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Abstract

Hidden Markov models are a powerful technique to
model and classify temporal sequences, such as in
speech and gesture recognition. However, defining
these models is still an art: the designer has to estab-
lish by trial and error the number of hidden states, the
relevant observations, etc. We propose an extension of
hidden Markov models, calleddynamic naive Bayesian
classifiers, and a methodology to learn automatically
these models from data. The method determines: (i)
the number of hidden states, (ii) the relevant attributes,
(iii) the best discretization, and (iv) the structure of the
model. Experimental results on learning different dy-
namic naive Bayesian classifiers for gesture recogni-
tion, show that our method improves significantly the
recognition rates, and at the same time obtains simpler
models.

Introduction
Hidden Markov models (HMMs) (Rabiner & Juang 1993)
have become the standard method for modeling and rec-
ognizing temporal sequences under uncertainty, such as in
speech recognition and gesture classification. However,
defining these models is still essentially an art. The de-
signer has to establish the number of states, the relevant
observation attributes, and, in some cases, the discretiza-
tion of continuous observations. Recently, in the context
of gesture recognition (Aviles, Sucar, & Mendoza 2006),
we proposed an extension of HMMs calleddynamic naive
Bayesian classifiers(DNBC). A DNBC decomposes the ob-
servation node into a set of attributes considered indepen-
dent given the class. This simplifies the model when there
are many observation values, and allows selecting only the
relevant attributes. In this paper we develop a methodology
to learn automatically a DNBC from data. The method de-
termines: (i) the number of hidden states, (ii) the relevant
attributes, (iii) the best discretization, and (iv) the structure
of the model. This methodology helps the designer to auto-
matically obtain the best models, which in general are bet-
ter (higher classification rates) and simpler (fewer attributes)
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than those obtained just by trial and error.
We have tested this method in the recognition of seven

manipulative gestures (Montero & Sucar 2006): (Opening a
drawer, Erasing, Writing, Reading a book, Using a mouse,
Turning on printer and Using a telephone). For each ges-
ture, our method produces a very simple and efficient clas-
sifier with 98% accuracy in average, a significant improve-
ment over the original HMMs.

Related Work
We briefly review related work in disctretization and struc-
ture learning.

Discretization
Discretization methods for classifiers can be divided into
two main types: (i) unsupervised, and (ii) supervised. Unsu-
pervised methods do not consider the class variable, so the
continuous attributes are discretized independently. Super-
vised methods consider the class variable, so that the divi-
sion points are selected in function of the value of the class
for each data point. The problem of finding the optimal num-
ber of intervals and the corresponding limits can be seen as
a search problem. That is, we can generate all possible di-
vision points over the range of each attribute (where there is
a change of class), and estimate the classification error for
each possible partition. Unfortunately, generating and test-
ing all possible partitions is impractical. In the worst case,
there are in the order of2MN possible partitions, whereM
is the number of attributes andN is the number of possible
partition points per attribute.

For Bayesian classifiers, (Pazzani 1995) introduces a
method that, starting from an initial partition, it makes an
iterative search for a better one, by joining or splitting in-
tervals, and testing the classification accuracy after each op-
eration. (Friedman & Goldszmidt 1996) do discretization
while learning the structure of a Bayesian network. For a
given structure, a local search procedure finds the discretiza-
tion for a variable that minimizes the description length in
relation to the adjacent nodes in the graph, and this is re-
peated iteratively for each continuous variable. Valdes et al.
(Valdes, Molina, & Peris 2003) present a technique based on
evolution strategies. The attributes are discretized to maxi-
mize class predictability. This method leads to simple mod-
els and can discover irrelevant attributes. A survey of dis-
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cretization methods for naive Bayes classifiers is given in
(Yang & Webb 2002).

Most methods consider a classifier in which the class is
known, while in our case the state variable is a hidden node.

Structure learning
Our method is related, on one hand, to work on improving
naive Bayes classifiers; on the other hand, on general tech-
niques for learning dynamic Bayesian networks.

