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Abstract

This paper discusses how numerically imprecise information
can be modelled and how a risk evaluation process can be
elaborated by integrating procedures for numerically impre-
cise probabilities and utilities. More recently, representations
and methods for stating and analysing probabilities and val-
ues (utilities) with belief distributions over them (second or-
der representations) have been suggested. In this paper, we
are discussing some shortcomings in the use of the princi-
ple of maximising the expected utility and of utility theory
in general, and offer remedies by the introduction of supple-
mentary decision rules based on a concept of risk constraints
taking advantage of second-order distributions.

Introduction
The equating of substantial rationality with the principle of
maximising the expected utility (PMEU) is inspired by early
efforts in decision theory made by Ramsey, von Neumann,
Savage and others. They structured a comprehensive the-
ory of rational choice by proposing reasonable principles in
the form of axiom systems justifying the utility principle.
Such axiomatic systems usually consist of primitives (such
as an ordering relation, states, sets of states, etc.) and axioms
constructed from the primitives. The axioms (ordering ax-
ioms, independence axioms, continuity axioms, etc.) imply
numerical representations of preferences and probabilities.
Typically implied by the axioms are existence theorems stat-
ing that a utility function exists, and a uniqueness theorem
stating that two utility functions, relative to a given pref-
erence ranking, are always affine transformations of each
other. It is often argued that these results provide justifi-
cation of PMEU.

However, this viewpoint has been criticised and a com-
mon counter-argument is that the axioms of utility theory
are fallacious. There is a problem with the formal justifica-
tions of the principle in that even if the axioms in the vari-
ous axiomatic systems are accepted, the principle itself does
not follow, i.e. the proposed systems are too weak to im-
ply the utility principle (Malmnäs 1994). Thus, it is doubt-
ful whether this principle can be justified on purely formal
grounds and the logical foundations of utility theory seem to
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be weak. For instance, within the AI agent area, the details
of utility-based agent behaviour are usually not formalised,
a common explanation being that there are several adequate
axiomatisations from which the choice is a matter of taste.
In this paper, the generic terms agent and decision-maker
are used interchangeably, and include artificial (software) as
well as human entities unless otherwise noted.

Critics point out that most mathematical models of ratio-
nal choice are oversimplified and disregard important fac-
tors. For instance, the use of a utility function for capturing
all possible risk attitudes is not considered possible (Schoe-
maker 1982). It has also been shown that people do not act
in accordance with certain independence axioms in the sys-
tem of Savage (Allais 1979). Although descriptive research
of this kind cannot overthrow the normative aspects of the
system, it shows that there is a need to include other types
of functions that can model different types of behaviour in
risky situations.

Some researchers have tried to modify the application of
PMEU by bringing regret or disappointment into the evalu-
ation to cover cases where numerically equal results are ap-
preciated differently depending on what was once in some-
one’s possession, e.g., (Loomes and Sudgen 1982). Others
have tried to resolve the problems mentioned above by hav-
ing functions modifying both the probabilities and the utili-
ties. But their performances are at best equal to that of the
expected value, and at worst inferior, e.g., inconsistent with
first-order stochastic dominance (Malmnäs 1996).

Furthermore, the elicitation of risk attitudes from human
decision-makers is error prone and the result is highly de-
pendent on the format and method used, see, e.g., (Riabacke,
Påhlman, and Larsson 2006). This problem is even more ev-
ident when the decision situation involve catastrophic out-
comes (Mason et al. 2005). If not being able to elicit a
properly reflecting risk attitude, we may have the situation
that even if the evaluation of an alternative results in an ac-
ceptable expected utility, some consequences might be of
a catastrophic kind so the alternative should be avoided in
any case. Due to catastrophe aversion, this may be the case
even if the probabilities of these consequences are very low.
In such cases, the PMEU needs to be extended with other
rules, and it has therefore been argued that a useful decision
theory should permit a wider spectrum of risk attitudes than
by means of a utility function only. A more pragmatic ap-
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proach should give an agent the means for expressing risk
attitudes in a variety of ways, as well as provide procedures
for handling both qualitative and quantitative aspects.

We will now take a closer look at how some of these de-
ficiencies can be remedied. The next section introduces a
decision tree formalism and corresponding risk constraints.
They are followed by a brief description of a theory for rep-
resenting imprecision using second-order distributions. The
last section before the conclusion presents the main contri-
bution of this paper – how risk constraints can be realised
in a second-order framework for evaluating decisions under
risk. This include a generalisation of risk constraints in a
second-order setting and obtaining a reasonable measure of
the support for violation of stipulated constraints for each
decision alternative.

