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Abstract

It is well-known that default reasoning and preference-based
decision making both make use of preferential relations be-
tween possible worlds resp. alternatives. In this paper, we
explore this methodological relationship in more detail by
considering inference as a decision making problem. A foun-
dational approach to preference fusion is used to define a non-
monotonic inference relation System ARS which turns out to
be a refinement of System Z. We compare System ARS to
other default reasoning strategies and prove that it satisfies an
irrelevance property which is violated by System Z.

Introduction
Many inference systems in nonmonotic reasoning make use
of orderings of the defaults in conditional knowledge bases
to assign a plausibility to each possible world, see (Benfer-
hat et al. 1993) for a survey. The resulting preference re-
lation on the set of possible worlds is then taken as the ba-
sis for inference. In this paper, we will use a foundational
method for preference fusion to derive such a preference re-
lation on worlds. Hence, we consider inference as a deci-
sion making problem deciding which worlds are more plau-
sible than others on the base of explicit criteria. In order
to evaluate the resulting inference relation, we compare it
to well-known reasoning systems such as System Z. In Sys-
tem Z (Goldszmidt & Pearl 1996), where the plausibility of
a world is defined by the priority of the highest default it
falsifies, lower defaults do not effect possible consequences.
Although this is reasonable in most cases it may have unex-
pected results. The inference relation is very cautious and
is afflicted with the so-calledirrelevanceproblem: plausible
consequences may not be deduced in the presence of irrele-
vant information.

The notion of irrelevance applied here focuses on the con-
clusions which should be deduced regarding the new in-
formation. More precisely, a conditional knowledge base,
which does not contain any information about two atoms
x andy, should be irrelevant for the default(y|x): if any
premises includingx are given, theny should be deduced.

Consider for instance the well-known set of default rules
∆Tweety = {δ1 = (f |b), δ2 = (f |p), δ3 = (b|p)}, con-
stituting that a bird normally flies, that a penguin normally
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cannot fly and that it is normally a bird, expanded by any
defaultδ4 = (y|x) with new atomsx, y /∈ {p, f, b}. Given
two different possible worldsω andω′ which both satisfy
x and only differ in terms of the atomy, an inference oper-
ator should always prefer the world which satisfiesy, even
under exceptional circumstances. Instead System Z gives
equal plausibility toω = pbfxy andω′ = pbfxy. Given
a penguin-bird, which can fly, and givenx, y would not be
concluded.

Our system addresses problems like these and resembles
System Z in various ways. In the method proposed in this
paper we adopt the ordering of defaults of System Z, but take
a completely different way to obtain the plausibilities of the
worlds, as we make use of a basic preference fusion operator
by Andreka, Ryan and Schobbens (ARS) (Andreka, Ryan, &
Schobbens 2002). We extend work begun in (Ritterskamp &
Kern-Isberner 2007).

In the following section we introduce the preliminaries of
System Z and the fundamentals of theARSapproach. Af-
terwards, we present our system and discuss the property of
irrelevance consequently. Finally, we compare our method
to similar approaches and conclude.

Preliminaries
Let ∆ be a set of defaults which constitutes a conditional
knowledge base andΩ be the set of possible worlds. We
consider default rules(c|p) with the default consequencec
and the premisep being propositional formulas on a lan-
guageL. A default rule(c|p) is satisfied (falsified) by a
worldω, if ω |= (p⇒ c) holds (does not hold). We speak of
verification, ifω |= p ∧ c. Given a set of defaults∆ we say
thatω satisfies∆ (written ω |= ∆) if every defaultδ ∈ ∆
is satisfied, and we say it falsifies if there exists at least one
defaultδ ∈ ∆ which is falsified byω.

Following Spohn’s (Spohn 1987) approach of ordinal
conditional functions a world can be ranked on an ordinal
scale according to its degree of plausibility. The more nor-
mal a world is the smaller is its ranking value.

Definition 1 An ordinal conditional function (a ranking
function) is a functionκ : Ω → N ∪ {∞} with κ(ω) = 0
for at least oneω ∈ Ω.

Each formulaf can now be assigned a ranking value, which
is the ranking value of a minimal world according to the
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ranking of the worlds, i.e.κ(f) = min{κ(ω)|ω |= f.}
A conditional knowledge base entails a default(c|p), if

all minimal worlds satisfyingp satisfyc. This is the notion
of preferential entailment, which is the basis for inference
with conditional knowledge bases of this kind. In the special
case of admissible ranking functions there is another way to
figure out preferential entailment.

