynadath & Tambe
2002) framework or POIPSG (Peshkin et al. 2000).

Definition 1 An infinite horizon DEC-POMDP is defined by
a tuple 〈α,S, {Ai}i∈α, T , {Ωi}i∈α,O,R〉, where:

• α is a finite set of indexed agents i ∈ α, 1 ≤ i ≤ n;
• S is a finite set of states s ∈ S with an initial state s0;
• Ai is the finite set of actions of agent i ai ∈ Ai and

A = ×i∈α
Ai is the set of joint actions where a =

〈a1, . . . , an〉 ∈ A denotes a joint action;
• T (s′|s,a) : S ×A × S 7→ [0, 1] is the transition prob-

ability of the system that taking joint action a in state s
results in state s′;

• Ωi is the finite set of observations of agent i and Ω =
×i∈α

Ωi is the set of joint observations where o =
〈o1, . . . , on〉 ∈ Ω denotes a joint observation;
• O(o|s,a, s′) : S ×A ×Ω × S 7→ [0, 1] is the observa-

tion function representing the probability to get the joint
observation o given that joint action a was taken in state
s and results in state s′;
• R(s,a) : S × A 7→ R is the reward produced by the

system when the joint action a is executed in state s.

The process that considers each joint action of the DEC-
POMDP as an atomic action is called the underlying POMDP.

In fact, the underlying system state s of a DEC-POMDP
is not available to the agents during execution, so they must
base their belief about the current situation. In a single-agent
setting, the belief state of belief point b, which is a distribu-
tion over states, is sufficient for optimal planning. In a dis-
tributed setting, each agent must maintain a multiagent belief
state that is a not only a distribution over states but also over
other agents’ policies. However, as noted by Seuken & Zil-
berstein (Seuken & Zilberstein 2007a), only a few of these
policies are enough to have a good approximation of other
agent’s beliefs. Let us now see how rollout principle works.

Rollout Algorithm
Bertsekas et al. (Bertsekas, Tsitsiklis, & Wu 1997) used
sampling to design a method of policy improvement called
Rollout. This method uses Monte-Carlo sampling to im-
prove a given policy π in an online fashion. At each time
step, the set of next states are computed according to avail-
able action in the current state. Then, the given policy is
simulated using Monte Carlo sampling in order to estimate
the expected value of each next state, and the results of the
simulation are used to select the (apparently) best current ac-
tion which might differ from the one prescribed by π. The
action selected is then the action with the highest Q-value

at the current state, as estimated by sampling. It is possi-
ble to show that the resulting online policy outperforms the
initial given policy unless this last is optimal in which case
Rollout performs optimally as well. More recently, Chang
et al. (Chang, Givan, & Chong 2004) apply this method to
POMDPs using belief sampling instead of state sampling.

We propose here a similar sample-based approach us-
ing a portfolio of heuristics. Then, using particle filters in
Monte-Carlo trials to estimate the value of each policy for
each action, we ensure improving the heuristics using a fixed
amount of memory and time. Formally, given a set of heuris-
tic multiagent policies Π over a multiagent belief state, the
parallel Rollout policy selects action according to:

a = arg max
a∈A

max
π∈Π E

[
T∑

t=0

R(bt, π(bt))

]

whereR(bt,a) is the expected reward of the belief bt.
The main issue of Rollout algorithm is that it needs at least

one lower-bounding heuristic in order to estimate correctly
each action value. Unfortunately, there are not many lower
bounds for DEC-POMDPs. Indeed, any suboptimal algorithm
is a lower bound of the optimal policy. We thus choose to
use some literature algorithms known to be suboptimal: the
random and the greedy policies are both well known in the
domain. Two more we use are the dynamic programming
algorithm from Hansen et al. (Hansen, Bernstein, & Zil-
berstein 2004) and the memory bounded algorithm we men-
tioned earlier in this paper and that provides a very good
lower bound of the optimal policy. Let us now see this two
approaches.

Optimal Dynamic Programming
The dynamic programming (DP) algorithm iteratively con-
structs a set of policy trees Qt for each horizon t based on
the set of policy trees of previous horizon t−1. Each depth-t
policy tree δt = 〈qt

1, . . . , q
t
n〉 is comprised of n trees qt

i , one
for each agent and each tree qt

i consists of nodes, labeled
with actions, and edges, labeled with observations. To ex-
ecute a policy tree qt

i agent Ai begins at the root, takes the
corresponding action, then follows the branch labeled with
the observation got, repeating the process for t steps.

