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Abstract

Naive Bayesian classifiers work well in data sets with in-
dependent attributes. However, they perform poorly when
the attributes are dependent or when there are one or more
irrelevant attributes which are dependent of some relevant
ones. Therefore, to increase this classifier accuracy we need a
method to design network structures that can capture the de-
pendencies and get rid of irrelevant attributes. Furthermore,
when we deal with dynamical processes there are temporal
relations that should be considered in the network design. We
propose an evolutionary optimization algorithm to solve this
design problem. We introduce a new encoding scheme and
new genetic operators which are natural extensions of pre-
viously proposed encoding and operators for grouping prob-
lems. The design methodology is applied to solve the recog-
nition problem for nine hand gestures. Experimental results
show that the evolved network has higher average classifica-
tion accuracy than the basic dynamic naive Bayesian classi-
fier.

Introduction
Many problems such as voice recognition, speech recog-
nition, images processing and many other tasks have been
tackled with Hidden Markov Models (HMM) (Rabiner
1989). These problems can also be dealt with an ex-
tension of the Naive Bayesian Classifier (NBC) known
as Dynamic NBC (DNBC) (Aviles-Arriagaet al. 2003;
Aviles-Arriaga, Sucar, & Mendoza 2006). The DNBC has
shown better performance than the HMM when the num-
ber of training samples is small. The NBC is a very power-
ful method to deal with data where the attributes are inde-
pendent given the class. However, it is known that when
the attributes are dependent, or when one or more irrele-
vant attributes have some degree of dependency with the
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relevant ones, then the performance of this simple classi-
fier decreases considerably (Pazzani 1996). This fact has
motivated the study of methodologies that can help having
better network designs to cope with this performance dete-
rioration problem. We want a method capable of grouping
together attributes that are dependent and get rid of irrele-
vant ones. If we apply this classifier to model dynamical
processes, then temporal relations should also be taken into
account. The DNBC as opposed to the NBC needs to find
the optimal number of states in the class node. That is, the
design problem requires us to provide the number of states
in the hidden node and, most importantly, the association of
variables corresponding to the children nodes. The exponen-
tial nature of the exact computation of this design problem
has motivated the development of alternative non exhaustive
procedures.

Two schemes can be identified to solve the general struc-
tural learning problem: model selection by search and score
(Friedman 1998; Friedman, Murphy, & Russell 1998), and
dependency tests (Sucar, Gillies, & Gillies 1994; Pazzani
1996). A recently proposed method that falls in the sec-
ond category was proposed by (Martinez-Arroyo & Sucar
2006), the method learns an optimal NBC, at the same time
that performs discretization. This method contributes inter-
esting ideas to our approach since it proposes the group-
ing and elimination of attributes. Our approach, that falls
in the first category, proposes to use an evolutionary algo-
rithm to determine near optimal solutions for the number of
states and association of attributes. Evolutionary computa-
tion has widely been applied to the design of network struc-
tures (Larrañaga & Poza 1996; Wong, Lee, & Leung 2002;
Myers, Laskey, & DeJong 1999; Ross & Zuviria 2007).
These approaches belong to model selection by search and
score method. Most of these works concentrate on the struc-
ture evolution of static BNs (Ross & Zuviria 2007). It is
worth noting that these approaches can be easily extended to
deal with DBNs, however none of them try to evolve nor the
groups, neither the number of states of the hidden node. Our
main contribution here is the proposal of a new approach to
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evolve DNBCs in order to group dependent attributes and
eliminate irrelevant ones. To achieve this we propose a spe-
cial coding scheme, new corresponding genetic operators,
and a novel fitness function evaluation that considers the
classification accuracy on a partial data set.

The Problem
The problem we are dealing with has to do with the design
of DBNCs. In order to define this design problem we need
to introduce first some preliminary concepts.

Dynamic naive Bayesian classifiers
This model is composed of the setA = {A1

n, A2

n, . . . , AT
n},

where eachAt
n for t = 1, . . . , T is a set ofn instantiated at-

tributes or observation variables generated by some dynamic
process, andC = {C1, C2, . . . , CT } the set ofT classes
random variablesCt, generated by the same process at each
time t.