Definition 2 Given a default base∆ a ranking functionκ
is called admissible w.r.t.∆, iff ∀(c|p) ∈ ∆ : κ(p ∧ c) <
κ(p ∧ c).
Due to the condition above any default(c|p) is entailed, or
equivalentlyc can be inferred givenp (writtenp |∼ c), if the
degree to which it is possible to havep∧c is greater than the
degree to whichp ∧ c is possible, i.e.p |∼ c iff κ(p ∧ c) <
κ(p ∧ c).

We use the ranking values as a comparison criterion for
possible worlds. Therefore in the following and without loss
of generality we only consider ranking functions where for
every ranking valuek ≤ maxω∈Ω (κ(ω)) there exists at least
one worldω with κ(ω) = k . These ranking functions can
be expressed by binary relations≤R on the setΩ. More
precisely, the binary relations considered here are total pre-
orders, i.e. reflexive and transitive relations. A total preorder
R on a finite setM can be described as an ordered partition
of M into k+ 1 setsM0, . . . ,Mk where each element inM
is contained in exactly one set. We have

ω ≤R ω′ iff (ω, ω′) ∈ R iff (ω ∈Mi ∧ ω′ ∈Mj ∧ i ≤ j).

For instanceR = {(ω1, ω1), (ω2, ω2), (ω1, ω2)} is repre-
sented by setsM0 = {ω1} andM1 = {ω2}. We have
ω <R ω′ if ω ≤R ω′ and notω′ ≤R ω , andω = ω′
if both ω ≤R ω′ andω′ ≤R ω.

System Z

System Z (Goldszmidt & Pearl 1996) makes use of an or-
dered partition of the default rules∆ respecting a certain tol-
erance relationship between these rules: Every default rule
in ∆i has to be tolerated by every default rule in every layer
∆j with j ≥ i. Additionally, each layer∆i of the ordering
of default rules has to be maximal. A rule(c|p) is tolerated
by other rules(c1|p1), . . . (ck|pk) if a world ω exists with
ω |= (c ∧ p) ∧

∧
i(pi ⇒ ci).

With the ranking values

κZ(ω) =
{

0 ω |= ∆j

max{j| ∃δi ∈ ∆j : ω fals.δi}+ 1 else

the total preorder≤Z is generated:

ω ≤Z ω′ iff κZ(ω) ≤Z κZ(ω′).

Due to the maximality of the layers for every ranking value
k ≤ maxω∈Ω (κZ(ω)) there exists at least one worldω with
κZ(ω) = k. Figure 1 shows a graphical representation of
the relation: for each ranking value there is a layer which
contains the worlds this value is assigned to, the layers are
arranged in ascending order.

{ω|κZ(ω) = i+ 1}
. . .

{ω|κZ(ω) = 0}

Figure1: Graphical representation ofRZ

ARS-Approach
Andreka, Ryan and Schobbens (Andreka, Ryan, &
Schobbens 2002) define priority operators that map a set of
relations to a single relation. The combination satisfies nat-
ural conditions, which are a variant of Arrow’s conditions
(Arrow 1950).

A preference relationR on a setM is simply any relation
R ⊆ M ×M . Let (m1,m2) ∈ R< iff (m1,m2) ∈ R and
(m2,m1) /∈ R. A priority operatoro is denoted by a priority
graph(N,<, v), where< is a strict partial order on a setN
and v is a function fromN to a set of variablesV . The
operatoro maps a set of relations(Rx)x∈V to the relation
o((Rx)x∈V ) defined by(m,n) ∈ o((Rx)x∈V ) iff

∀i∈N: ((m,n) ∈ Rv(i)∨∃j∈N: (j < i∧(m,n) ∈ R<
v(j)))

In this definition the lexicographic rule is used with a pri-
ority on the setN and therefore indirectly on the relations
(Rx)x∈V . Due to the use of the functionv it is possible to
use a relationRx multiple times, which increases the expres-
sive power of priority operators.

In (Andreka, Ryan, & Schobbens 2002) it is shown that
every priority operator can be expressed by combinations of
two basic operators calledbut andon the other hand.