Unfortunately, computing some value-maximizing δt is
made complex by doubly exponential growth in the set of
all depth-t trees. Even for simple problems, this number
quickly grows so large that it results in an infeasible exhaus-
tive enumeration. Thus, the DP algorithm instead selectively
prunes away policies as it goes in order to conserve only non
dominated policies.

Indeed, the DP algorithm outputs a sequence of depth-t
policy trees, δt = 〈qt

1, . . . , q
t
n〉, each of which maximizes

the value for the given agent, by looping over two main
steps, backup and pruning:

1. Backup: Generation of the set Qt
i of all depth-t policy-

trees for agent Ai given the set Qt−1
i of policy trees of

previous iteration, i.e. considering every possible action/
observation-transition into any depth-t tree in Qt−1

i .

620

2. Pruning: Considering each tree of the set Qt
i, and con-

sidering all belief states reachable from an initial belief
state, this step eliminates all dominated trees, in the sense
that some other policy is more valuable given any possible
multiagent belief.

Memory Bounded Dynamic Programming
The Memory Bounded Dynamic Programming (MBDP) al-
gorithm is a point based dynamic programming algorithm
that restrains the number of policies kept in memory at each
iteration. Every iteration consists of the following steps:

1. Backup: Generation of the set Qt
i of the

|Ai|maxTree|Ωi| depth-t policy-trees for agent Ai given
the set Qt−1

i of policy trees of previous iteration, i.e.
considering every possible action/ observation-transition
into any depth-t tree in Qt−1

i .
2. Belief Selection: Selection of a finite set of belief points

according to a portfolio of heuristics.
3. Tree Selection: Considering each tree of the set Qt

i, and
considering all belief states selected at the previous step,
this step selects the maxTree best-valued trees of Qt

i to
keep them for the next iteration.

Here, notice that, (i) the larger is maxTree the better is the
approximation of the policy, and (ii) the better are the heuris-
tics to select the “good” beliefs points where evaluating the
policies, the better is the approximation. As the choice of
the heuristics is an entire area of research, we keep basic
heuristics (random, QMDP) and only range maxTree and
the horizon to vary the approximate ratio of the MBDP algo-
rithm. For further details about MBDP, the interested reader
is invited to refer to the original work of Seuken & Zilber-
stein (Seuken & Zilberstein 2007b; 2007a).

Monte Carlo Trials
Monte Carlo trials are known to be really time consuming.
However, recent advances in this domain considerably re-
duce the time to simulate. Novel techniques, called particle
filters, allow simulating several Monte Carlo trials in one
shot while using fixed amount of memory, and providing
bounds on the estimation of the probability distribution.

Thrun (Thrun 1999) successfully applied them in
POMDPs. He estimated the belief state at each time step us-
ing particle filters and then selected the best action using a
dynamic programming algorithm and a sample-based ver-
sion of nearest neighbor to generalize. Particle filters are a
sample-based variant of Bayes filters, which recursively es-
timate posterior densities, or beliefs b in our case, over the
state s of a dynamic system (Fox et al. 2001).:

bt+1(s′) = ηO(o|s,a, s′)
∫
T (s′|s,a)bt(s) ds

As defined previously, o is the observation made and a
the control chosen in state s establishing the dynamics of
the system. Particle filters represent beliefs by sets S of N
weighted samples 〈s(i), w(i)〉. each s(i) is a sample repre-
senting a state, and the w(i) are non-negative numerical fac-
tors called importance weights, which sum up to one. The

basic form of the particle filter realizes the recursive Bayes
filter according to a sampling procedure, often referred to as
sequential importance sampling with resampling (SISR):
1. Resampling: Draw with replacement a random sample

(or state) s from the set S (representing the current be-
lief b(s)) according to the (discrete) distribution defined
through the importance weight w(i);

2. Sampling: Use current s and the action a to sample s′

according to the transition function T (s′|s,a), which de-
scribes the dynamics of the agent;

3. Importance Sampling: Weight the sample s′ by the obser-
vation likelihood w′ = O(o|s,a, s′). This likelihood is
extracted from a model of the agent sensors (e.g. camera,
sonar, laser range-finder) and a map of the environment.
In some cases, however, particle filters may have a very

low rate of update when the chosen number of samples is
too large for example. Many improvements of particle filters
can then be found in the literature. One of the most interest-
ing improvements is the adaptive and real-time particle filter
of Kwok et al. (Kwok, Fox, & Meila 2003). Indeed, these
authors show first how to choose dynamically the number of
samples needed to ensure a bound on the error made on the
belief approximation regarding to the Kullback-Leibler (KL)
distance. Then, they also show how to optimize the use of
computational resources when the update rate of the particle
filter is lower than the rate of incoming observations. The
former improvement can help to derive error bounds on the
estimation of the belief while the latter can helps in comput-
ing online a policy for the agent. However, even if we aim to
compute an online policy, we leave the latter improvement
for future work.

