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Abstract

Combining probability and first-order logic has been the sub-
ject of intensive research during the last ten years. The most
well-known formalisms combining probability and some sub-
set of first-order logic are probabilistic relational models
(PRMs), Bayesian logic programs (BLPs) and Markov logic
networks (MLNs). Of these three formalisms, MLN is the
currently most actively researched. While the subset of first-
order logic used by Markov logic networks is more expressive
than that of the other two formalisms, its probabilistic seman-
tics is given by weights assigned to formulas, which limits
the comprehensibility of MLNs. Based on a knowledge rep-
resentation formalism developed for propositional probabilis-
tic models, we propose an alternative way to specify Markov
logic networks, which allows the specification of probabili-
ties for the formulas of a MLN. This results in better com-
prehensibility, and might open the way for using background
knowledge when learning MLNs or even for the use of MLNs
for probabilistic expert systems.

Introduction
Representing and reasoning with (uncertain) knowledge is
one of the main concerns of artificial intelligence. One way
to represent and process uncertain knowledge is to use prob-
abilistic methods, which, with the introduction of proba-
bilistic graphical models, have seen increasing research in-
terest during the last two decades. Markov and Bayesian
networks are two well-known classes of probabilistic graph-
ical models (Pearl 1988; Cowell et al. 1999). Bayesian net-
works (BNs) have been investigated more thoroughly than
Markov networks (MNs), because they factorize as a product
of marginal and conditional distributions, and can be used to
express causal relationships. The specification of BNs by an
expert, however, can be laborious or even impossible, be-
cause all of its constituting distributions must be specified,
and some of these parameters may be unknown to the expert.
Another way for specifying Bayesian networks is learning
them from data (Buntine 1996; Jordan 1998).

There has also been some work on learning Markov net-
works and their subset of decomposable models from data
(Bromberg, Margaritis, & Honavar 2006; Karger & Sre-
bro 2001; Malvestuto 1991), but specifying them directly
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is much more difficult than for BNs, because MNs factorize
as a product of potential functions, not distributions.

Markov and Bayesian networks are propositional prob-
abilistic models and thus have restricted expressiveness.
Therefore, several approaches for combining probability
and some subset of first-order logic have been developed,
both within the knowledge representation and machine
learning communities, see (De Raedt & Kersting 2003;
Cussens 2007) for an overview. Of the approaches devel-
oped for machine learning, the best known formalisms are
probabilistic relational models (PRMs), Bayesian logic pro-
grams (BLPs) and Markov logic networks (MLNs), see cor-
responding chapters in (Getoor & Taskar 2007). Although
their models are specified in first-order logic, for inference,
PRMs, BLPs and MLNs all work at a propositional level.
PRMs and BLPs induce a Bayesian network, whereas MLNs
induce a Markov net. The formulas of PRMs and BLPs
are parametrized with (conditional) distributions, whereas a
MLNs consist of weighted formulas. Therefore, MLNs are
not as easily comprehensible as PRMs and BLPs, and it is
also difficult to specify them by hand, e.g. as background
knowledge for learning.

In this paper, we propose a way to directly specify proba-
bilities for the formulas of a Markov logic network, and also
add the ability to model conditionals with MLNs. Thus we
hope to make MLNs more comprehensible, thereby mak-
ing it easier for the user to use background knowledge when
learning MLNs. Better comprehensibility might also facili-
tate the use of MLNs as a knowledge representation formal-
ism for expert systems.

In the following section, we introduce a formalism for
specifying propositional graphical models. Markov logic
networks are introduced in the third section, after which
we describe our novel formalism and give several examples,
which demonstrate certain properties of our formalism. We
close with some conclusions and aspects of further work.

Propositional Probabilistic Graphical Models
with Constraints

In the introduction, we have outlined two ways of building
graphical models: either learning them from data, or specify
them directly, which is only feasible for Bayesian networks.
Yet another way to define a graphical model is to specify
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probabilistic constraints on it, using probabilistic constraint
logic (PCL).

