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Abstract

The purpose of this paper is to introduce a form of update
based on the minimization of the geodesic distance on a
graph. We provide a characterization of this class using set-
theoretic operators and show that such operators bijectively
correspond to geodesic metrics. As distance is generated by
distinguishability, our framework is appropriate in contexts
where distance is generated by threshold, and therefore, when
measurement is erroneous.

Introduction
It was early noticed by (Keller & Winslett 1985) that updat-
ing a belief base differs from revising it. Updating should
be performed when the belief base is assumed to reflect the
external world and a new contradictory piece of informa-
tion comes about because the external world has changed.
In contrast, revision is the process of accommodating a new
(possibly contradictory) piece of information describing an
external world which remains fixed. An example of this dif-
ference can be demonstrated by the following. Let a, b, c
three atomic propositions and suppose that the states we con-
sider possible are A = {w1, w2}, where w1 = {¬a, b, c}
and w2 = {¬a,¬b,¬c}. Measure the distance between a
pair of states with the number of atomic symbols that they
differ. Suppose we need to update A with a ∧ b, that is,
B = {{a, b, c}, {a, b,¬c}}. The result of the revision of A
with B is the singleton {{a, b, c}} because {a, b, c} is the
closest to A (differs from w1 by a single atomic proposi-
tion). On the other hand, the result of the update of A with
B is B because {a, b,¬c} is closer to w2 than {a, b, c} is,
while {a, b, c} is closer to w1 than {a, b,¬c} is. The reason
for this difference is that if we believe that the only states
possible are w1 and w2, then the change represented by B
should have an effect on both states rather than render one
of those states impossible. In other words, revision is a re-
sult of a global minimization while update is a result of a
component-wise one.

The process of updating is better behaved than revision.
In particular, revision cannot be defined using the so-called
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Ramsey test ((Gärdenfors 1986), (Gärdenfors 1987)). More
precisely, revision that follows from a set of the postu-
lates stated in (Alchourrón, Gärdenfors, & Makinson 1985)
(AGM hereafter) is not expressible with an object language
conditional connective. On the other hand, update is com-
patible with the Ramsey test as it was shown by (Grahne
1991) (See also (Herzig & Rifi 1999)). Therefore, up-
date is interchangeable with conditioning and this inter-
change makes update a significant process worth studying
in depth. Update has not been modeled sufficiently. To our
knowledge, apart from specific (quantitative) models, the
only qualitative characterization is the characterization us-
ing orderings parameterized by interpretations of (Katsuno
& Mendelzon 1991) (KM for short). (Katsuno & Mendelzon
1991) provided a set of rules for update that follow closely
the AGM rules for revision. Parametrization is somewhat
surprising in view of the fact that most concrete quantitative
examples used are based on a global metric. Nevertheless,
parametrization is widely applied in the semantics of belief
change (revision and update). Apart from KM orderings, it
is also present in the systems of spheres of (Grove 1988) and
the ordinal conditional functions of (Spohn 1987). In such
modelings, parametrization occurs when each belief change
brings about a new ranking, ordering, sphere system, etc.,
which in turn will define the next belief change. As a result,
the strategy for belief change is not part of the epistemic
state; it is described separately. However, unless there is a
notion of learning explicitly involved, there is no justifica-
tion for such exclusion.

The purpose of the present paper is to introduce and char-
acterize a class of update operators that are modeled by a
global metric. We consider graphs whose vertices are pos-
sible states, and edges represent indistinguishability. Al-
though many authors have argued that indistinguishability
is better expressed through equivalence ((Aumann 1976;
Hintikka 1962; Fagin, Halpern, & Vardi 1991)), many have
also dropped transitivity as early as (Poincaré 1905) (see
also (Goodman 1977) for similarity), while others have
weakened transitivity, most notable example being the t-
norm transitivity of the similarity relation in Fuzzy sets
((Zadeh 1971)). A set equipped with a reflexive symmet-
ric relation has been called a proximity space in (Bell 1986).
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Figure 1:

In the framework of Rough Sets (Pawlak 1991), a reflex-
ive, symmetric, and transitive relation of indistinguishabil-
ity is called indiscernibility and if it is only reflexive and
symmetric is called a tolerance relation ((Zeeman 1962;
Nieminen 1988)). In addition, their logical status has been
well studied and give rise to orthologic (Goldblatt 1974), and
the modal logic systemB (see (Hughes & Cresswell 1984)).