A DNBC λ = (S, θ), whereS is the structure andθ the
parameters, has the following general probability distribu-
tion function:

P (A, C) = P (C1)

T
∏

t=1

n
∏

j=1

P (At
j |Ct)

T
∏

t=2

P (Ct|Ct−1) (1)

where:

• P (C1) is the initial probability distribution for the class
variableC1,

• P (At
j |Ct) is the probability distribution of an attribute

given the class variables over time.

• P (Ct|Ct−1) is the class transition probability distribution
among class variables over time.

The product
∏n

j=1
P (At

j |Ct) stands for the naive assump-
tions of conditional independence among attributes given
the class. To represent the model, we rely on two stan-
dard assumptions: i) the process is Markovian, which estab-
lishes independence of the future respect to the past given
the present, and ii) the process is stationary, i.e., the transi-
tion probabilities among states are not time dependent.

Following the graphical representation of probabilistic in-
dependence (Pearl 1988), a DNBC model unrolled two times
can be depicted as shown in figure 1. Although it is possi-
ble to describe these models using an analytical form, it is
simpler and clearer to describe them under a graph represen-
tation. This representation allows us to consider well-known
techniques for probability propagation in Bayesian networks
(Pearl 1988) and the EM algorithm for training with missing
data (Rabiner 1989).

In order to avoid the loss of temporal information, we
can consider all the information generated by the dynamic
process as attributes in a sequence, without the need of dis-
cretizing activity observations on a constant number of sam-
ples. Then, the class that best explains the observations at
each timet can be found. The effects of previous classes on
the recognition of the current class is described in terms of
the transition probability distributionP (Ct|Ct−1, λ).

Figure 1: Dynamic Naive Bayes Classifier

After this brief introduction of DNBC we need to mo-
tivate our formulation of the problem. As we mentioned
before NBCs performs poorly on data sets with dependent
attributes or when there exist irrelevant attributes that have a
degree of dependency with the relevant ones (Pazzani 1996).
Therefore, in order to design a more accurate classifier we
need to discover which attributes are dependent and which
are irrelevant.

With this in mind we can define our problem. To do so let
us first restrict our universe of network structuresS to the
NBC type of structuresS′, i.e. graph having a single parent
node, representing the class node, and its children nodes that
represent the groupingG of variables or attributes. Once a
groupingG of the variables is given the above mentioned
techniques can be used to compute near optimal parameters
for that grouping. Then,the problem is to decide which
groupingG to use and the number of states in the hidden
node, since the optimum will be the one grouping together
dependent attributes and leaving aside the irrelevant ones.
If we use brute force to determine this optimal structure
(grouping) and its corresponding optimal number of states,
in a problem withn variables (attributes), then we need to
search in a solution space of size given by the following
equation:

|S′

n| =

(

n
∑

i=1

(

n
n − i

)

Bi

)

∗ ns, (2)

whereBi is the Bell number ofi elements (Cameron 1994)
andns is the number of states in the hidden class. It is not
hard to see thatS′

n grows exponentially withn. Therefore,
we cannot exhaustively explore the solution space even for a
small number of variables and we need an alternative to the
brute force to find the optimal or near optimal groupingG.

The Proposed Evolutionary Learning
Approach

Our DNBC has a structure like the one depicted in figure 1.
There is a single hidden node, i.e. the classification node
Ct, with a given number of states. Then the children of this
node,G1, G2, · · · , Gr, represent the groups or associations
of variables withr (0 < r ≤ n) the number of groups or
associations, andn the number of variables. Each group
Gi is composed of a number of variables ranging from1 ≤
|Gi| ≤ n.

We can see that a solution is given by a specific grouping
of the random variables and by the number of states in the
classification node. Therefore, a candidate representation
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for this solution will be a group based codification which is
explained next.

The Representation
We use a variant of the group representation proposed by
Falkenauer, (1994). The chromosome consists of two parts:
the object part (in our case the random variable part) and
the group part. In the object part each locus is an identi-
fier for each random variable and its corresponding allele
the group it belongs to. The group part has the identifier
for each group. We know that in a grouping problem each
object must belong to a group. However, in our structure op-
timization problem, a random variable may not be assigned
to any group. Therefore, we assign a special identifier to an
object (a random variable) that does not belong to any group.
We also need to encode the number of states for the hidden
node, we propose to use a binary string to encode this part.
It is important to consider that this basic unit in the repre-
sentation is repeated a number of times equal to the number
of models we are dealing with. Figure 2 shows a part of in-
dividual j, representing the encoding for one of the models
(modeli), the hidden node has seven states (0111), variable
∆x is associated to group C,∆y belongs to group D, vari-
able F belongs to group F, variables A and R are together in
group B. The group part indicates that we have four groups.
Variables∆a (locus 3) and T (locus 7) are not assigned to
any group.