Modelling the Decision Problem
In this paper, we let an information frame represent a deci-
sion problem. The idea with such a frame is to collect all
information necessary for the model into one structure. Fur-
ther, the representational issues are of two kinds; a decision
structure, modelled by means of a decision tree, and input
statements, modelled by means of linear constraints. A de-
cision tree is a graph structure 〈V, E〉 where V is a set of
nodes and E is a set of node pairs (edges).

Definition 1. A tree is a connected graph without cycles. A
decision tree is a tree containing a finite set of nodes which
has a dedicated node at level 0. The adjacent nodes, except
for the nodes at level i − 1, to a node at level i is at level
i+1. A node at level i+1 that is adjacent to a node at level
i is a child of the latter. A node at level 1 is an alternative. A
node at level i is a leaf or consequence if it has no adjacent
nodes at level i + 1. A node that is at level 2 or more and
has children is an event (an intermediary node). The depth
of a rooted tree is max(n|there exists a node at level n).

Thus, a decision tree is a way of modelling a decision sit-
uation where the alternatives are nodes at level 1 and the set
of final consequences are the set of nodes without children.
Intermediary nodes are called events. For convenience we
can, for instance, use the notation that the n children of a
node xi are denoted xi1, xi2, . . . , xin and the m children of
the node xij are denoted xij1, xij2, . . . , xijm and so forth.
For presentational purposes, we will denote a consequence
node of an alternative Ai simply with cij .

Over each set of event node children and consequence
nodes, functions can be defined, such as probability distri-
butions and utility functions.

Interval Statements
For numerically imprecise decision situations, one option is
to define probability distributions and utility functions in the
classical way. Another, more elaborate option is to define
sets of candidates of possible probability distributions and
utility functions and then express these as vectors in poly-
topes that are solution sets to, so called, probability and util-
ity bases.

For instance, the probability (or utility) of c ij being be-
tween the numbers ak and bk is expressed as pij ∈ [ak, bk]

(or uij ∈ [ak, bk]). Such an approach also includes relations
– a measure (or function) of cij is greater than a measure (or
function) of ckl is expressed as pij ≥ pkl and analogously
uij ≥ ukl. Each statement can thus be represented by one
or more constraints.

Definition 2. Given a decision tree T , a utility base is a set
of linear constraints of the types uij ∈ [ak, bk], uij ≥ ukl

and, for all consequences {cij} in T , uij ∈ [0, 1]. A prob-
ability base has the same structure, but, for all interme-
diate nodes N (except the root node) in T , also includes∑mN

j=1 pij = 1 for the children {xij}j=1,...,mN of N .

The solution sets to probability and utility bases are poly-
topes in hypercubes. Since a vector in the polytope can be
considered to represent a distribution, a probability base P
can be interpreted as constraints defining the set of all possi-
ble probability measures over the consequences. Similarly,
a utility base U consists of constraints defining the set of all
possible utility functions over the consequences. The bases
P and U together with the decision tree constitute the infor-
mation frame 〈T,P ,U〉.

As discussed above, the most common evaluation rules of
a decision tree model are based on the PMEU.

Definition 3. Given an information frame 〈T,P ,U〉 and an
alternative Ai ∈ A the expression

E(Ai) =
ni0∑

i1=1

pii1

ni1∑
i2=1

pii1i2 · · ·
nim−2∑

im−1=1

pii1i2...im−2im−1

nim−1∑
im=1

pii1i2...im−2im−1imuii1i2...im−2im−1im

where m is the depth of the tree corresponding to Ai, nik

is the number of possible outcomes following the event with
probability pik

, p...ij ..., j ∈ [1, . . . , m], denote probability
variables and u...ij ... denote utility variables as above, is
the expected utility of alternative Ai in 〈T,P ,U〉.

The alternatives in the tree are evaluated according to
PMEU, and the resulting expected utility defines a (partial)
ordering of the alternatives. However, as discussed in the in-
troduction, the use of utility functions to formalise the deci-
sion process seem to be an oversimplified idea, disregarding
important factors that appear in real-life applications of de-
cision analysis. Therefore, there is a need to permit the use
of additional ways to discriminate between alternatives. The
next section discusses risk constraints as such a complemen-
tary decision rule.