Adaptive Particle Filters
As described by Fox in (Fox 2001), the key idea of adaptive
particle filters is to bound the error introduced by the sam-
ple based representation of the particle filter. To derive this
bound, he assumes that the true posterior is given by a dis-
crete, piecewise constant distribution. For such a representa-
tion he shows a way to determine the number of samples so
that, with probability 1 − δ, the distance between the maxi-
mum likelihood estimate based on the samples and the true
posterior does not exceed a specified threshold ε. He de-
notes the resulting approaches the KLD-sampling algorithm
since the distance is measured with the KL-distance.

Suppose the estimated distribution has k bins (i.e. the be-
lief is over k states). For fixed error bounds ε and δ, the
formula (1) computes the required number of samples N as
a function of k (Fox 2001):

N =
k − 1
2ε

[
1− 2

9(k − 1)
+

√
2

9(k − 1)
z1−δ

]3

(1)

where z1−δ is the upper 1− δ quantile of a normal distribu-
tion N (0, 1). As we can see, the required number of sam-
ples is proportional to the inverse of the error bound ε, and
to the first order linear in the number k of bins with support.
KLD-sampling estimates k by the number of states that are
represented by at least one particle.

621

To integrate KLD-sampling in the standard particle filter
algorithm, we will use a coarse, fixed grid to approximate
the belief distribution over states. Then, during the predic-
tion step of the particle filter (step 2 in SISR procedure),
the algorithm determines whether a newly generated sam-
ple falls into an empty cell of the grid or not (the grid is
reset after each filter update). If the grid cell is empty, the
number of bins k is incremented and the cell is marked as
non-empty. After each sample, the number of required sam-
ples is updated using equation (1) with the updated number
of bins. Adding samples is stopped as soon as no empty
bins are filled, since k does not increase and consequently
N converges.

Thus KLD-sampling initially uses a large number of sam-
ples when almost nothing is known about current state, but
decreases the number as the knowledge about the current
state increases. Conversely, the number of samples used to
estimate the distribution over other agents’ policies may in-
crease as time passes until it reaches a certain threshold to be
set carefully. The interested reader can refer to (Fox 2001)
for details on adaptive particle filters. Now let us see how to
use particle filters in the context of DEC-POMDPs.

Parallel Rollout Approach
As depicted by Algorithm 1, the basis of our approach is,
at each decision step, to compute the exact joint belief af-
ter executing each action and receiving each observation ac-
cording to the current belief. Then, a set of approximate
joint policies Π = 〈π1(b0), . . . , πn(b0)〉 is computed over
the set of next reachable beliefs over states b′ (Algorithm
2). Then, using particle filters to estimate the belief over the
state, we can estimate each further action value according
to each policy by Monte-Carlo trials in a given amount of
time. Selecting the action with the maximal value in b′ may
then lead to an overall improvement of each heuristic used
regarding to the quality of the estimation.

Algorithm 1 Rollout for DEC-POMDPs
Require: A set of heuristics Π = 〈π1, . . . , πn〉, A initial

belief b0, an horizon T , a fix amount of time Tf .
Ensure: An action to perform in the current belief state b0.

1 function DEC-ROLLOUT(Π,b0,T ,Tf)
2 t0 = CURRENTTIME()
3 while CURRENTTIME() - t0 ≤ Tf do
4 for all a ∈ A, o ∈ Ω do
5 b1 ← UPDATE(b0,a,o)
6 Υ← MCETRIAL(Π, b1, T)
7 end for
8 end while
9 a← arg max

a∈A

∑
o∈Ω

Pr(o|b0,a) max
π∈Π

Υ[π]

10 return a
11 end function

Notice that the quality of the approximation produced by
the parallel Rollout approach depends on the number of par-

Algorithm 2 Monte-Carlo Estimation of each π ∈ Π

Require: A set of policies Π = 〈π1, . . . , πn〉, A belief b1,
an horizon T .