Figure 2: Representation of modeli that belong to individual
j

Once the representation is given the pseudocode for the
main algorithm is described in Algorithm 1. The input to
the algorithm are the training data set and the user defined
parameters needed by the algorithm. The output is a DNBC,
λ, for each of the models. In step 1 a set of groups are ran-
domly formed and their parameters computed. Step 2 com-
putes the fitness for each of the generated individuals based
on the partial test data set. In step 3 a loop is initiated and
it finishes when a maximum number of iterations without
changes in the best individual fitness is achieved or a maxi-
mum number of iterations is reached. We dedicate the next
sections to the explanations of each component in the loop.

Algorithm 1 . EvoDNBC

Input: Data (D), number of models
(n models), training data (P train),
partial test data (P test), weighting
factor (α), maximum number of
iterations (Max Iter), mutation rate
(Pm), Population Size (PopSize),

tournament size (J), the maximum
number of iterations without changes
in the fitness of the best
individual (Max Iter No Change).
Output: A DNBC and its
corresponding score.
1 Initialize PopSize individuals
with random n models models.

2 Evaluate the fitness of the
PopSize individuals.

3 While the number of generations
without changes in the fitness
is less than Max Iter No Change
and less than Max Iter, Do:

4 For i=1 to ceil PopSize/2
5 Choose J individuals to

participate in the tournament
and the winner will be Parent1

6 Choose J individuals to
participate in the tournament
and the winner will be Parent2

7 Perform crossover between
Parent1 and Parent2 to
obtain two new individuals.

8 Apply mutation to each new
individual with probability
Pm.

9 Evaluate the fitness of the
new population.

10 Replace the actual population
with the best PopSize among the
parent and children populations.

11 Evaluate the classification rate
of the last generation

12 End While

The Genetic Operators

We use an adapted version of the standard crossover and
mutation operators proposed for groups (Falkenauer 1994).
Each of these operators are described in the following.

Crossover The crossover operator (Step 7) can be ex-
plained using the specific example illustrated in figure 3.
Only the group part of each parent is considered. Two ran-
domly selected positions are defined on each parent. In the
figure we can see these positions, for Parent 1 (P1) between
groups A and D (the first point), and between groups F and B
(second point). The same selection is performed for Parent
2 (P2), but this time the first point is between groups A and
C, and the second point between groups D and E. We can
also observe that Parent 1 has two eliminated variables∆a

and T, while Parent 2 has none. In the second step we can
see that groups D and F of P1 are inserted at the beginning
of the first crossover point in P2. Then elements in Z of P1
are added to elements in Z in P2. In the third step we start
eliminating all repeated variables, in this example, they are
∆y and F. Also variables in the left side that appear in the
Z group are eliminated, in our example, we see that variable
T in group A also appears in group Z, therefore it has to be
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eliminated. Finally, at the fourth step we merge the variables
that are not part of any existing group. If a single variable
is left then with a probability of two thirds it is inserted as a
new group and with probability of one third it is inserted as
a part of an existing group, where each group has the same
probability of being selected. If more than one variable are
left we can take one of the following three actions with the
same probability: all variables are inserted as members of a
new group, all variables are inserted as a part of an existing
group, or each variable is separately inserted as a new group.
In our example a single variable R was left, then the chosen
option was to insert it into group B. The crossover operator
for the number of states in the hidden node follows the stan-
dard one point crossover operator for binary strings (Eiben
& Smith 2003).

Notice that the whole procedure is repeated for all models
that are selected to undergo crossover.