Let V = {1, . . . , k} denote the index set of a finite set XV =
{Xv | v ∈ V} of random variables, each with a finite domain
Xv. Let further P denote a joint probability distribution for
XV , with state space Ω :=

∏k
i=1Xi.

We want to be able to specify equality constraints on the
joint distributions for XV , i.e. constrain the expected value
EP( f ) :=

∑
ω∈Ω f (ω)P(ω) of so-called feature functions f :

Ω → [−1, 1]. The feature functions f are not arbitrarily
defined, but induced by propositional formulas, as described
below. Therefore, the feature functions represent properties
of the desired joint distribution, e.g. relationships between
the random variables in XV .

For Xi ∈ XV and xi ∈ Xi, the expression Xi = xi is an
(atomic) formula, and if φ, ψ and ρ are formulas, then (φ∧ψ),
(φ ∨ ψ) and ¬ρ are formulas. The set of interpretations for
these propositional formulas is Ω, the state space of the joint
distributions for XV . An interpretation ω ∈ Ω is a model for
an atomic formula Xi = xi, iff ωi = xi, i.e. the i-th element of
ω equals xi. This definition of a model is extended to more
complex formulas as usual, and for any formula ρ, we denote
the set of its models by ModPL(ρ) ⊆ Ω. Based on this, we
can compute the probability of any formula ρ with respect to
any joint distribution P for XV as P(ρ) =

∑
ω∈ModPL(ρ) P(ω).

The sentences expressible with PCL are probabilistic
rules and facts. Let φ, ψ and ρ be propositional formulas,
and let ξ and ζ be real numbers in [0, 1]. Then (φ |ψ)[ξ] is
a probabilistic rule, with premise ψ, conclusion φ and prob-
ability ξ. Probabilistic rules with a tautological premise are
probabilistic facts, written (ρ)[ζ] ≡ (ρ | >)[ζ]. A probability
distribution P is a model of a probabilistic rule R = (φ |ψ)[ξ],
written P |= R, iff P(φ ∧ ψ) = ξ · P(ψ), and it is a model of
a set R of rules, written P |= R, iff it is a model of each rule
Ri ∈ R. ModPCL(R) denotes the set of all models for R.

As to semantics, models for a set R of probabilistic rules
can be equivalently described by the expected values of
certain feature functions. Given a single probabilistic rule
R = (φ |ψ)[ξ], we define a feature function f : Ω → [−1, 1]
representing R as

f (ω) :=


1 − ξ if ω ∈ ModPL(φ ∧ ψ),
−ξ if ω ∈ ModPL(¬φ ∧ ψ),
0 if ω ∈ ModPL(¬ψ).

(1)

A probability distribution P is a model of R, iff EP( f ) = 0:

P ∈ ModPCL(R)
:⇔ P(φ ∧ ψ) = ξ · P(ψ)

⇔
∑

ω∈ModPL(φ∧ψ)

P(ω) = ξ ·
∑

ω∈ModPL(ψ)

P(ω)

⇔
∑

ω∈ModPL(φ∧ψ)

P(ω)

− ξ ·
∑

ω∈ModPL((φ∧ψ)∨(¬φ∧ψ))

P(ω) = 0

⇔
∑

ω∈ModPL(φ∧ψ)

P(ω) − ξ ·
∑

ω∈ModPL(φ∧ψ)

P(ω)

− ξ ·
∑

ω∈ModPL(¬φ∧ψ)

P(ω) = 0

⇔ (1 − ξ·)
∑

ω∈ModPL(φ∧ψ)

P(ω)

− ξ ·
∑

ω∈ModPL(¬φ∧ψ)

P(ω) = 0

⇔
∑
ω∈Ω

f (ω)P(ω) = EP[ f ] = 0.

This is canonically extended to a set R = {R1, . . . ,Rm} of
probabilistic rules with corresponding feature functions fi,
1 ≤ i ≤ m.