Risk Constraints
The intuition behind risk constraints is that they express
when an alternative is undesirable due to too risky conse-
quences. A general approach is to introduce the constraints
to provide thresholds beyond which an alternative is deemed
undesirable by the decision making agent. Thus, express-
ing risk constraints is analogous to expressing minimum re-
quirements that should be fulfilled in the sense that a risk
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constraint can be viewed as a function stating a set of thresh-
olds that may not be violated in order for an alternative to be
acceptable with respect to risk (Danielson 2005).

A decision agent might regard an alternative as undesir-
able if it has consequences with too low a utility and with
some probability of occurring, regardless of its contribution
to the expected utility being low. Additionally, if several
consequences of an alternative Ai are too bad (with respect
to a certain utility threshold), the probability of their union
must be considered even if their individual probabilities are
not high enough by themselves to render the alternative un-
acceptable. This procedure is fairly straightforward. For an
alternative Ai in an information frame 〈T,P ,U〉, given a
utility threshold r′ and a probability threshold s ′, then∑

uij≤r′
pij ≤ s′

must hold in order for Ai to be deemed an acceptable al-
ternative. In this sense, a risk constraint can be considered
a utility-probability pair (r ′, s′). Then a consequence cij is
violating r′ if uij > r′ does not hold. Principles of this kind
seem to be good prima facie candidates for evaluative prin-
ciples in the literature, i.e., they conform well to established
practices and enable a decision-maker to use qualitative as-
sessments in a reasonable way. For a comprehensive treat-
ment and discussion, see (Ekenberg, Danielson, and Boman
1997).

However, when the information is numerically imprecise
(probabilites and utilities are expressed as bounds or inter-
vals), it is not obvious how to interpret such thresholds. We
have earlier suggested that the interval boundaries together
with stability analyses could be considered in such cases
(Ekenberg, Boman, and Linneroth-Bayer 2001).
Example 1. An alternative Ai is considered undesirable if
the consequence cij belonging to Ai has a possibility that
the utility of cij is less than 0.45, and if the probability of
cij is greater than 0.65. Assume that the alternative Ai

has a consequence for which its utility lies in the interval
[0.40, 0.60]. Further assume that the probability of this
consequence lies in the interval [0.20, 0.70]. Since 0.45 is
greater than the least possible utility of the consequence,
and 0.65 is less than the greatest possible probability, Ai

violates the thresholds and is thus undesirable.
The stability of such a result should also be investigated.

For instance, it can be seen that the alternative in Example 1
ceases to be undesirable when the left end-point of the utility
interval is increased by 0.05. An agent might nevertheless
be inclined to accept the alternative since the constraints are
violated in a small enough proportion of the possible values.
Thus, the analysis must be refined.

A concept in line with such stability analyses is the con-
cept of interval contraction, investigating to what extent the
widths of the input intervals need be reduced in order for
an alternative not to violate the risk constraints. The con-
tractions of intervals are done toward a contraction point for
each interval. Contraction points can either be given explic-
itly by the decision making agent or be suggested from, e.g.,
minimum distance calculations or centre of mass calcula-
tions. The level of contraction is indicated as a percentage,

Figure 1: Contraction analysis of risk constraints given in
Example 1. Beyond a contraction level of 19%, the con-
straints are no longer violated for alternative A1. The con-
straints for alternative A2 are never violated.

where at 100% contraction all intervals have been replaced
with their contraction points, see Figure 1 for a contraction
analysis of the rudimentary problem in Example 1. One
refinement is to provide a possibility for an agent to stip-
ulate thresholds for proportions of the probability and utility
bases, i.e. an alternative is considered unacceptable if it vio-
lates the risk constraints at a given contraction level (Daniel-
son 2005).

Including Second-Order Information
The evaluation procedures of interval decision trees yield
first-order (interval) estimates of the evaluations, i.e. up-
per and lower bounds for the expected utilities of the al-
ternatives. An advantage of approaches using upper and
lower probabilities is that they do not require taking particu-
lar probability distributions into consideration. On the other
hand, the expected utility range resulting from an evaluation
is also an interval. To our experience, in real-world decision
situations it is then often hard to discriminate between the al-
ternatives since the intervals are not always narrow enough.
For instance, an interval based decision procedure keeps all
alternatives with overlapping expected utility intervals, even
if the overlap is small. Therefore, it is worthwhile to ex-
tend the representation of the decision situation using more
information, such as second-order distributions over classes
of probability and utility measures.