Figure 3: Crossover Operator

Mutation In this case (Step 8) we also choose an example
to illustrate how the operator works. We have two options
that are equally likely to be performed: Insertion or Dele-
tion. In Insertion we can select to insert a variable or to in-
sert a group. If we insert a variable this is taken from Z and it
is inserted in any of the existing groups with the same proba-
bility. If we insert a group then this has to come from Z, and
its size and composition are also randomly selected. In case
of Deletion we also have two options, to delete a variable,
randomly selected from a group, or to delete a group. In
both cases the deleted elements are inserted into Z. We can
see in figure 4 the case where a variable is deleted, variable
A from group B is deleted. Group B is deleted in the pro-
posed example for group deletion. For the Insertion option
we also have two choices, we can see how variable T is in-
serted as a part of group A, and group C, made of variable T,
is inserted as a new group. Notice that if Z is empty then the
only valid option is Deletion, i.e. Insertions are not allowed.

The mutation operator, for the number of states, is a single

bit mutation which happens with probabilityPm.

Selection and Replacement The parent selection (steps 5
and 6) is performed by tournament (Goldberg 1989), with a
tournament of sizeJ . The replacement strategy (Step 10)
is the (µ + λ), commonly used in evolutionary strategies
(Rechenberg 1973).

The Objective Function The fitness function for individ-
ual i is given by the following expression:

fitness(i) = αAcc(i) + (1 − α)(1 − comp(i)), (3)

whereα is the factor to weight the classification accuracy
(Acc) and the resulting network complexity. The normalized
complexity (by the maximum number of parameters) mea-
surecomp is given by the sum of the number of parameters
of each model in the classifier. The number of parameters of
one model is obtained as follows:

#parameters =

g
∑

i=1

||Pa(Ni)|| ∗ (||Ni|| − 1) (4)

whereg is the number of nodes, including the class node,
||Pa(Ni)|| is the number of parameters of parents of node
Ni, which is composed by a group of variables.||Ni|| is the
number of parameters of nodeNi. This value is defined as
follows:

||Ni|| =
∏

Rj∈Ni

|Rj |

where|Rj | is the number of values that variableRj , a mem-
ber ofNi, can take. Notice that if nodeNi has no parents
then ||Pa(Ni)|| = 1. In equation 4α defines a specific
compromise between accuracy and complexity. Since these
criteria are in conflict with each other the problem can be
actually modeled as a multi-objective optimization problem.

Figure 4: Mutation Operator
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Experimental Setup and Results
The proposed algorithm was evaluated in the visual recogni-
tion of 9 hand gestures: come, attention, right, left, stop,
turn-right, turn-left, pointing and waving-hand; used for
commanding mobile robots (Aviles-Arriaga, Sucar, & Men-
doza 2006). Each gesture is modeled using a DNBC consid-
ering 7 attributes: 3 motion features and 4 posture features.
These motion and posture features were obtained from a se-
quence of images. The motion features are:∆a, or changes
in the hand area,∆x and∆y indicate changes in hand posi-
tion of theXY − axis of the image. Each of these features
takes only one of three possible values: (+), (-) or (0) that
indicate increment, decrement or no change between two
consecutive images, depending on changes in the area and
hand position of two images, respectively. The posture fea-
tures are:Form, that indicates the form of the hand ((+) if
the hand is vertical, (-) if the hand is horizontal, or (0) if the
hand is leant to the left),right, indicates that the hand is at
the right side of the head,above, if the hand is above the
head, andtorso, if the hand is over the user’s torso, these
last three features take binary values. For comparison por-
puses, we considered for each gesture a basic model with all
the attributes (separated) and two states.

We conducted four experiments to evaluate the classifi-
cation accuracy of the evolutionary learned classifiers. The
gesture data set is composed of50 samples for each of the
nine gestures, taken from a single user, this data set is pro-
vided by (Aviles-Arriaga, Sucar, & Mendoza 2006). We
selectDtraining samples per gesture to construct the com-
plete training set, a partial testing data setD testpartial is
necessary to evaluate (compute the fitness) each one of the
individuals in the evolutionary process. Finally, we evalu-
ate the classification accuracy of the best individual with the
D testfinal remaining samples.

In all experiments the crossover and mutation rates are set
to Pc = 1.0 andPm = 0.35, respectively.PopSize = 12,
Max Iter No Change = 4, andMax Iter = 20. These
values were obtained after a non exhaustive trial and error
procedure. An statistical analysis is required to determine
the best set of parameters. In the experiments we changeα
and the size of the evaluation set as follows:

• Experiment 1.D training = 10, D testpartial = 10,
D testfinal = 30, α = 0.8.