The naive Bayes classifier assumes that the attributes are
independent given the class. If this is not true, there are
two basic alternatives. One is to transform the structure of
the classifier to a Bayesian network, by introducing directed
arcs between the dependent attributes (Friedman, Geiger, &
Goldszmidt 1997). The disadvantage is that the simplicity
of the NBC is lost. The other alternative is to transform the
structure maintaining a star or tree-structured network. For
this, (Sucar 1992) introduces 3 basic operations: (i) elimi-
nate an attribute, (ii) join two attributes into a new combined
variable, (iii) introduce a new attribute that makes two de-
pendent attributes independent (hidden node). These oper-
ations are based on statistical tests to measure the correla-
tion of pairs of attributes given the class variable. In a more
recent work, Martı́nez (Martı́nez & Sucar 2006) extends
the method incorporating discretization to optimize a naive
Bayes classifier. Pazzani (Pazzani 1996) proposes an alter-
native algorithm for variable elimination and merging. The
algorithm is based on two search procedures: (i) forward se-
quential selection and joining and (ii) backward sequential
elimination and joining. It starts from a full (empty) struc-
ture, and selects attributes for elimination (addition) or for
combination, testing the classification accuracy after each
operation. The advantage of these approaches is that they
preserve the simplicity and efficiency of the NBC. Previous
work considers a static NBC, in which the class variable is
observable; here we extend these approaches to a dynamic
model with a hidden state.

There are several approaches for learning dynamic
Bayesian networks (DBN) (Friedman, Murphy, & Russell
1998; Campos & Puerta 2000), which, in general, first learn
the base structure and then the transition model. Although
this work is somewhat related to the general problem of
learning DBN, there are important differences: (i) a particu-
lar type of structure is considered, so in this sense the search
space is reduced, (ii) general learning algorithms for DBN
do not consider eliminating or joining variables.

Dynamic Naive Bayesian Classifiers
A dynamic naive Bayesian classifier can be seen as an ex-
tension of HMMs or a particular case of a dynamic Bayesian
network. It is like a HMM in which the observation node has
been decomposed in a number of attributes that are consider
independent given the state. From a DBN perspective, at
each time there is a naive Bayes classifier (base structure),
and the state variables are connected from one time to the
next (transition structure). An example of a DNBC is de-
picted in figure 1.

From the perspective of modeling complex temporal se-
quences, a DNBC has two main advantages over a HMM:

Figure 1: A dynamic naive Bayesian classifier. Two time
intervals are shown (t, t + 1), with a base classifier with 4
attributes (x1 − x4).

(i) when there is a large number of observation symbols, it
allows for a considerable reduction in the number of param-
eters, and consequently a reduction in the number of exam-
ples required to train the model; (ii) it opens the door for
selecting the relevant attributes, as we will show later. The
possible drawback could be that the attributes are not re-
ally conditionally independent given the state, however this
problems is reduced by the structure improvement phase in
our learning methodology.

The algorithms for inference (backward/forward) and pa-
rameter learning (Baum-Welch) for DNBCs are straightfor-
ward extensions of the ones for HMMs (Rabiner & Juang
1993). The novel aspect is learning the structure, as we will
see in the following section.

Learning the Model
As for dynamic Bayesian network, learning a DNBC can be
divided into two parts:

1. learning the base structure,

2. learning the transition model.

Our work focuses on learning the base structure. Once this
is defined, the transition structure consists just of a directed
link from the state at one time to the next,St → St+1; so
the emphasis in this work is on learning the base structure
and not the transition model.

The methodology to learn a DNBC is summarized in Al-
gorithm 1. It consists of 5 phases: (i) initialization, (ii) dis-
cretization, (iii) hidden states estimation, (iv) structural im-
provement, (v) dynamic model integration. Following each
phase is described.

Initialization
This step is done once to build the initial base structure. It
considers all the attributes and an initial partition for the con-
tinuous attributes with two equal width intervals. The initial
number of hidden states is set to two. The parameters for this
initial structure are estimated from the training data using
the Expectation–Maximization algorithm (EM) (Dempster,
Laird, & Rubin 1977).

Discretization
Given the current structure, in this stage the discretization
for each continuous attribute is optimized. From the initial
discretization, it generates additional partitions based on the
MDL principle. Each attribute is processed independently,
by splitting each interval into two parts, and testing each
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Algorithm 1 Learning a dynamic Bayesian classifier: high–
level description.