The class of graphs is a very general and intuitive frame-
work for studying belief update as it makes as few assump-
tions as possible. Examples are easily modeled by a graph,
as the indistinguishability relation needs no quantitative in-
formation. Metrics is perhaps the easiest way to generate
distinguishability; for example, let x ∼ y if and only if
d(x, y) < ε for some appropriate fixed metric d and non-
negative real number ε. Other examples follow:

Example 1 Let S be the set of finite binary strings of finite
length n. We can say that two strings are indistinguishable
when they have the same length and differ in at most one
digit. Otherwise, they are distinguishable.

Example 2 Let D be a set of documents (sets of terms) and
n a positive integer. Two documents d1 and d2 are indistin-
guishable when they have at least n common terms. That
is,

d1 ∼ d2 iff |d1 ∩ d2| ≥ n.

The above examples are important and will be discussed
in more detail in the next section.

Every graph comes equipped with a distance map called
geodesic which is simply defined as the length of the shortest
path between two vertices. Minimization over a geodesic is
straightforward. We illustrate the process with Figure 1. Let
A = {a1, a2}, and B = {b1, b2}. We denote update with
• and revision with ∗. Then A ∗ B = {b2} 6= {b1, b2} =
A •B. Notice that this example also illustrates the example
mentioned earlier.

The idea of using adjacency in order to express indis-
tinguishability is not new. What is new is our idea of us-
ing the geodesic to express similarity. In (Georgatos 2000;
2003), we argued that it is possible to view similarity as a
derived notion, the more basic concept being distinguisha-
bility:

Our idea rests on the following maxim: two objects
are similar when there is a context under which they

are indistinguishable. Therefore, similarity can be mea-
sured with degrees of distinguishability. For example,
although two similar houses might appear different in
various details when we stand in front of them, they
might appear identical if we observe them from an ap-
propriate distance x. Thus, indistinguishability at dis-
tance x implies similarity. The smaller the distance x,
the more similar the objects are.

This way our approach realizes the Stalnaker idea of con-
ditioning by picking the most similar worlds ((Stalnaker
1968)) . In our framework, the closest inerpretations (ac-
cording to the geodesic metric) are the most similar, as long
as similarity is measured by degress of distinguishability.

The advantage of our framework over that of (Katsuno
& Mendelzon 1991) is that our semantics is based on a
global structure; KM makes use of parametrized orderings.
A graph is easy to describe and can generate a ranking for
every node or a subset of nodes in a straightforward manner:
given a set of nodes A then the set of adjacent nodes to A,
Adj(A), are first in the rank, followed byAdj(Adj(A)), etc.

On the other hand, our semantics is a refinement of KM
because the KM postulates include distance based opera-
tors (a global distance map to a partial order induces a KM
model). As a result, there are well-known update opera-
tors which satisfy the KM postulates, but they are not based
on a geodesic metric. Those include the Possible Models
Approach of (Winslett 1988) and the update operators of
(Forbus 1989) which are distance based but not geodesic.
Other update operators proposed in the literature fail to be
geodesic as they do not satisfy the KM postulates, and as a
consequence they are not distance based either. These in-
clude MCD of (Zhang & Foo 1996), WSS of (Winslett
1990), and WSSdep of (Herzig & Rifi 1998). There is
no characterization of distance based update operators, al-
though (Lehmann, Magidor, & Schlechta 2001) have char-
acterized distance based revision operators. Distance based
revision operators do not correspond bijectively to distance
maps, as (Lehmann, Magidor, & Schlechta 2001) has shown
(see also (Delgrande 2004)). Geodesic revision operators,
on the other hand, correspond exactly to geodesic metrics
(see (Georgatos )).

First, we discuss graphs and their geodesics and present
examples. Then, we define geodesic update, and present
our postulates and associated results. The main character-
ization result is Corollary 17. We conclude with an axioma-
tization of the class of selection functions corresponding to
the geodesic update operators.