Distributions can be used for expressing various beliefs
over multi-dimensional spaces where each dimension corre-
sponds to, for instance, possible probabilities or utilities of
consequences. The distributions can consequently be used to
express strengths of beliefs in different vectors in the poly-
topes. Beliefs of such kinds are expressed using higher-
order distributions, sometimes called hierarchical models.
Approaches for extending the interval representation using
distributions over classes of probability and value measures
have been developed into various such models, for instance
second-order probability theory. In the following, we will
pursue the idea of adding more information and discuss its
implications on risk constraints.

Distributions over Information Frames
Interval estimates and relations can be considered as special
cases of representations based on distributions over poly-
topes. For instance, a distribution can be defined to have
a positive support only for xi ≤ xj . More formally, the so-
lution set to a probability or utility base is a subset of a unit
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cube since both variable sets have [0, 1] as their ranges. This
subset can be represented by the support of a distribution
over the cube.

Definition 4. Let a unit cube [0, 1]n be represented by B =
(b1, . . . , bn). The bi can be explicitly written out to make the
labelling of the dimensions clearer.

More rigorously, the unit cube is represented by all the tuples
(x1, . . . , xn) in [0, 1]n.

Definition 5. By a second-order distribution over a cube B,
we denote a positive distribution F defined on the unit cube
B such that ∫

B

F (x) dVB(x) = 1 ,

where VB is the n-dimensional Lebesque measure on B. The
set of all second-order distributions over B is denoted by
BD(B).

For our purposes here, second-order probabilities are an im-
portant sub-class of these distributions and will be used be-
low as a measure of belief, i.e. a second-order joint proba-
bility distribution. Marginal distributions are obtained from
the joint ones in the usual way.

Definition 6. Let a unit cube B = (b1, . . . , bn) and
F ∈ BD(B) be given. Furthermore, let B−

i =
(b1, . . . , bi−1, bi+1, . . . , bn). Then

fi(xi) =
∫

B−
i

F (x) dVB−
i

(x)

is a marginal distribution over the axis bi.

A marginal distribution is a special case of an S-
projection,

Definition 7. Let B = (b1, . . . , bk) and A =
(bi1 , . . . , bis), ij ∈ {1, . . . , k} be unit cubes. Let F ∈
BD(B), and let

FA(x) =
∫

B\A

F (x) dVB\A(x)

Then FA is the S-projection of F on A.

An S-projection of the above kind is also a second-order
distribution (Ekenberg and Thorbiörnson 2001). As an in-
formation frame has two separated constraint sets, P hold-
ing constraints on probability variables and U holding con-
straints on utility variables, it is suitable to distinguish be-
tween cubes in the same fashion. A unit cube holding prob-
ability variables is denoted by BP and a unit cube holding
utility variables is denoted by BU .

Example 2. Given an information frame 〈T,P ,U〉, con-
straints in the bases can be defined through a belief distri-
bution. Given a unit cube U = (u1, u2) and a distribution
G over U defined by G(u1, u2) = 6 ·max(u1−u2, 0). Then
G is a second-order (belief) distribution in our sense, and
the support of G is {(u1, u2)|0 ≤ ui ≤ 1 ∧ u1 > u2}. See
Figure 2.

Figure 2: The support of G(u1, u2) is the solution set of the
set {1 ≥ u1 > u2 ≥ 0} of constraints.

As an analysis using risk constraints is done investigating
one alternative at a time, we let a utility cube with respect to
an alternative Ai be denoted by BUi and a probability unit
cube with respect to Ai be denoted by BPi . Hence, BUi

is represented by all the tuples (ui1, . . . , uin) in [0, 1]n and
BPi is represented by all the tuples (pi1, . . . , pin) in [0, 1]n
when Ai has n consequences. The normalisation constraint
for probabilities imply that for a belief distribution over BPi

there can be positive support only for tuples where
∑

pij =
1.

Definition 8. A probability unit cube for alternative Ai is
a unit cube BPi = (pi1, . . . , pin) where Fi(pi1, . . . , pin) >
0 ⇒ ∑n

j=1 pij = 1. A utility unit cube for Ai, BUi , lacks
this latter normalisation.

One candidate for serving as a belief distribution over BPi

is the Dirichlet distribution.

Example 3. The marginal distribution fi1(pi1) of the uni-
form Dirichlet distribution in a 4-dimensional cube is

fi1(pi1) =

1−pi1∫

0

1−pi2−pi1∫

0

6 dpi3 dpi2 = 3(1 − 2pi1 + p2
i1)

= 3(1 − pi1)2 .