The set ModPCL(R) is either empty (if the constraints are
inconsistent), contains exactly one model, or contains in-
finitely many models, as it is a convex subset of the set of all
probability distributions for XV . Thus, if we want to obtain
point probabilities for queries, as with BNs and MNs, we
have to select a single model from ModPCL(R). One way to
make this choice is based on the Principle of Maximum En-
tropy (Kapur & Kesavan 1992), which proposes to choose
from ModPCL(R) the probability distribution with maximum
entropy:

PME := argmax
P∈ModPCL(R)

−∑
ω∈Ω

P(ω) log2 P(ω)

︸                       ︷︷                       ︸
=:H(P)

. (2)

The reason for using maximum entropy as the selection cri-
terion is that the probabilistic constraints represent all that
we know, and we want a model that represents this knowl-
edge, but is as unbiased as possible with respect to what we
don’t know (Shore & Johnson 1980).

As the entropy function H(P) is concave, and ModPCL(R)
is a convex set, (2) gives rise to a convex optimization prob-
lem, which can be solved with the generalized iterative scal-
ing (GIS) procedure (Darroch & Ratcliff 1972). The result-
ing joint probability distribution PME has the form

PME(ω) =
1
Z

exp

 m∑
i=1

λi fi(ω)

 , (3)

therefore PME is a log-linear model of a Markov network.
Z :=

∑
ω∈Ω exp(

∑m
i=1 λi fi(ω)) is the usual normalization con-

stant, the fi are the feature functions defined for each rule
Ri ∈ R according to (1), and {λ1, . . . , λm} are the parameters
calculated with the GIS algorithm.

The probabilistic constraint logic introduced in this sec-
tion has been used to implement the expert system shell
SPIRIT (Rödder, Reucher, & Kulmann 2006), and a
data mining algorithm for learning probabilistic rules has
also been implemented (Fisseler, Kern-Isberner, & Beierle
2007). It is a viable and theoretically well-founded approach
for representing uncertain knowledge (Kern-Isberner 1998a;
Shore & Johnson 1980).
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Markov Logic Networks
Markov logic (Domingos & Richardson 2007) is a formal-
ism for specifying a probability distribution over the possi-
ble worlds of a first-order knowledge base, i.e. over its inter-
pretations (Halpern 1990). As this set is in principle infinite,
certain provisions and restrictions have to be made to ensure
its finiteness (see below). Although Markov logic has been
recently extended to infinite domains (Singla & Domingos
2007), in this paper we are only concerned with finite do-
mains.

A Markov logic network (MLN) L consists of a set
{(F1,w1), . . . , (Fm,wm)} of pairs (Fi,wi), where each Fi is
a formula of first-order logic and wi is a real number, a
weight which is attached to Fi. Given a set of constants
C = {c1, . . . , c|C|}, L induces a (ground) Markov network
ML,C . Therefore, a MLN can be seen as a template for gen-
erating ground Markov networks.

Given a Markov logic network L and a set C of con-
stants, we can associate the first-order signature ΣL,C =
(pred(L), func(L),C) with (L,C), where pred(L) (resp.
func(L)) denotes the set of predicate (resp. function) sym-
bols occurring in the formulas Fi. To ensure there is only a
finite set of interpretations for ΣL,C , (Domingos & Richard-
son 2007) make the following assumptions:
Unique names Different constants denote different objects.
Domain closure The only objects in the domain are those

representable using the constant and function symbols in
ΣL,C .

Known functions For each function in ΣL,C , the value of
this function applied to every tuple of arguments is known
and in C.
These assumptions ensure that the set of random variables

of the ground Markov network ML,C induced by L and C is
finite. This set consists of the ground atoms formed of the
predicate symbols in pred(L) and the constants in C, i.e. it is
the Herbrand base of (pred(L), ∅,C):

XL,C := {p(t1, . . . , tk) | p ∈ pred(L), t1, . . . , tk ∈ C}.