Graphs and Their Geodesics
Given a graph G = (V,E) its geodesic metric is the map
dG from V × V to Z+ ∪ {∞} where dG(u, v) between two
vertices u and v is the length of a shortest (u, v)-path (count-
ing the number of edges of the path) if there is a path, and
equals to ∞ otherwise. When the distinguishability graph
is connected then the range of the geodesic restricts to Z+

(the set of non-negative integers) and the geodesic metric
is a topological metric; that is, it satisfies identity, symme-
try and the triangle inequality. It is important to note that
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a geodesic metric is an integer metric. Distance on a graph
and therefore the values of the geodesic metric is determined
by adjacency. The results of this paper depend heavily on
this property which can be described with: for all x, y ∈ V
such that dG(x, y) = n with 1 < n < ∞ there is z ∈ V
with z 6= x, y such that dG(x, y) = dG(x, z) + dG(z, y). In
particular, we can choose z so that dG(x, z) = 1.

The geodesic distance extends to distance between sub-
sets with

d(A,B) =

{ min{d(x, y) | x ∈ A, y ∈ B}
if there are x ∈ A, y ∈ B d(x, y) 6=∞

∞ otherwise

Observe that the definition sets d(A,B) = ∞ when A = ∅
or B = ∅. We shall also write d(x,A) for d({x}, A). Simi-
larly for d(A, x). The following observation will be useful.

Lemma 3 We have dG(A,Ac) = 1 or∞.

We turn now to examples of distance functions that can or
cannot be expressed using a graph. First consider the ham-
ming distance, defined as the number of symbols where two
valuations differ (see (Dalal 1988) and (Forbus 1989)). In
general, a set of valuations equipped with hamming distance
is not geodesic: consider two propositional atoms and a do-
main made of two valuations 00 and 11 whose hamming
distance is 2. There is no valuation between those two and
this space cannot be represented with a graph. This coun-
terexample indicates that a hamming distance based space is
geodesic if it has “enough” elements. It is enough to add a
third valuation 10 to the above domain to turn the distance
into a geodesic one. In short, a hamming distance based
space may not be geodesic itself but it can be embedded into
a geodesic one. In a similar fashion, arbitrary integer metrics
are not geodesic but they can be embedded to an appropriate
geodesic space.

We shall now discuss a more interesting construction of a
geodesic space given an arbitrary metric space. This con-
struction is a straightforward modeling of the concept of
threshold which was the original motivation of defining up-
dates on graphs. Let (X, d) be a a metric space and let e > 0
be a real number representing a threshold. Then (X, de)
is called the e-threshold space of (X, d), with de(x, y) =
dG(x, y), where G = (V,E) is a graph with V = X and
(x, y) ∈ E iff d(x, y) < e. By definition every e-threshold
space is geodesic.

We will now present two concrete examples of a geodesic
space. The first example models degrees of separation. Let
V be the set of computer science authors and (A1, A2) ∈ E
if A1 and A2 are joint authors (of the same paper). Clearly,
the associated geodesic models degrees of (collaborative)
separation between two authors.

The second example shows that if language is used as a
relevance criterion then the resulting space is geodesic. So
geodesic update is the appropriate form of update when a
change in the outside world has an impact only on those
parts of the knowledge base where one can establish a lin-
guistic link. Let Atom be a set of atomic symbols and L
a propositional language build on Atom. For each formula
a ∈ L, let La be the subset of Atom occurring in a. Then

Table 1: Geodesic Update Postulates

1. A •B ⊆ B
2. If A ⊆ B, then A •B = A

3. (A •B) ∩ C ⊆ A • (B ∩ C)
4. ∪i∈I(Ai •B) = (∪i∈IAi) •B
5. If A ⊆ B •Bc, then A •B = (A •Ac) ∩B
6. If B ⊆ Ac, then A •B = (A • (B •Bc)) •B
7. If B ⊆ Ac, then (A•Ac)∩B 6= ∅ iff (B •Bc)∩A 6= ∅

8. If A •B = ∅, C ⊆ A, and D ⊆ B, then C •D = ∅
9. If A 6= ∅ and B 6= ∅, then A •B 6= ∅

the relevance graph of L is the graph G = (L, E) with
(a, b) ∈ E, where a, b ∈ L, iff La ∩ Lb 6= ∅. The result-
ing geodesic metric dG models the following idea. Let A
and B be two subsets of L, representing parts of the knowl-
edge base pertaining to two topics t1 and t2. Then the dis-
tance dG(t1, t2) between those topics can be defined as the
minimum number of propositions one can use to link those
topics. If there is no such sequence of propositions, then a
linguistic link cannot be established, the two topics are dis-
connected (i.e., irrelevant to each other), and their distance
is∞.