In our approach we only use the operatorbut, which we
will call ⊕ in this paper. Given two relationsR1 andR2

on the same setM , then(m,n) ∈ R1 ⊕ R2 iff (m,n) ∈
(R1 ∩R2) ∪R<

2 .

System ARS
In System Z a stratification of defaults is an arrangement
in specificity order. Defaults being tolerated by only a few
other defaults are considered more specific. The more spe-
cific the knowledge, the more it should be emphasized. Sys-
tem Z achieves this emphasis by ranking the worlds accord-
ing to the numbers of the highest falsified layer, which forti-
fies the influence of more specific defaults. In our approach
we use the same stratification but take a different method to
obtain the ordering of the worlds. First of all we let the sets
of defaults induce input relations for preference fusion. We
then use the operator⊕, which fortifies the influence of the
second operand, inductively on the input relations. Due to
the character of the operator its application leads to a lexi-
cographic definition of preference in our system, which we
describe in detail in this section.

Our approach is possible due to different reasons. Firstly,
the operator⊕ preserves the property of being total pre-
orders, secondly we get admissible ranking functions, which
can be used as the basis for inference. These important prop-
erties are going to be proved later using similarities of the
ranking of the worlds in System Z and in our approach. This
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R(i) Ki+1 R(i+ 1)
< = <
> = >
= = =
< < <
> < <
= < <
< > >
> > >
= > >

Table 1: Operator table for⊕

similarity to System Z is another reason for regarding our
approach promising.

The New RankingR⊕
We let the layers∆i used in System Z, i.e. sets of default
rules, induce preordersKi on the set of possible worlds.

Definition 3 Given two possible worldsω and ω′, then
ω ≤i ω

′(iff (ω, ω′) ∈ Ki) iff ω′ |= ∆i ⇒ ω |= ∆i.

Equivalently we can use ranking functionsκi : Ω →
{0, 1} to describe the input relations,κi(ω) = 0 iff ω |= ∆i.

As suggested above, the operator⊕ should emphasize
more specific knowledge. This can be achieved by using
higher input relations as second operands and the former re-
sults as first operands. Respecting only the first layer of de-
faults∆0 the resulting ranking of the worlds should be the
same asK0, soR(0) = K0 in this case. Recursively applied

R(i+1) = R(i)⊕Ki+1 = (R(i)∩Ki+1)∪K<
i+1, i ≥ 1,

leads to ranking of worldsR⊕ = R(k), with k+1 being the
number of layers. Equivalently,

ω ≤R(i+1) ω
′ iff (ω<i+1ω

′)∨((ω=i+1ω
′)∧(ω≤R(i)ω

′)).

Only in the case of equivalence of two worlds inKi+1 the
former resultR(i) has an impact on their relationship in
R(i + 1). OtherwiseKi+1 prevails. Table 1 shows the ap-
plication of the operator⊕.

We will now show thatR⊕ is a total preorder. This im-
portant feature makes it possible to use ranking functions to
describe it.

Lemma 1 LetR1 andR2 be two total preorders.R1 ⊕ R2

is also a total preorder.

Proof . R = R1 ⊕ R2 = (R1 ∩ R2) ∪ R<
2 . The operator

⊕ is part of the ARS framework, hence it preserves transi-
tivity. As both relations are reflexive it is easy to see that
R remains reflexive: every tuple(ω, ω) will remain even in
the intersection set ofR1 andR2. The resultR is also to-
tal, because we get at least(ω1, ω2) ∈ R or (ω2, ω1) ∈ R:
If we have equality of two worldsω1 andω2 in R2 none
of the tuples(ω1, ω2) or (ω2, ω1) of R1 will be lost when
constructingR1 ∩ R2. Otherwise the union withR<

2 will
definitely contain one of the two tuples. �

K0

K1

...

Kk

Figure2: Priority operator ofR⊕

Theorem 1 R⊕ is a total preorder.

Proof . This Theorem follows directly from Lemma 1 by
induction. �

Due to its lexicographic origin the relationR⊕ can be ex-
pressed the following way:

ω ≤⊕ ω′ ⇔

∀j : ω =j ω
′ ∨ ∃i : (ω <i ω

′ ∧ ∀j > i : ω =j ω
′)

Given equivalence of two worldsω1 andω2 in every input
relation, we have equivalence inR⊕.