The range of the random variables in XL,C is {true, false}.
The state space of the joint probability distribution de-

fined by (L,C) is ΩL,C := P(XL,C)1, i.e. the set of all Her-
brand interpretations of (pred(L), ∅,C), and the distribution
is given by

PL,C(ω) :=
1
Z

exp

 m∑
i=1

wini(ω)

 , (4)

where Z :=
∑
ω∈ΩL,C

exp
(∑m

i=1 wini(ω)
)

is the usual normal-
ization constant and ni(ω) denotes the number of ground in-
stances of Fi true in ω:

ni(ω) := |{g | g ∈ gnd(Fi,C), ω |= g}|.

gnd(Fi,C) is the set of all ground instances of formula Fi,
generated by substituting every variable of Fi by every con-
stant in C and completely evaluating all occurring ground

1Given a set S , P(S ) denotes its power set.

function terms. ω |= g means that the Herbrand interpreta-
tion ω is a model of the ground formula g.

If we define a feature function fi : ΩL,C × gnd(Fi,C) →
{0, 1},

fi(ω, g) :=
{

1 if ω |= g,
0 if ω 2 g,

(5)

for every formula Fi, (4) can be rewritten as

PL,C(ω) =
1
Z

exp

 m∑
i=1

wi

∑
g∈gnd(Fi,C)

fi(ω, g)

 . (6)

This clearly shows that ML,C is represented as a log-linear
model, where the weight wi is shared by all ground feature
functions of formula Fi.

Knowledge Representation with Markov Logic
Assume we want to formalize the following knowledge in
Markov logic:

R7.1: Common-Cold(a) [0.01]

R7.2: if Susceptible(a)
then Common-Cold(a) [0.1]

R7.3: if Contact(a, b)
and Common-Cold(b)
then Common-Cold(a) [0.6]

(7)

Note that we have adopted the convention of (Domingos &
Richardson 2007) and are writing predicate names and con-
stants with the first letter in upper-case letter, whereas the
first letter of variable names is in lower-case.

(R7.1) states that one normally does not have a common
cold (only with probability 0.01). Rule (R7.2) states that a
person catches a common cold with probability 0.1 if this
person is susceptible to it, and (R7.3) expresses the knowl-
edge that person a, which was in contact with another person
b that had the common cold, also gets a common cold with
probability 0.6.

A plain (but inadequate, as will be shown) way to encode
these if -then-rules with Markov logic is to represent them
using material implication:

R8.1: Common-Cold(a). [w8.1]

R8.2: Common-Cold(a) ← Susceptible(a). [w8.2]

R8.3: Common-Cold(a) ← Contact(a, b) [w8.3]
∧Common-Cold(b).

(8)
Having defined the formulas, the next step is to specify their
weights, but currently there is no way of directly computing
the weights from prescribed probabilities. As (Domingos
& Richardson 2007) gives an interpretation for the weight
of a formula Fi as the log-odds between a world where
Fi is true and a world where it is false, other things be-
ing equal, one might choose w8.1 := ln 1

100 , w8.2 := ln 1
10

and w8.3 := ln 6
10 . But as the ground instances of the

formulas (R8.1)–(R8.3) share some of their ground atoms,
they influence each other, and therefore this naive approach
for computing the weights is not feasible. For example,
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with C = {U,V}, the probability (cf. (4)) of U hav-
ing a common cold is P(Common-Cold(U)) = 0.066416,
which is significantly higher than the desired probability
0.01, which has been used to specify w8.1. On the contrary,
P(Common-Cold(U) |Contact(U,V)∧Common-Cold(V)) =
0.031946, which is much lower than the prescribed proba-
bility 0.6.

Since, as we have seen, there is no direct way of in-
terpreting the weights by probabilities, a pragmatic way
of specifying the weights for the formulas of a MLN is
to learn them from data. This is unproblematic when do-
ing data mining, but for knowledge representation, one
generally has no appropriate data set available and there-
fore has to generate one which represents the given formu-
las with the desired probabilities. This is not straightfor-
ward for complex knowledge bases. Therefore, we gen-
erated a data set representing only the desired probabil-
ities of (R8.1) and (R8.2), containing information about
100 individuals {C1, . . . ,C100}. To represent (R8.1), for
one of these individuals, w.l.o.g. C1, Common-Cold(C1)
must be true. Representing (R8.2) is not that unequivo-
cal. If the empirical probability of the material implica-
tion (R8.2) shall be 0.1, then Susceptible(a) must be true for
{C11, . . . ,C100}, whereas is must be false for {C1, . . . ,C10},
because then (R8.2) is true for {C1, . . . ,C10} only. Lets call
this data set the material data set. On the other hand, a
data set generated based on the intended interpretation of
(R7.2) (see above) would contain Common-Cold(C1) and
Susceptible(C1), . . . , Susceptible(C10), because only one in
ten persons that are susceptible to common cold actually has
a common cold. Lets call this data the conditional data set.