Update Based on a Geodesic
Given a graph, there is a straightforward notion of condi-
tioning based on its geodesic. Since we have a notion of
distance then we can choose the closest vertices. This fol-
lows, of course, Lewis’ basic idea of giving semantics to
conditionals ((Lewis 1973)).

Definition 4 Given a graphG = (V,E) and x ∈ V , B ⊆ V
then the induced simple update of x by B is defined with

x •G B =

{ {y ∈ B | dG(x, y) = dG(x,B)}
if dG(x,B) 6=∞

∅ otherwise

The simple update generalizes to an update operator be-
tween subsets of V with

A •G B =
⋃

x∈A

x •G B.

Next we state some observations regarding the interaction
of an update operator of a graph with respect to its geodesic.

Lemma 5 Suppose x 6∈ A, then

1. dG(A, x) = 1 if and only if x ∈ A •G Ac.
2. A •G B = ∅ iff A = ∅, or B = ∅, or A and B are

disconnected.
3. We have dG(A, x) = n, for 1 < n < ∞, if and only if,
dG(A •G Ac, x) = n− 1.

The postulates for geodesic update appear in Table 1.
Note that the postulates could be presented using a proposi-
tional language with a finite alphabet exactly as in (Katsuno
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& Mendelzon 1991). In a finite setting, propositions are
faithfully represented by the sets of valuations that satisfy
them and, therefore, a translation is straightforward. We do
not deviate significantly from the theory of update of (Kat-
suno & Mendelzon 1991). In fact, postulates 1, 2, 3, 4, and
9 correspond to (U1), (U2), (U5), (U8), and (U3) of (Kat-
suno & Mendelzon 1991), respectively. The rest of the KM
postulates are valid in geodesic update modulo the syntactic
translation. Postulates 5, 6, 7, and 8 are new and their func-
tion is to ensure that update depends on a global metric. It is
well known that the important case of both revision and up-
date is when the piece of new information to be incorporated
is inconsistent with the existing base. We postulate that the
update with inconsistent information depends on the update
with the negation of the existing theory. In particular, update
with the negation should be performed inductively. The for-
ward inductive step is postulate 5. The backward inductive
step is postulate 6. We make sure that update is symmet-
ric with postulate 7. Rule 8 postulates (dis)connectedness.
Observe that Postulate 4 is infinite and ensures that update
distributes union. Postulate 7 was chosen because it implies
the following containment, which in turn, implies symmetry.
Lemma 6 Postulate 7 implies

(∪i∈IAi) • (∪i∈IAi)c ⊆ ∪i∈I(Ai •Ac
i ).

Definition 7 An update operator that satisfies 1–8 of the ta-
ble 1 will be called centered geodesic. If in addition satis-
fies 9 will be called connected geodesic.

Showing that the postulates are sound on update operators
is straightforward.
Proposition 8 Let G be a graph. Then,

1. The operation •G is centered geodesic update.
2. If G is connected then the operation •G is a connected

geodesic update.
Next we study the conditions under which a geodesic up-

date operator defines a graph. To this end suppose V is a set
and • is an operation on its subsets. Define a relation E• on
V with (x, y) ∈ E• if and only if y ∈ {x} • {x}c . Denote
(V,E•) with G•.
Lemma 9 Suppose • is geodesic. Then

1. If • satisfies Postulate 1 then E• is irreflexive.
2. If • satisfies Postulate 7 then E• is symmetric.

The definition of E• can be restated as follows
Lemma 10 Suppose • is centered geodesic. Then, for all
x, y ∈ V and A ⊆ V such that (x, y) ∈ E•, x ∈ A and
y ∈ Ac, we have y ∈ A •Ac.
Lemma 11 Suppose • is centered geodesic. Then,
dG•(A, x) = 1 iff x ∈ A •Ac.
Corollary 12 A •Ac = {x | dG•(A, x) = 1} = A •G• Ac

Lemma 13 If • is a connected geodesic then G• is con-
nected.

To reach a set from a given point we should necessarily
step on a point belonging to its complement. This will form
the basis of the induction proof and is expressed with the
following lemma.