Lemma 2 ω1 =⊕ ω2 iff ∀i ∈ {0, . . . , k} : ω1 =i ω2

Proof . Let us consider an arbitrary layer∆i and the applica-
tion of⊕ with an input relationKi+1 on the corresponding
relationR(i):
R(i+ 1) = R(i)⊕Ki+1 = (R(i) ∩Ki+1) ∪K<

i+1.
The table for⊕ shows that if and only ifω1 =R(i) ω2 and
ω1 =i+1 ω2 we getω1 =R(i+1) ω2. We get the same for
R⊕ requiring equivalence inR(k − 1) andKk, which re-
quires equivalence inR(k−2) andKk−1 and so on, leading
to equivalence in every input relationKi. �

In the ARS-framework priority operators have a graphic
representation. As only the operator⊕ of the framework is
used, we get a linear arrangement, see figure 2.

In the following example the operator⊕ is applied once,
as there are only two input relations. In this case it leads to
the preorder, which would also be constructed by System Z.

Example [Tweety] In the simple case of Tweety we have
a set of three default rules∆Tweety = {δ1 = (f |b), δ2 =
(f |p), δ3 = (b|p)}, constituting that a bird normally flies,
that a penguin normally cannot fly and that it is normally
a bird. We get two tolerance layers∆0 = {(f |b)} and
∆1 = {(f |p), (b|p)}, because(f |b) is being tolerated by
all of the default rules while the other two rules only tol-
erate each other. These two sets of default rules imply the
preordersK0 andK1, see figure 3.

p fb, pfb

p f b, pf b, pfb, pfb, pfb, pfb

K0

(f |b)

pf b, pfb, pfb

p f b, pfb, p fb, pfb, pfb

K1
(f |p)(b|p)

Figure3: Input relations for the Tweety example
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Figure 4 shows both the relationsR⊕ and RZ in the
Tweety example consisting of three layers. It becomes ap-
parent, that the second input relation has a stronger influence
on the plausibility ranking.

pf b, pfb, pfb

p fb, pfb

p f b, pfb, pfb

(pf b, pfb, pfb)

K0

K1

Figure 4: Resulting relation in the Tweety example

The Inference Relation
R⊕ is a total preorder, so we can use a ranking functionκ⊕
to describe the relationR⊕, with κ⊕(ω) < κ⊕(ω′) iff ω <⊕
ω′. The ranking function is admissible w.r.t.∆– we will
prove this later when we get into more details ofR⊕ – so
it is possible to define the inference relation|∼⊕⊆ L× L.

p |∼⊕ c iff κ(p ∧ c) < κ(p ∧ c).

Due to the ranking being a total preorder and due to the
admissibility of the ranking function the inference relation
|∼⊕ satisfies several of the desired properties of common-
sense reasoning. It satisfies the core of these properties,
which are the rationality postulates of System P (Kraus,
Lehmann, & Magidor 1990). The core represents a com-
plete and sound axiom system for inference relations. Fur-
thermore, inference relations of this kind are closed under
rational monotony, for a proof see (Pearl 1990). The ratio-
nal monotony ensures, that givenp |∼⊕ c andp |∼⊕ ¬q we
can concludep ∧ q |∼⊕ c.

Difference BetweenR⊕ andRZ For each layer∆i of the
defaults we have an input relationKi.

While the recursive application of the operator⊕ very of-
ten leads toRZ , see figure5 a) which covers a lot of cases,
the set-up in figure5 b) causes another ranking. The fig-
ure shows theκi-values ofj + 1, j + 2 respectively, input-
relations for two possible worlds. A0 (1) means that the
world satisfies (falsifies) the layer:κi(ω) = 0 iff ω |= ∆i,
andκi(ω) = 1 else.

a)
i = 0 i = 1 . . . i = j

κi(ω1) 0/1 0/1 . . . 1
κi(ω2) 0/1 0/1 . . . 0

b)
i = 0 i = 1 . . . i = j i = j + 1

κi(ω1) 0/1 0/1 . . . 1 1
κi(ω2) 0/1 0/1 . . . 0 1

Figure5: Example for the difference betweenRZ andR⊕

Crucial for this setting is the relationKj (Kj+1). Let us
first look at the situation a) in figure5 without the existence

of Kj+1, which means thatKj is the relation with the high-
est priority. The worldω1 falsifies one of the defaults in
layer∆j while ω2 does not falsify any of them. In System
Z κZ(ω2) < κZ(ω1) holds. We get the same relationship in
System ARS. This is independent of the input relationsKi

with i < j, which means that the relationships of many pairs
of world is the same for both Systems.