Learning weights from these two data sets gives quite dif-
ferent results. For any constant U, in both models the proba-
bility P(Common-Cold(U)) is close to the intended probabil-
ity 0.01: 0.010528 for the material data set model, 0.010762
for the conditional data set model. But the models differ
significantly with respect to the probability of the condi-
tional query P(Common-Cold(U) | Susceptible(U)): the con-
ditional data set model yields 0.099655, which is very close
to the intended probability 0.1, whereas the material data set
model yields 0.011059. This is because the material data set
model models the material implication (R8.2) (for which we
get P(Common-Cold(U) ← Susceptible(U)) = 0.100298),
not the intended conditional probability of (R7.2).

Please note that the difference in the models computed
from the material and conditional data set does not stem
from the fact that we have learned the weights from data.
It would be the same if there was a direct way for comput-
ing the weights from the prescribed probabilities. The real
problem is that material implication is inadequate for repre-
senting the meaning of if -then-rules (Gabbay & Guenthner
2001). Therefore, we introduce a formalism that allows for
the adequate representation of if -then-rules with condition-
als, and also enables us to directly attach probabilities to the
formulas representing our knowledge.

Markov Logic with Probabilistic Constraints
We now introduce our proposal for Markov logic with prob-
abilistic constraints, which is essentially a combination of

Markov logic and probabilistic conditional logic (cf. section
“Propositional Probabilistic Graphical Models with Con-
straints”). A similar formalism has been introduced within
the probabilistic logic programming research community
(Kern-Isberner & Lukasiewicz 2004).

Assume that instead of pairs (Fi,wi) of first-order for-
mulas Fi and weights wi our knowledge base R consists of
(first-order) probabilistic constraints (φi |ψi)[ξi], 1 ≤ i ≤ m,
where φi and ψi are formulas from a subset of first-order
logic, and ξi are real numbers in [0, 1]. If the universally
quantified formula ∀ψi is a tautology, (φi |ψi)[ξi] can also be
written as (φi)[ξi].

We currently assume that the formulas don’t contain func-
tion symbols and quantifiers. Quantifiers are disallowed be-
cause the probabilistic constraints are assumed to represent
general knowledge, and therefore are implicitly universally
quantified (see below). The reasons for omitting function
symbols are discussed in the “Examples” subsection below.

Given a set of probabilistic constraints R = {(φi |ψi)[ξi]}
and a set of constants C = {c1, . . . , c|C|}, we can proceed as
with “classical” Markov logic and associate the first-order
signature ΣR,C = (pred(R), ∅,C) with (R,C). Using the
unique names and domain closure assumptions (see section
on “Markov Logic Networks”), every interpretation of ΣR,C
uniquely corresponds to an element of ΩR,C := P(XR,C), the
set of all Herbrand interpretations of (pred(R), ∅,C), with
XR,C := {p(t1, . . . , tk) | p ∈ pred(R), t1, . . . , tk ∈ C}.

Unlike a Markov logic network, which defines a unique
probability distribution, R only constraints the set of prob-
ability distributions for XR,C . A probability distribution
PR,C for XR,C is a model of a probabilistic constraint R =
(φ |ψ)[ξ], written PR,C |= R, iff for all ground instances
(gφ | gψ) ∈ gnd((φ |ψ),C) of R, PR,C(gφ ∧ gψ) = ξ · PR,C(gψ).
PR,C is a model of a set of probabilistic constraints R, writ-
ten PR,C |= R, iff it is a model of each probabilistic constraint
Ri ∈ R. ModFO-PCL(R) denotes the set of all models of R.