Ensure: A set of expected value for each policy Υ =
〈Vπ1(b

1), . . . , Vπn
(b1)〉.

1 function MCETRIAL(Π,b1,T)
2 for all π ∈ Π do
3 for t = 1 to T do
4 (bt+1,a)← STEP(bt, π(bt))
5 Vπ(bt+1)← R(bt+1,a) + Vπ(bt)
6 end for
7 end for
8 return Υ
9 end function

10 function STEP(belief bt, action a)
11 RESAMPLEPF(bt) //Step 1.
12 SAMPLEPF(a) //Step 2.
13 o← GETOBS()//From the model
14 IMPORTANCESAMPLEPF(o) //Step 3.
15 return (bt+1,a)
16 end function

ticles used. Indeed, we have seen in Section on adaptive par-
ticle filters that, if resampling is made correctly, according
to (1), error in estimating the belief state is beneath ε with
probability 1 − δ. We conjecture then that a bound on the
error is theoretically obtainable. However, the proof of this
statement remains for the moment an issue of future work.

Experiments
As stated by Seuken & Zilberstein (Seuken & Zilberstein
2007b), most researchers on DEC-POMDPs report perfor-
mance results for the multiagent tiger problem (Nair et al.
2003) or the multiagent broadcast channel problem (Hansen,
Bernstein, & Zilberstein 2004). The former problem has 2
agents, 2 states, 3 actions and 2 observations while the later
has 2 agents, 4 states, 2 actions and 2 observations. Amato
et al. (Amato, Bernstein, & Zilberstein 2007) also report re-
sults on a slightly larger problem called Recycling Robots
with 2 agents, 4 states, 3 actions and 2 observations but this
last problem has independent observations and independent
transitions and is thus simpler than the two others. As a
consequence, we experiment our algorithm on the first two
problems.

Multiagent Tiger Problem In the Multiagent Tiger prob-
lem (MAT) introduced by Nair et al. (Nair et al. 2003), there
are two doors. Behind one door is a tiger and behind the
other is a large treasure. Each agent may open one of the
doors or listen. If either agent opens the door with the tiger
behind it, a large penalty is given. If the door with the trea-
sure behind it is opened and the tiger door is not, a reward
is given. If both agents choose the same action (i.e., both
opening the same door) a larger positive reward or a smaller
penalty is given to reward this cooperation. If an agent lis-

622

tens, a small penalty is given and an observation is seen that
is a noisy indication of which door the tiger is behind. While
listening does not change the location of the tiger, opening
a door causes the tiger to be placed behind one of the door
with equal probability.

Multiagent Broadcast Channel Problem In the Multia-
gent Broadcast Channel problem (MABC) defined for DEC-
POMDPs by Hansen et al. (Hansen, Bernstein, & Zilberstein
2004), nodes need to broadcast messages to each other over
a channel, but only one node may broadcast at a time, other-
wise a collision occurs. The nodes share the common goal
of maximizing the throughput of the channel.

The process proceeds in discrete time steps. At the start
of each time step, each node decides whether or not to send
a message. The nodes receive a reward of 1 when a message
is successfully broadcast and a reward of 0 otherwise. At
the end of the time step, each node receives a noisy observa-
tion of whether or not a message got through. The message
buffer for each agent has space for only one message. If a
node is unable to broadcast a message, the message remains
in the buffer for the next time step. If a node i is able to send
its message, the probability that its buffer will fill up on the
next step is pi. Our problem has two nodes, with p1 = 0.9
and p2 = 0.1.

Results
We implemented the Rollout approach and performed inten-
sive experimental tests. The algorithm has two key param-
eters that affect performance regarding to the given prob-
lem. One parameter is the desired level of approximation
of the memory bounded lower bound, maxTree, which de-
fines the memory requirements. The second parameter is the
number of steps T we look ahead in order to select the next
action. Whereas optimal dynamic programming horizon T
is bounded by 3 for time and memory consumption reasons,
the MBDP algorithm allows to choose any horizon to look
ahead. However, as we will see later, this parameter is do-
main dependant and really influences on expected value.