With Kj+1 as the highest relation the situation is differ-
ent: As both worlds are falsifying one of the default rules in
the last layer∆j+1, System Z leads toκZ(ω1) = κZ(ω2).
This means that both tuples(ω1, ω2) and(ω2, ω1) have to be
contained in the resulting relation. But since(ω1, ω2) is not
contained inKj or inK<

j+1 andR(j + 1) = R(j)⊕Kj+1,
the tuple(ω2, ω1) is not in the resulting relation of System
ARS, which means that System Z and System ARS may
have a different behaviour.

Connection BetweenR⊕ and RZ A relationR is a re-
finement of a relationS iff R ⊆ S.

Theorem 2 R⊕ is a refinement ofRZ .

Proof . Both R⊕ andRZ are total relations. Therefore
for every pair of worldsω andω′ at least one of the tuples
(ω, ω′) or (ω′, ω) is contained in each relation.

AssumingR⊕ is not a refinement ofRZ , there has to be
a tuple(ω1, ω2) for which we either haveω1 =⊕ ω2 and
ω1 <Z ω2 or we haveω1 >⊕ ω2 andω1 <Z ω2.

Following the assumptions and considering System Z
there has to be a layer∆i whereω2 falsifies a default in
this layer whileω1 does not (which meansω1 <i ω2), and
for every∆j with j ≥ i we neither have the opposite case
nor both of them falsify a default in∆j .

The first caseω1 =⊕ ω2 conflicts withω1 <i ω2 because
of Lemma 2. In the other caseω1 >⊕ ω2 leads to another
conflict: considering the highest layerω1 >k ω2 is not pos-
sible because of the existence of ani with ω1 <i ω2 (see
above) and the only other possibility to get> isω1 >R(k−1)

ω2, leading to the same problem. �

The similarity of the structure of both world rankings
RZ andR⊕ is a result of the refinement relationship. Two
worlds ω1 andω2 with κZ(ω1) = κZ(ω2) may get sepa-
rated, resulting in a segmentation of a layer.

Inference The segmentation of the layers may lead to ad-
ditional inferences that System Z does not conclude. The
inferences of System Z remain.

Theorem 3 For everyp, c ∈ L we have:

If p |∼Z c thenp |∼⊕ c.

Proof . Due to the refinement relation betweenRZ andR⊕
we haveκZ(ω1) < κZ(ω2) ⇒ κ⊕(ω1) < κ⊕(ω2). �

Using a ranking of worlds as a foundation for inference is
reasonable, if its ranking function is admissible. It has been
proved in (Lehmann 1989) that this is the basis for reason-
able inference. Now we show the important result, that the
ranking function ofR⊕ is admissible.

Theorem 4 The ranking function ofR⊕ is admissible with
respect to∆.
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∆0 ∆1

(f |b) (y|x) (b|p) (f |p)
ω1 = p b f x y false
ω2 = p b f x y false false

Figure 6: Irrelevance

Proof . Let (c|p) be an arbitrary default of∆. As the ranking
function of System Z is admissible we look atωf being a
minimal world ofRZ with ωf |= p ∧ c andωv a minimal
world with ωv |= p ∧ c. Because of the admissibility of the
ranking function in System Z we haveωv<Zωf . AsR⊕ is a
refinement ofRZ we know thatωv<Zωf ⇒ ωv<⊕ωf . �

Irrelevance
In the following we analyze the introductory example of
irrelevance in more detail. The example demonstrates that
new independent defaults possibly do not have any effect on
the conclusions, although they should have. Afterwards we
present a general property of irrelevance and show that our
system satisfies this property.

Example [Irrelevance] Consider the set of defaults
∆Tweety expanded by any defaultδ4 = (y|x) with two new
atomsx, y /∈ {p, f, b}. The defaultδ4 is independent of the
other defaults and is therefore contained in∆0. System Z
gives equal plausibility to every world which falsifies∆1,
becauseδ4 in the lower layer does not have an influence. So
given a flying penguin-bird andx, y is not inferred. Figure
6 shows the falsification behaviour of the two crucial worlds
ω2 = pbfxy andω1 = pbfxy. In System ARS we get
ω1 < ω2, sopbfx |∼⊕ y. This conclusion is reasonable: the
premisex is given and∆ does not contain any other default
usingx or y, soy should be inferred.