Require: C(B, T ): DNBC, B: base estructure,T : transi-
tion structure,N ; number of hidden states,A: attribute
configuration,Di: discretization of attributei
Initialization: B1(N, A, D), N = 2, A all the attributes,
Di=2
Obtain parameters forB1 using EM
repeat

Discretization: improve discretization,D, based on
MDL
Hidden states estimation: estimate number of hidden
nodes,N , based on MDL
Structural improvement: improve base structure,B, via
variable elimination and combination

until base structure can not be improved
Dynamic model integration: obtainT

Ensure: Return final model:CF (B, T )

partition using MDL. From these, the split with the best
measure is selected; and the process is repeated with the
new partition iteratively until the MDL can not be improved.
The MDL measure makes a compromise between accuracy
and complexity. The measure we use is similar to the one
proposed in (Lam & Bacchus 1994), which estimates the
accuracy (NetWeight) by measuring the mutual informa-
tion between the attribute and the class; and the complex-
ity (NetLength) by counting the number of parameters re-
quired. A constantα, in [0, 1], is used to balance the weight
of each aspect, accuracy vs. complexity. Thus, thequality
measure is:

Quality = (1 − α) ∗

(

1 −
NetLength

MaxLength

)

+ (1)

α ∗

(

NetWeight

MaxWeight

)

WhereNetLength is proportional to the number of param-
eters required in the model, andNetWeight corresponds to
the sum of the mutual information between each attribute
and the class; which gives an estimate of the model pre-
cision. The maximum length,MaxLength, and weight,
MaxWeight, are estimated by considering the maximum
number of intervals per attribute. Anα = 0.5 gives equal
weight to accuracy and complexity, while anα close to 1
gives more importance to accuracy.

Hidden states estimation
In this stage, the number of values for the hidden class node
is obtained. From the initial structure, it generates additional
partitions in the class node and testing each structure using
again the MDL measure. The process is repeated with a
new partition iteratively until the MDL can not be improved.
The MDL measure is the same one used in the discretization
phase.

Structural improvement
Given the current discretization and number of hidden states,
in this phase the base structure is improved to eliminate su-

perfluous attributes and eliminate or combine dependent at-
tributes.

To alter the structure we consider two operations:

• Attribute elimination: one of the attributes is not consid-
ered in the base structure.

• Attribute combination: two attributes are combined into
a new attribute whose values are the cross product of the
original attributes.

These operations preserve the simple star–like structure of
the naive Bayes classifier; performing feature selection and,
at the same time, reducing the potential impact of non–
independent attributes. This phase is described in algorithm
2.

Algorithm 2 Structural improvement phase.
Require: B: current base structure,N ; number of hidden

states,A: attribute configuration,D: current discretiza-
tion,T1, T2: thresholds
Obtain mutual information between each attribute and the
state variable,I(Ai, S)
Obtain the conditional mutual information between each
pair of attributes given the state,CI(Ai, Aj)
repeat

Eliminate irrelevant attributes: eliminateAi if
I(Ai, S) < T1

Eliminate/combine dependent attributes:
if CI(Ai, Aj) > T2 then

EliminateAi, obtainB1

EliminateAj , obtainB2

JoinAi, Aj , obtainB3

Select the structure,Bj with lower MDL
end if

until no attributes can be eliminated or combined
Ensure: Return “best” structure:BF

These 3 phases, discretization–hidden state estimation–
structural improvement, are repeated iteratively until conver-
gence (no significant changes in the model). These 3 phases
are interrelated and together produce a huge combinatorial
space. The order of this operations can have an impact on
the results. Our solution is basically a heuristic search in this
space, which has demonstrated good results in practice.

Dynamic Model Integration
Once the base structure is obtained in the previous stages,
the transition model is set as a directed link between consec-
utive states, and the parameters of the complete model are
obtained using a direct extension of the Baum–Welch algo-
rithm (Rabiner & Juang 1993).

Note that the model cannot be evaluated (with test data)
until the end of this phase, so previous stages are based on
indirect quality measures, mainly MDL.

Experimental Results
Experimental setup
The method was evaluated in the visual recognition of 7 ma-
nipulative gestures. These hand gestures consist of hand
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movements done by a person while interacting with differ-
ent objects in an office environment. The gestures consid-
ered are the following:Opening a drawer, Erasing, Writing,
Reading a Book, Using a Mouse, Turning on a printer and
Using a Telephone. The gestures were captured using a ceil-
ing mounted camera, as shown in figure 2. A visual process-
ing system (Montero & Sucar 2006) tracks the (right) hand
of the person, and obtains the following 5 attributes per im-
age: X coordinate andY coordinate of the centroid of the
hand region, and the changes in magnitude, direction and
velocity. All five attribute are continuous.