To evaluate our Rollout algorithm, we compared it to
MBDP (Seuken & Zilberstein 2007b) that we also used as
lower bound in order to measure the improvement brought
by the Rollout approach. To perform a consistent compari-
son, we used an online derivative of the memory bounded
dynamic programming algorithm. This online derivative
version of MBDP consists in choosing and executing the first
action of the policy returned by the algorithm at each de-
cision step while looking a fixed number of steps forward.
As soon as a new decision is needed, the algorithm is re-
launched from scratch. We also used an online derivative
of standard dynamic programming for DEC-POMDPs with a
horizon of 2, as a second lower bound.

Results average 500 runs of the online MBDP and the Par-
allel Rollout algorithm. Figure 1 shows expected reward for
the two problems according to the approximation level used
and mainly gives evidence that the Rollout approach has a
modest contribution to the improvement of the base policy
for the MABC problem. This mainly due to the fact that

the MBDP algorithm is near-optimal for the MABC problem.
However, results for the tiger problem seems more promis-
ing (see Figure 1(a)) and particularly for maxTree = 7.
This result is confirmed by Figure 2(a) which shows that us-
ing a maxTree = 7 for the TIGER problems leads to a sig-
nificantly better gain than other approximation levels, even
greater1. The second interesting result in Figure 2(a) is that
there is no need to plan for horizon larger than 4 to have
good practical results. This is also confirmed by the results
in Figure 2(b) that clearly shows that online planning for the
TIGER problem needs only to look 4 steps further2 in order
to guaranty a significantly better policy (up to 60%).

 30

 35

 40

 45

 50

 55

 60

 1 2 3 4 5 6 7 8 9 10

E
xp

ec
te

d
V

al
ue

MaxTree

MBDP
Rollout

(a) TIGER (2ag, 2s, 3a, 2o)

 9

 9.1

 9.2

 9.3

 9.4

 9.5

 9.6

 9.7

 1 2 3 4 5 6 7 8

E
xp

ec
te

d
V

al
ue

MaxTree

MBDP
Rollout

(b) MABC (2ag, 4s, 2a, 2o)

Figure 1: Expected Value of MBDP vs. Rollout depending
on the approximation of the lower bound

 0

 10

 20

 30

 40

 50

 60

 2 3 4 5 6 7 8 9 10

G
ai

n
(%

)

Horizon

Maxtree=7
Mean

(a) TIGER Gain vs Horizon

-10

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10

G
ai

n
(%

)
MaxTree

Horizon=4
Mean

(b) TIGER Gain vs MaxTree

Figure 2: Gain of Rollout over MBDP

Conclusion
To our knowledge, the algorithm presented in this paper is
the second online algorithm for DEC-POMDPs. The first was
presented by Emery-Montemerlo et al. (Emery-Montemerlo
et al. 2004) but was outperformed by an online version of
MBDP as stated by Seuken in (Seuken & Zilberstein 2007b),
and that’s why we do not present results about this algo-
rithm here. However, our experimental study of our algo-
rithm against the online derivative of MBDP shows that a
significant improvement is made on current literature prob-
lems with appropriate parameters.

Performance of the Rollout approach opens interesting
perspectives for research in the field of approximation for
DEC-POMDPs. Indeed, because of its guarantee to obtain
better results than the best results that can bring each of the

1Mean is over a maxTree from 1 to 10.
2Mean is over a horizon from 2 to 10.

623

heuristics employed, the parallel Rollout approach seems,
in these earlier stages of work, to be an interesting avenue
to improve any suboptimal policy for DEC-POMDPs. How-
ever, as soon as heuristics become good enough to bring
out near-optimal values, the Rollout’s contribution becomes
more modest since the cost of evaluating many heuristics is
not balanced by the induced improvement.

As future work, there are three main extensions that may
be considered. First, as depicted by Algorithm 1, agents
still reason about a joint belief state. This implies a belief
synchronisation at each step that is not necessarily desired.
We must then consider ways to decentralized this belief in
further experiments as done by Roth et al. (Roth, Simmons,
& Veloso 2005) for example. The second one, as discussed
earlier, consists of using an online update of particle filters
so that we can have more precise belief over states without
a costly update during Monte-Carlo Estimation. Third, an
increase of the depth of search in the tree of next actions to
more than 1 (Line 9 of Algorithm 1) by using an anytime
error minimization search as Ross & Chaib-draa (Ross &
Chaib-draa 2007) did for POMDPs could be an improvement
of the algorithm. Finally, some work can also be done on
heuristics that select reachable beliefs and their estimation
in approximation algorithms.

Acknowledgments
The authors would like to thank Julien Laumônier, Ab-
deslam Boularias and Jilles Dibangoye for the helpful dis-
cussions we have had together concerning the topic of this
paper.