Our notion of irrelevance considers the conclusions
which should be drawn with a new default(y|x) when it is
added to a knowledge base∆: ∆′ = ∆ ∪ {(y|x)}. Given
any premiseψ, the modified inference relation|∼∆′ should
concludeψ∧x |∼∆′ y if neitherψ nor any of the defaults in
∆ mentionx, y. We show that under the constraint thatψ is
compatible with all most normal rules, our system satisfies
the following property.

(Irr) Letx, y be atoms that are not mentioned in the defaults
in ∆, and let∆′ = ∆ ∪ {(y|x)}.
If ψ is a formula in whichx, y do not occur, then

ψ ∧ x |∼∆′ y.

At first we analyze the effect of the new default on the min-
imal worlds satisfyingψ ∧ x. LetR⊕ resp. R̂⊕ denote the
world ranking of our system for∆ resp.∆′. Due to the syn-
tactical independence of(y|x) from the other defaults we
get(y|x) ∈ ∆′

0. Let minR{Φ} be the set of minimal worlds
satisfying a formulaΦ according to a world rankingR.

Lemma 3 Suppose thatω ∈ minR⊕{ψ} do not falsify any
δ ∈ ∆0. Thenmin bR⊕

{ψ ∧ x} ⊆ minR⊕{ψ} andω |= xy

for all ω ∈ min bR⊕
{ψ ∧ x}.

Proof . Firstly, there exists at least one worldω ∈
minR⊕{ψ} with ω |= ψxy, asx and y do not occur in
∆. In particularω |= ψx. This worldω does not falsify
any δ ∈ ∆0. Assume that there exists a worldωpot |= ψ
with ωpot ∈ min bR⊕

{ψ ∧ x} andωpot /∈ minR⊕{ψ}. Due
to ω <R⊕ ωpot there has to exist a maximal indexi with
ω |= ∆i andωpot 6|=∆i. Asω does not falsify(y|x), adding
the default does not have an influence on the falsification be-
haviour ofω. Thereforeω < bR⊕

ωpot holds regardless of the
indexi. This contradicts toωpot ∈ min bR⊕

{ψ ∧ x}.
Secondly, due to Lemma 2 we know that we have equiv-

alence in all input relations for any two worldsω1, ω2 ∈
min bR⊕

{ψ ∧ x}, which means that these worlds have equal
falsification behaviour. Additionally, due tomin bR⊕

{ψ ∧ x}
⊆ minR⊕{ψ} these worlds do not falsify anyδ ∈ ∆0.
Therefore the default(y|x) is decisive, which means that
given ω1 |= xy ∧ ω2 |= xy, this would contradict to
ω2 ∈ min bR⊕

{ψ ∧ x}, asω1 < bR⊕
ω2. �

We are now in the position to show that the inference rela-
tion |∼∆

⊕ satisfies the irrelevance property in important cases.

Theorem 5 Let the worldsω ∈ minR⊕{ψ} do not falsify
anyδ ∈ ∆0. The following holds:

ψ ∧ x |∼∆′

⊕ y.

Proof . Due to Lemma3 we know thatω1 < ω2 for all
ω1 ∈ min bR⊕

{ψ ∧ xy}, ω2 ∈ min bR⊕
{ψ ∧ xy}. �

Comparison with Similar Approaches
In this section, we compare our method to similar ap-
proaches. For another approach to overcome System Z’s
problems see e.g. (Delgrande & Schaub 1994).

Lexicographic Entailment
The lexicographic entailment goes back to (Benferhatet al.
1993) and (Lehmann 1995). Letω andω′ be two worlds
and let|∆sat

j (ω)| be the number of defaults in∆j which are
satisfied (not falsified) byω.

ω <lex ω
′ iff

1.∃1 ≤ i ≤ k : |∆sat
i (ω)| > |∆sat

i (ω′)|, and
2.∀j > i, j ≤ k : |∆sat

j (ω)| = |∆sat
j (ω′)|

Although the lexicographic system looks similar to the Sys-
tem ARS, the rankings of the worldsRlex andR⊕ differ to a
great extent.Rlex takes into account the number of defaults
which are not falsified, which means that worlds with the
same falsification behaviour (concerning System ARS) may
get different ranking values. At first glance it looks like the
number of not falsified defaults is an additional discrimina-
tion criteria which results inRlex being a refinement ofR⊕.
The following example shows that this is not the case.