Evaluation of decision trees with respect to PMEU using
second-order distributions is discussed in (Ekenberg et al.
2007). The result is a method that can offer more discrimi-
native power in selecting alternatives where overlap prevails,
as the method may compare expected utility sub-intervals
where the second-order belief mass is kept under control.
With respect to the input statements of this model, there are
similarities with the additional input required for conducting
probabilistic sensitivity analyses, which aims at an analysis
of post hoc robustness, see, e.g., (Felli and Hazen 1998).
However, the primary concern herein is to take such input
into account already in the evaluation rules. The next sec-
tion discusses how this may be done for risk constraints.

Second-Order Risk Constraints
The generalisation of risk constraints in second-order deci-
sion analysis is rather straightforward. The basic idea is to
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consider the actual proportions of the resulting distributions
that the thresholds cut off.

In the following, let 〈T,P ,U〉 be an information frame.
A prima facie solution is then to let fij(pij) and gij(uij)
be marginal second-order distributions over the probabilities
and utilities of a consequence cij in the frame. Then, given
thresholds r′ and s′ and second-order thresholds r ′′ and s′′,
where s′, r′, s′′, r′′ ∈ [0, 1], if

r′∫

0

gij(uij) duij ≥ r′′

and
1∫

s′

fij(pij) dpij ≥ s′′

holds the alternative is deemed undesirable. Note that r ′ and
s′ are limits on actual utilities and probabilities respectively
but r′′ and s′′ are limits on their distributions.

However, as for ordinary risk constraints, it is also neces-
sary to take into account the way in which subsets of conse-
quences, i.e. events, together can make an alternative un-
desirable. If we would have independent distributions in
the probability base, this would be accomplished by using
standard convolution, utilizing the product rule for standard
probabilities. Due to normalization and possible inequality
constraints, this approach must be modified.

Let {gij(uij)}n
j=1 be marginal second-order distributions

with respect to consequences {cij} of an alternative Ai in an
information frame 〈T,P ,U〉. Let Φi be the consequence set
such that

cij ∈ Φi ⇐⇒
r′∫

0

gij(uij) duij ≥ r′′

Further, let Pi be the set of possible (joint) probability dis-
tributions (pi1 . . . , pin) over the consequences of an alterna-
tive Ai, let Fi be a belief distribution over Pi, and let

t′′ =
∫

Γs′
Fi(pi1, . . . , pin)dVBPi

where

Γs′ =
{
Pi :

∑
cijk

∈Φi

pijk
≥ s′

}

Then the inequality

t′′ ≤ s′′ (1)

must hold for the alternative to be acceptable. This is a
straightforward generalisation of the risk constraint concept
utilising second-order information. In addition to the utility-
probability threshold pair (r ′, s′), we also use a pair (r′′, s′′)
acting as thresholds on the belief mass violating r ′ and s′
respectively.

Belief in Risk Constraint Violation

Given the proportions that the risk constraints specify, we
can derive a measure τi ∈ [0, 1] of to what extent the input
statements support a violation of a risk constraint (r ′, s′) for
a given alternative Ai. The rationale behind such a measure
is that it delivers further information to a decision-maker
when more than one alternative violate stipulated risk con-
straints. This is especially important for cases when only
some consistent probability-utility assignments (i.e. subsets
of the polytopes) violate the risk constraints.

If an alternative do not, for any consistent probabilities or
utilities in the information frame, violate the risk constraint,
this yields a violation belief measure of zero. On the other
hand, if all consistent probabilities and utilities violate the
risk constraint, a violation belief of one is obtained.

For such a measure to be meaningful, it should as a mini-
mum requirement fulfil the following desiderata. In the fol-
lowing, τ(i,r′,s′) denote the violation belief of a risk con-
straint (r′, s′) for an alternative Ai.

Desideratum 1. Given an information frame with an al-
ternative Ai and risk constraints (r′1, s′), (r′2, s′). Then
r′1 > r′2 ⇒ τ(i,r′

1,s′) ≥ τ(i,r′
2,s′).

Desideratum 2. Given an information frame with an al-
ternative Ai and risk constraints (r′, s′1), (r

′, s′2). Then
s′1 < s′2 ⇒ τ(i,r′,s′

1) ≥ τ(i,r′,s′
2)

.