References
Amato, C.; Bernstein, D. S.; and Zilberstein, S. 2007. Op-
timizing Memory-Bounded Controllers for Decentralized
POMDPs. In Proc. of Uncertainty in Artificial Intelligence.
Bernstein, D. S.; Zilberstein, S.; and Immerman, N. 2000.
The Complexity of Decentralized Control of Markov Deci-
sion Processes. In Proc. of Uncertainty in Artificial Intelli-
gence, 32–37.
Bertsekas, D. P.; Tsitsiklis, J. N.; and Wu, C. 1997. Roll-
out Algorithms for Combinatorial Optimization. Journal
of Heuristics 3(3):245–262.
Chang, H. S.; Givan, R.; and Chong, E. K. P. 2004. Parallel
Rollout for Online Solution of POMDPs. Discrete Event
Dynamic Systems 14(3):309–341.
Emery-Montemerlo, R.; Gordon, G. J.; Schneider, J. G.;
and Thrun, S. 2004. Approximate Solutions for Partially
Observable Stochastic Games with Common Payoffs. In
Proc. of the International Joint Conference on Autonomous
Agents and Multi-Agent Systems.
Fox, D.; Thrun, S.; Burgard, W.; and Dellaert, F. 2001.
Particle Filters for Mobile Robot Localization. Springer.
chapter 19.
Fox, D. 2001. KLD-Sampling: Adaptive Particle Filters. In
Proc. of Advances in Neural Information Processing Sys-
tems, 713–720.

Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004.
Dynamic Programming for Partially Observable Stochastic
Games. In Proc. of Association for the Advancement of
Artificial Intelligence, 709–715.
Kwok, C.; Fox, D.; and Meila, M. 2003. Adaptive Real-
Time Particle Filters for Robot Localization. In Proc. of the
IEEE International Conference on Robotics & Automation.
Nair, R.; Tambe, M.; Yokoo, M.; Pynadath, D. V.; and
Marsella, S. 2003. Taming Decentralized POMDPs: To-
wards Efficient Policy Computation for Multiagent Set-
tings. In Proc. of the International Joint Conference on
Artificial Intelligence, 705–711.
Peshkin, L.; Kim, K.-E.; Meuleau, N.; and Kaelbling, L. P.
2000. Learning to Cooperate via Policy Search. In Proc. of
Uncertainty in Artificial Intelligence, 489–496.
Pynadath, D. V., and Tambe, M. 2002. The Communicative
Multiagent Team Decision Problem: Analyzing Teamwork
Theories and Models. J. Artif. Intell. Res. (JAIR) 16:389–
423.
Rabinovich, Z.; Goldman, C. V.; and Rosenschein, J. S.
2003. The Complexity of Multiagent Systems: the Price of
Silence. In Proc. of the International Joint Conference on
Autonomous Agents & Multiagent Systems, 1102–1103.
Ross, S., and Chaib-draa, B. 2007. Aems: An anytime
online search algorithm for approximate policy refinement
in large pomdps. In Proc. of the International Joint Con-
ference on Artificial Intelligence, 2592–2598.
Roth, M.; Simmons, R.; and Veloso, M. 2005. Reason-
ing About Joint Beliefs for Execution-Time Communica-
tion Decisions. In Proc. of the International Joint Confer-
ence on Autonomous Agents and Multi-Agent Systems.
Seuken, S., and Zilberstein, S. 2005. Formal Models and
Algorithms for Decentralized Control of Multiple Agents.
Technical report, Computer Science Department, Univer-
sity of Massachusetts, Amherst.
Seuken, S., and Zilberstein, S. 2007a. Improved Memory-
Bounded Dynamic Programming for Dec-POMDPs. In
Proc. of Uncertainty in Artificial Intelligence.
Seuken, S., and Zilberstein, S. 2007b. Memory-Bounded
Dynamic Programming for Dec-POMDPs. In Proc. of the
International Joint Conference on Artificial Intelligence,
2009–2015.
Szer, D., and Charpillet, F. 2005. An Optimal Best-
First Search Algorithm for Solving Infinite Horizon DEC-
POMDPs. In Proc. of the European Conference on Ma-
chine Learning, 389–399.
Thrun, S. 1999. Monte Carlo POMDPs. In Proc. of Ad-
vances in Neural Information Processing Systems, 1064–
1070.

624