As our proposal is a template framework for generat-
ing ground Markov networks, we can use probabilistic con-
straint logic to model these Markov networks. Therefore,
we define a feature function f(gφi | gψi ) : ΩR,C → [−1, 1],

f(gφi | gψi )(ω) :=


1 − ξ if ω |= (gφi ∧ gψi ),
−ξ if ω |= (¬gφi ∧ gψi ),
0 if ω 2 gψi .

(9)

for every ground instance (gφi | gψi ) ∈ gnd((φi |ψi),C) of ev-
ery probabilistic constraint (ψi | φi)[ξi] ∈ R (cf. (1)).

Because we have mapped first-order probabilistic con-
straints to PCL, the set ModFO-PCL(R) of models is ei-
ther empty, contains exactly one model or infinitely many.
Using the same rationale as with PCL, choosing from
ModFO-PCL(R) the model with maximum entropy yields the
least biased model, which is given by

PR,C(ω) =
1
Z

exp

 m∑
i=1

∑
(gφi | gψi )

λ(gφi | gψi ) f(gφi | gψi )(ω)

 . (10)

Comparing (10) to (6), one can see that our proposal
introduces a parameter λ(gφi | gψi ) for every ground instance
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|C| Optimal parameters

2
λ(R11.1) = 0.169043101×10−10

λ(R11.2) = 21.47483647×108

λ(R11.3) = 37.19700113

3
λ(R11.1) = 0.241946210×10−10

λ(R11.2) = 21.47483647×108

λ(R11.3) = 22.29916591

4
λ(R11.1) = 0.322136648×10−10

λ(R11.2) = 21.47483647×108

λ(R11.3) = 13.3572512009

Table 1: Maximum entropy parameters for the ground in-
stances of the probabilistic constraints depicted in (11).

(gφi | gψi ) of a probabilistic constraint (φi |ψi)[ξi], whereas
the corresponding parameter of a Markov logic network,
weight wi, is shared by all ground instances of a formula
Fi. This parameter sharing is an intrinsic property of all
formalisms for combining probability and first-order logic,
and desirable from a computational complexity viewpoint.
But the following examples show that, although parameter
sharing does occur within our formalisms, it is not always
appropriate and therefore none of its intrinsic properties.

Examples
Assume we want to model the if -then-rules from (7) as first-
order probabilistic constraints:

R11.1: (Common-Cold(a))[0.01],

R11.2: (Common-Cold(a) | Susceptible(a))[0.1],

R11.3: (Common-Cold(a) |Contact(a, b)
∧Common-Cold(b))[0.6].

(11)

Note that, although constraints of the form (φi)[ξi] allow
us to specify probabilities for formulas with material impli-
cation, e.g. as (Common-Cold(a) ← Susceptible(a))[0.1],
conditional constraints of the form (φi |ψi)[ξi] are more ad-
equate for modeling uncertain if -then-rules (Halpern 1990;
Gabbay & Guenthner 2001), which is why we have used
them for the examples in this subsection.

Using the expert system shell SPIRIT (Rödder, Reucher,
& Kulmann 2006), we have built different models of exam-
ple (11), letting the number of constants vary between two
and four. Although no parameter sharing assumption was
applied, all ground instances of the same probabilistic con-
straints had the same optimal parameter value, which are
shown in table 1. Example (11) therefore exhibits param-
eter sharing. This is because the knowledge it contains for
each ground instance of the same probabilistic constraint is
identical, therefore the least biased (i.e. maximum entropy)
model should of course yield the same parameter value for
each of them.

Note that conditional constraints allow the appropri-
ate modeling of if -then-rules. For example, model-
ing only the first two rules (R11.1) and (R11.2), as
we have done when learning the weights for the MLN

example, we get P(Common-Cold(U)) = 0.01 and
P(Common-Cold(U) | Susceptible(U)) = 0.1, again for any
constant U. This is the intended meaning of the rules (R7.1)
and (R7.2).