• Experiment 2.D training = 10, D testpartial = 15,
D testfinal = 25, α = 0.8.

• Experiment 3.D training = 10, D testpartial = 10,
D testfinal = 30, α = 0.7.

• Experiment 4.D training = 10, D testpartial = 15,
D testfinal = 25, α = 0.7.

The EM algorithm with the same convergence criterion
was used to estimate every instance of the DNBCs. Transi-
tion and observation probabilities for all the models in the
population were initialized with discrete uniform distribu-
tions. The probability of each gesture sequenceA, P (A|·),
was computed using the Forward algorithm (Rabiner 1989).
All the experiments were carried out on a PC with AMD

Athlon 1.8Ghz, 3Gb of RAM, the algorithm was imple-
mented in Matlab release 7.0.

Table 1 shows the mean and standard deviation of the ac-
curacy and fitness of the best individual produced by the evo-
lutionary learning process. The means are computed over 10
samples, i.e. the algorithm is run 10 times for each experi-
ment.

Table 1: Mean classification accuracy and standard devia-
tion computed for ten runs

Accuracy Fitness Std. dev. Std. dev.
(mean) (mean) (accuracy) (fitness)

Exp1 0.957 0.993 0.020 0.006
Exp2 0.966 0.989 0.011 0.003
Exp3 0.967 0.994 0.013 0.003
Exp4 0.970 0.986 0.014 0.004

Figure 5 shows the nine models that belong to the evolved
classifier obtained in the tenth run of Experiment4. We can
see that the proposed algorithm is able to learn an specific
setting (variables association, variables elimination and spe-
cific number of states) for each model of the classifier.

Figure 5: Evolved Dynamic Naive Bayes Classifier for the
9 gestures (come, attention, right, left, stop, turn-right, turn-
left, pointing, and waving-hand)

The evolutionary process introduces the elimination and
combination of variables at the same time that evaluates dif-
ferent number of states until the simplest classifier with a
high accuracy is obtained. The recognition rates presented
in Table 2 concern to the classifier learned by the evolution-
ary process presented in figure 5. As we described above
the basic classifier has basic models, these models can con-
tain redundant or dependent variables. We can see that the
evolved classifier is better than the basic classifier in the av-
erage accuracy criterion, moreover each one of the models
better describes the associated gesture. This is because the
relations among variables and the number of states of the
class variable is defined by the gesture in the evolutionary
process. For example, Model 4 (left gesture) in figure 5
considers the variables∆x and∆y to be dependent of each
other, T and F independents of all others, given the variable
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class,∆a and R are dependent of each other, while A is ir-
relevant to this particular gesture, and the number of states
of the hidden node is2.

Table 2: Gesture recognition rates using the dynamic naive
Bayesian classifier: the basic model vs. the evolved model.

Gesture Accuracy of the Accuracy of the
basic classifier evolved classifier

Come 96% 100%
Attention 100% 88%

Right 100% 100%
Left 96% 100%
Stop 100% 100%

Turn-right 100% 100%
Turn-left 100% 100%
Pointing 88% 88%

Waving-hand 72% 100%
Average 94.67% 97.33%

Conclusions and Future Work
An evolutionary approach to solve the structural learning
problem to design a DNBC has been proposed. The design
of the best network structure is modeled as an optimization
problem that measures the classification accuracy weighted
by the resulting network complexity. To design the algo-
rithm we propose a variant of the group based representa-
tion and its corresponding adapted operators. We test the
resulting network using data generated from nine hand ges-
tures. The experimental evaluation shows that the models
obtained using our evolutionary approach improve in a sig-
nificant way the recognition rates, and at the same time pro-
duce simpler and more intuitive structures.

Future work is aimed at reducing the computation time
by computing the parameters of similar models only once.
Another line of research has to do with the proposal of an
evolutionary incremental learning approach in such a way
that we do not need to run the algorithm from scratch when
a new gesture is introduced to the system. Additional exper-
iments are planned to analyze the robustness of the evolved
classifier when noise and different users are considered.
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