The set of defaults is∆diff = ∆Tweety ∪ {δ4 = (l|b)},
which is the normal Tweety example with the additional de-
fault that birds normally have legs. If we compare the two
worldsω1 = pbfl andω2 = pbfl we getω1 <lex ω2 but
ω2 <⊕ ω1, see figure7 for the falsification behaviour of
ω1 andω2. This is a proof that there can be no refinement
relationship.
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∆0 ∆1

(f |b) (l|b) (b|p) (f |p)
ω1 = p b f l false false
ω2 = p b f l false false

Figure7: Example for the comparison withRlex

BasicPreference Descriptions
Now we compare the ranking of the worlds in our ap-
proach with the preference relations, which are defined by
Brewka’s basic preference descriptions (Brewka 2004). A
basic preference description consists of a ranked knowledge
base (RKB)K = {(fi, vi)}, assigning prioritiesvi ≥ 1
to goals which are represented by formulasfi, and one out
of four basic preference strategies. Given a RKB the four
strategies imply orderings on the set of possible worlds. Let
Kn(m) denote the set of the satisfied goals with rankn for
a worldm. The subset-strategy is defined as follows:

Definition 4 Given two possible worldsm1 andm2 and a
RKBK, thenm1R⊆m2 iff Kn(m1) = Kn(m2) for all n
or there is ann such thatKn(m1) ⊃ Kn(m2), and for all
j > n : Kj(m1) = Kj(m2).

The relationR⊆ describes the ordering used in Brewka’s
preferred subtheories approach (Brewka 1989).

The input relations in our approach take into account the
layers∆i = {(c0|p0), . . . , (cki

|pki
)} without considering

each single default separately: we use ranking functions
κi : Ω → {0, 1} to describe the input relations,κi(ω) =
0 iff ω |= ∆i. This is why it is sufficient to specify a single
goal for each layer∆n given byfn =

∧
j=1..kn

(pj ⇒ cj).
This formula is satisfied, if and only if none of the defaults
in the layer is falsified. We can replicate the prioritization of
higher layers by assigning each layer∆j the priorityj + 1.
The basic preference descriptionK⊆ constituted by the re-
sulting RKBK = {(fn, n + 1)} and the subset-strategy⊆
leads to same ordering of models as in our system.

Theorem 6 Let∆ = {∆1, . . . ,∆k} with
∆i = {(c0|p0), . . . , (cki

|pki
)} be a ranking of defaults. The

ranking of worldsR⊕ is equivalent to the ranking induced
by the basic preference relationK⊆ with K = {(fn, n +
1)}, 0 ≤ n ≤ k, wherefn =

∧
j=1..kn

(pj ⇒ cj).

Proof . The structure of the defined RKB is special, as there
is only one goalfn for each rankn. Therefore for alln we
have |Kn(m)| ∈ {0, 1} andKn(m1) ⊃ Kn(m2) if and
only if m1 |= fn ∧ m2 6|= fn. If both worlds falsify or
do not falsifyfn, we getKn(m1) = Kn(m2). Using these
connections in the definition of the subset-strategy leads to
our ranking of the worldsR⊕. �

Summary and Outlook
In this paper, we presented an approach to default reason-
ing based on techniques from preference fusion. Given a
knowledge base of default rules, the basic idea is to consider
the plausibility relation induced by each rule on the set of
possible worlds, preferring the worlds that satisfy the rule

to those that falsify it. Fusing these simple preference re-
lations gives rise to a complex preference structure on pos-
sible worlds that can be used for further conditional infer-
ences. We proved that the resulting inference operation re-
fines the well-known System Z, but shows improved infer-
ence properties with respect to the addition of irrelevant in-
formation. Moreover, we compare our System ARS to re-
lated approaches.

As part of ongoing work, we will elaborate on this con-
nection between preference fusion and default reasoning in
more detail. In particular, we will study relations between
commonly accepted postulates from nonmonotonic reason-
ing, on one hand side, and preference fusion, on the other.
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