Whereas example (11) exhibits parameter sharing, the fol-
lowing example demonstrates that additional knowledge can
lead to different optimal parameter values for ground in-
stances of probabilistic constraints. Assume we have more
specific knowledge for some ground instance of a probabilis-
tic constraint, as depicted by (R12.2) in example (12).

R12.1: (R(a) | S(a))[0.6],

R12.2: (R(U))[0.2].
(12)

Generating a ground instance of this knowledge base with
the constants {U,V,W} results in three ground instances of
(R12.1) and one ground instance of (R12.2). As we have
the same knowledge for the ground instances of (R12.1)
generated for V and W, they share the same maximum en-
tropy parameter value λ(R(V) | S (V)) = λ(R(W) | S (W)) ≈ 1.5. But
for the ground instance (R(U) | S (U) we get λ(R(U) | S (U)) ≈

23.75216239, and for constraint (R12.2), which causes this
“asymmetry”, we get λ(R(U)) ≈ 0.06315214.

“Asymmetry” like the one exhibited by example (12) can
also occur if (known) functions were allowed. But more im-
portantly, formulas with function symbols can result in in-
consistent knowledge. Suppose we are given the formulas
depicted in example (13):

R13.1: (R(a) | S(a))[0.8],

R13.2: (R(a) | S(t(a)))[0.4].
(13)

Generating a ground instance of these rules with C := {U}
and t defined as t(U) := U results in two ground constraints,
(R(U) | S (U))[0.8] and (R(U) | S (U))[0.4]. There is obvi-
ously no probability distribution which can model both con-
straints, because they are inconsistent. Inconsistencies can
also occur in knowledge bases without function symbols,
and how to handle them is an interesting subject of future
work.

Computing PME

Within PCL, the optimal parameter vector λ for the probabil-
ity distribution with maximum entropy (cf. (3)) is computed
with the GIS procedure. This involves computing the ex-
pected value of the feature functions fi given the current pa-
rameter vector, and calculating appropriate adjustments for
the different parameters λi. These computations can be sped
up by using a junction tree to represent the probability dis-
tribution in a more compact, factorized form.

Although first-order probabilistic constraints are mapped
to propositional probabilistic constraints, the resulting mod-
els of our formalism generally are too large for exact in-
ference, which is why we have to resort to approximate in-
ference, both for computing the optimal model parameters
λ(gφi | gψi ), and for answering queries to the resulting model.

Note that, as we have seen in the previous subsection,
some model parameters λi are shared by all ground instances
of a first-order probabilistic constraint (φi |ψi)[ξi]. There-
fore, an essential aspect of an efficient implementation of
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our approach is to find sufficient conditions for parameter
sharing. As this is closely related to lifted probabilistic in-
ference, the work of (de Salvo Braz, Amir, & Roth 2005;
Jaimovich, Meshi, & Friedman 2007) might offer suitable
initial results.

Conclusions and Further Work
We have introduced a formalism for specifying probabilities
for the formulas of a Markov logic network, and have further
extended Markov logic with conditionals, which are more
suitable for knowledge representation. The specification of
probabilities instead of weights makes the resulting mod-
els more comprehensible. As these formula probabilities do
not specify a single model, a model selection step is nec-
essary, which results in an optimization problem. Although
our formalism does not have the intrinsic property of pa-
rameter sharing, which is a central aspect of all formalisms
combining probability and first-order logic, we have given
examples which demonstrate that our formalism does ex-
hibit this property. Therefore, an important aspect of further
work is to find sufficient conditions for parameter sharing
and exploit them when solving the optimization problem.

Another important area of future research is learning un-
certain first-order formulas from data. As the weights of
Markov logic formulas not only depend on the individual
formulas, but also on their interaction, formulas with prob-
abilities instead of weights would clearly be a benefit for
interpreting models learned from data. Furthermore, these
models might be more readily used as the knowledge base of
an expert system. For this application domain, we also want
to further evaluate the general properties of our formalism
from a knowledge representation perspective.

In conclusion, we think we have introduced a promising
and viable approach for representing and learning uncertain
first-order knowledge.
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