Table 2: Selection Function Postulates

1. f(x,A) ⊆ A
2. If x ∈ A, then f(x,A) = {x}
3. f(x,A) ∩B ⊆ f(x,A ∩B)
4. If f(x,A) ∩B 6= ∅, then f(x,A ∩B) ⊆ f(x,A) ∩B
5. f(x,A) =

⋃
y∈f(x,

⋃
z∈A

f(z,{z}c)) f(y,A)

6. If f(x,A) = ∅ and B ⊆ A, then f(x,B) = ∅
7. If y ∈ f(x,A), then f(y,Ac) 6= ∅
8. If y ∈ f(x,A) and z ∈ f(y,Ac), then z ∈ f(y, {y}c)

Lemma 14 Suppose • is centered geodesic. Then we have,
for 1 < n <∞, dG•(x,A) = n iff dG•(x,A •Ac) = n− 1.

The following lemma shows that an update results in an
empty set when we update with nodes whose distance from
the given set is infinite.

Lemma 15 Suppose • is centered geodesic and let A∗ =
{y | d(x, y) = n <∞, x ∈ A}. Then A∗ • (A∗)c = ∅.

We can now show that the simple update operator is char-
acterized by the postulates.

Proposition 16 Given a centered geodesic update •, we
have {x} •A = {x} •G• A.

The above proposition extends to arbitrary subsets. This is
possible because the above update operator distributes union
by Postulate 4.

Corollary 17 Given a centered geodesic update •, we have
• = •G• .

The above corollary shows that the set of postulates char-
acterizes the class of geodesic metrics. Note that it also im-
plies that, for a given graphG, we haveG = G•G

as, clearly,
distinct graphs induce distinct update operators.

Selection Functions and Updates
Observe that the simple update defines, in effect, a selec-
tion function. By selection function we mean a function that
given an element x of the domain and a subset A, the func-
tion selects those elements of the subset A that are the most
preferred (closest) to the element x. This concept is the cor-
nerstone of the Lewis-Stalnaker semantics for conditional
logic.

Definition 18 Given a graphG = (V,E) the selection func-
tion fG : V × P(V )→ P(V ) generated by G is defined by

fG(x,A) = x •G A.

Definition 19 A selection function that satisfies the postu-
lates of Table 2 will be called geodesic.

Proposition 20 Let G be a graph, then
1. fG is geodesic.
2. the map G 7→ fG is bijective.

A selection function defines a graph as follows:
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Definition 21 Given a set X and a function f : X ×
P(X) → P(X) then the graph Gf = (X,Ef ) is the graph
generated by f , where (x, y) ∈ Ef iff y ∈ f(x, {x}c).

Corollary 22

f(z, {z}c) = {z ∈ V | dGf
(y, z) = 1} = fGf

(z, {z}c)

Proposition 23 The maps f → Gf and G → fG are in-
verses of each other.

Summary and Conclusion
We have introduced new semantics for the process of belief
update based on the minimization of a geodesic metric of
a graph. We also characterized the class of associated set-
theoretic update operators and selection functions.

There is a distinct advantage to our approach: it can
be used to integrate a variety of epistemic functions. Us-
ing the same semantics, we have shown that one may
define an associated revision operator. Therefore, revi-
sion can be combined with the update. The integration
of revision was recently recognized as necessary for han-
dling feedback ((Boutilier 1998; Shapiro & Pagnucco 2004;
Hunter & Delgrande 2005)). Similarly, an equivalence re-
lation is generated from the transitive closure of the graph
edge relation. Equivalence relations are models of the
modal logic S5, which is recognized as the right frame-
work for modeling (resource free) knowledge. This way,
one can combine update operators with knowledge, i.e.
facts, as in (Baral & Zhang 2005). However, our frame-
work omits actions, and incorporating those is necessary
for a satisfactory modeling of planning. In particular, a
more dynamic representation, where actions may change
the graph model, might be better suited (see (Lang 2007;
Gabbay ))

Finally, the characterization of the class of selection func-
tions defined on a graph points to a conditional logic that
corresponds to update. Such a formulation will allow us to
define a logical system where update is expressed within the
language. This is a significant departure from the Katsuno-
Mendelzon and subsequent formulations, where, although
a ◦ b is part of the language, a and b are not allowed to con-
tain occurrences of ◦, the update operator.
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