Desideratum 3. Given an information frame with an alter-
native Ai and a risk constraint (r′, s′) and let k be a conse-
quence index cik . Let I 	= ∅ be the index set of consequences
violating r′, yielding τ(i,r′,s′) when k /∈ I . If the information
frame is modified only with respect to the utility uik leading
to k ∈ I yielding τ ∗

(i,r′,s′), then τ∗
(i,r′,s′) > τ(i,r′,s′).

In essence, Desiderata 1-2 say that given an information
frame, more demanding risk constraints should not yield
lower belief in their violation, and Desideratum 3 says that
we wish to take into account the way in which subsets of
consequences together can make an alternative undesirable.

One proposal is to select the resulting value of the inte-
gral on the left hand side of inequality (1) as a measure of
violation belief. Although this would fulfil the minimum
requirements stipulated in Desiderata 1-3, one would need
to choose a second-order threshold r ′′ and the result would
be sensitive with respect to this assignment. Another dis-
advantage with this approach is that it would discriminate
between smaller and larger violations of r ′′. However, since
this technique operates on the marginals g ij(uij), it might
be preferred due to its intuitive appeal. Another proposal is
given below, operating on global belief distributions and not
utilising second-order thresholds.

Define BR = BPi × BUi , existing of all tuples (p, u),
i.e. (pi1, ui1 . . . , pin, uin). Let Fi be a belief distribution on
BPi and Gi be a belief distribution on BUi , then it follows
that ∫

BR

Fi(p) · Gi(u) dVBR(p, u) = 1 (2)

See, e.g., (Danielson, Ekenberg, and Larsson 2007).
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Definition 9. Given an information frame, the violation be-
lief τi of Ai violating (r′, s′) is

τi =
∫
R

Fi(p) · Gi(u) dVR(p, u)

where R is the set of points (pi1, ui1, . . . , pin, uin) ∈ BR,
such that

∑
j∈K pij > s′ where K is the index set given by

uij ≤ r′ ⇔ j ∈ K .

Proposition 1. τi ∈ [0, 1] and fulfils Desiderata 1-3.

Proof. Since R ⊆ BR then τi ∈ [0, 1]. When distributions
Fi, Gi are given (the information frame is given) the viola-
tion belief τi depends only on the proportion of R relative
to BR. If no consistent probability and utility assignments
can violate (r′, s′), then R = ∅ yields τi = 0. If all con-
sistent probability and utility assignents violate (r ′, s′), then
R = BR yield τi = 1 from (2). For Desideratum 1, we
have risk constraints (r′1, s

′) and (r′2, s
′). As R is bounded

above by uij ≤ r′, r′1 > r′2 cannot result in a lower pro-
portion for r′1 than for r′2. Hence, Desideratum 1 is fulfilled.
For Desideratum 2, essentially the same reasoning applies.
For Desideratum 3, let R denote the domain when k /∈ I ,
and denote it by R′ when k ∈ I . Then since R ⊂ R′ and
R′ \ R 	= ∅ is a convex subset of BR Desideratum 3 is sat-
isfied.

Summary and Conclusions
The most often used decision rules in formal models of de-
cision making are based on the principle of maximising the
expected utility. However, the various axiomatic theories
proposed to support this principle are insufficient and have
been subject to severe criticism. Therefore, it seems reason-
able to supplement frameworks based on the utility principle
with other decision rules taking a wider spectrum of risk at-
titudes into account. One such supplement is the inclusion
of thresholds in the form of risk constraints.

This paper discusses how numerically imprecise informa-
tion can be modelled and evaluated, as well as how the risk
evaluation process can be elaborated by integrating proce-
dures for handling vague and numerically imprecise prob-
abilities and utilities. The shortcomings of the principle of
maximising the expected utility, and of utility theory in gen-
eral, can in part be compensated for by the introduction of
the concept of risk constraint violation. It should be em-
phasised that this is not the only method of comparing the
risk involved in different alternatives in imprecise domains.
However, it is based on a well-founded model of imprecision
and meeting reasonable requirements on its properties.

Using risk constraint violation, a general model can be
constructed for representing various risk attitudes and pro-
viding alternative means for expressing such. The defini-
tions are computationally meaningful, and are therefore also
well suited to automated decision making. Rules have been
suggested for sorting out undesirable decision alternatives,
rules which should also serve as a tool for guaranteeing that
certain norms are not violated, even when it is desirable (or
necessary) that the agents be able to maintain their auton-
omy.
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