Figure 2: Examples of the gesturesopening the drawer(left)
andusing the mouse(right). For each gesture the trajectory
followed by the hand centroid is shown.

100 examples (videos) of each gestures were captured,
50 sequences for training and 50 for testing, per gesture.
These videos were recorded in a laboratory environment
with changing lighting conditions. The system was imple-
mented in a PC with a Pentium IV processor at 3.1 GHz, 1
GB RAM, programmed in Java, with some classes from the
Bayesian networks toolkit ELVIRA (Consortium 2002).

Results

A model for each gesture was learned based on the proposed
methodology. For the MDL quality measure we used an
α = 0.5. In these experiments, one iteration of the algorithm
was enough to obtain a very good performance (recognition
rates), so other iterations were not necessary. Each model is
evaluated in terms of recognition rates on the test data, and
compared to a HMM with 2 hidden states, trained and tested
on the same data sets.

First we illustrate the method, in particular the structural
improvement phase, on one gesture:Opening a drawer. In
the case of the model for the gestureOpening a drawer, af-
ter discretization and hidden state estimation (7 states), the
operations for structural improvement are shown in table 1.
Initially the velocityattribute is eliminated, then theY coor-
dinate, and finally theX coordinate. The final model con-
siders only two attributes:MagnitudeandDirection. The
resulting structure is similar for the other gestures, although
the discretization, number of states and attributes vary.

Table 2 shows the recognition rates for the final DNBC
model for each gesture, as well as the attributes included in
the resulting structure. It also presents the average recog-
nition rate. For comparison, table 3 depicts the individual
and average recognition rates obtained with HMMs for each
gesture.

Operation Attributes
0 X, Y, Magnitude, Direction, Velocity
1 Elim. Vel. X, Y, Magnitude, Direction
2 Elim. Y X, Magnitude, Direction
3 Elim. X Magnitude, Direction

Table 1: Structural improvement for learning the gesture
Opening drawer. For each stage, the operation performed
and the resulting attributes are shown.

Gesture Attributes Precision in %
Opening a drawer Mag, Dir 100%
Erasing Dir, Vel 94%
Writing Dir, Vel 98%
Reading a book Mag, Dir 98%
Turning on a printer Mag, Dir 100%
Using a mouse Dir, Vel 98%
Using a telephone Mag, Dir 100%
Average 98.25%

Table 2:Final DNBC models obtained. The attributes and recog-
nition rates are shown for each gesture, and also the average recog-
nition.

Gesture Precision in %
Opening drawer 100%
Erasing 80%
Writing 100%
Reading a book 100%
Turning on a printer 96%
Using a mouse 78%
Using a telephone 100%
Average 93.48%

Table 3: Recognition rates for HMMs per gesture, and aver-
age. Each HMM considers the 5 attributes.

We observe a significant average improvement in the
recognition rates of 5 points, or nearly 10%, with respect
to the HMMs. Also, the resulting models are simpler, as
they only consider two attributes, although these are not the
same for the different gestures. An important observation is
that the best models for each gesture vary in terms of dis-
cretization, number of states and attributes; so it will be very
difficult to obtain these models if they are specified by the
designer.

Conclusions and Future Work
In this paper we develop a methodology to learn automat-
ically a dynamic naive Bayesian classifier from data. The
method determines: (i) the number of hidden states, (ii) the
relevant attributes, (iii) the best discretization, and (iv) the
structure of the model. This methodology has been evalu-
ated in modeling and recognizing 7 hand gestures, based on
visual attributes. The resulting models have shown an im-
provement in recognition rates compared to HMMs, and at
the same time are simpler. Thus, our method provides an au-
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tomatic way to design models for dynamic processes, such
as in speech and gesture recognition, freeing the designer
from a long and tedious trail and error process. The learning
methodology can also be applied for HMMs, by just taking
out the structural improvement phase

We have recently developed an alternative approach to
learn DNBC based on evolutionary computation (see paper
by Palacios-Alonso et al. in this volume), and expect to ap-
ply this approach in other domains, in particular for robotics.
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