Proceedings of the Twenty-First International FLAIRS Conference (2008)

A New Approach to Model-Based Diagnosis Using Probabilistic Logic

Nikita A. Sakhanenko, Roshan R. Rammohan, George F. Luger
Dept. of Computer Science, Univ. of New Mexico
Albuquerque, New Mexico

Carl R. Stern

Management Sciences, Inc.
Albuquerque, New Mexico

Abstract

We describe a new approach to model construction using
transfer function diagrams that are consequently mapped
into generalized loopy logic, a first-order, Turing-complete
stochastic language. Transfer function diagrams support rep-
resentation of dynamic systems with interconnected compo-
nents. We demonstrate how these diagrams provide interfaces
to a context-sensitive probabilistic modeling system (COS-
MOS). As a result, interfaces as well as the notion of context
underlying COSMOS are successfully used for model-based
diagnosis. This paper describes transfer function diagrams
and how they are incorporated into COSMOS. We illustrate
our approach with a practical example taken from a “pump
system” modeling problem.

Introduction

In this paper we describe a powerful new approach to model
construction for diagnostic reasoning. Transfer function di-
agrams provide an intuitive, yet expressive way to capture
domain knowledge, which is then mapped into a stochastic,
first-order representation. Coupled with a context-sensitive
probabilistic modeling system, this approach supports prob-
abilistic model-based reasoning. Our example application is
diagnosis of a mechanical pump system. However, the same
approach can be adapted to other problems in probabilistic
model-based reasoning, including behavioral modeling and
prediction, fault recovery and repair, and high level control.

The probabilistic framework of graphical models makes
this representation suitable for many noisy situations. It is
also often easier to understand graphical models than raw
joint probability distributions. On the other hand, graphical
models do not focus on the knowledge engineering problem.
We propose transfer function diagrams as a knowledge en-
gineering representation that is automatically mapped into
probabilistic models described in stochastic, first-order lan-
guage (Pless ef al. 2006). These diagrams serve as inter-
faces to “internal” probabilistic models.

These interfaces are utilized in our model-based frame-
work called COSMOS (Context Sensitive Probabilistic
Modeling System). A COSMOS hyper-model of a dynamic
system consists of an ensemble of related probabilistic net-
works representing various operation modes along with a

Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

678

mechanism for switching between active networks based on
detected context changes. COSMOS embodies an incremen-
tal failure-driven learning and repair mechanism based on
abductive inference and EM parametric learning. Together
these mechanisms generate new models better adapted to
track system behavior in newly encountered environments.
COSMOS is described in (Sakhanenko et al. 2007).

The probabilistic models comprising a COSMOS hyper-
model differ from basic graphical models in that they con-
tain explicitly defined interfaces. These interfaces represent
the inputs and outputs to the model, the way in which the
dynamic system interacts with its external environment. We
rely on the notion of contexts and interfaces because we be-
lieve that for many dynamic systems and actual applications
it would be unrealistic and computationally intractable to try
to represent in a single model all the possible ways in which
the dynamic system might interact with an external environ-
ment. Instead we exploit the notion of context, associating
individual contexts with individual stable modes of interac-
tion between the dynamic system and its current environ-
ment. Each stable mode of interaction is captured in a fixed
model interface and a fixed range of probabilistic functional
dependencies between the internal states and attributes of
the network model and the values of the interface variables.

In applying this approach to model-based diagnosis we
find a significant benefit from the flexibility provided by
COSMOS context sensitive hyper-models. One of the well-
known challenges for model-based diagnosis is the prob-
lem of interface-altering faults (IAFs). These arise when
the components of a designed system begin interacting in
ways that were not anticipated or intended by the sys-
tem designer. Such faults, including current leakage and
crosstalk, are common in electronic systems. They also oc-
cur in mechanical systems, e.g., when fluid leakage from a
conduit results in corrosion or higher-than-normal friction
in a nearby rotating device. IAFs present a challenge to
those model-based diagnostic methods that derive the com-
ponent interfaces solely from the as-designed model or the
schematic. Such approaches afford no mechanism for de-
riving the altered inter-component interfaces resulting from
faults. COSMOS’ mechanisms provide automatic model
switching and/or model repair when IAFs are detected, sub-
stituting new network models with appropriately modified
inter-component interfaces and functional dependencies.

Model-based diagnosis and COSMOS

In this paper we extend the method and set of algo-
rithms originally proposed by Srinivas for mapping device
schematics into probabilistic models for diagnosis and re-
pair (Srinivas 1995). Srinivas’ method is based on a set
of earlier approaches to model-based diagnosis, in particu-
lar consistency-based approaches that exploit design mod-
els and schematics (Davis & Hamscher 1992; deKleer &
Williams 1989). We initially discuss these earlier ap-
proaches because they anticipate many of the issues and
challenges later faced by Srinivas’ probabilistic approach to
model-based diagnosis.

Model-based diagnosis in the consistency-based variants
is based on the use of behavioral models derived from design
models. A behavioral model is a functional representation
in which system behavior, including the resultant values of
output variables, can be predicted purely from the internal
states of the model and the values of the input variables.

Implicit in the specification of a system or component’s
input and output variables is the concept of an interface.
While interfaces are an explicit part of many types of design
models, especially electrical schematics, the explicit speci-
fication of interfaces is typically not part of the model spec-
ification for standard probabilistic graphical models such
as Bayesian Networks, Markov Models, etc. (Pearl 1988).
However one of the important contributions of Srinivas’
translation scheme for mapping design models into Bayesian
Networks is to show how interfaces in design models can be
effectively mapped into Bayesian Network representations.

Consistency-based model-based diagnosis uses design
models for diagnosis. A fault is defined as a deviation from
the as-designed behavior. Consistency-based diagnostic al-
gorithms try to localize the fault to a specific malfunctioning
component but cannot identify the underlying character or
cause of the fault. Therefore several authors have proposed
adding fault models to consistency-based models in order to
improve the efficiency of the algorithm and provide a more
detailed characterization of the fault. In a common version
of this approach, a fault is specified as an alternative inter-
nal state/operational mode of a system component resulting
in a modification to the as-designed functional input-output
behavior of the component.

In addition to providing a more detailed characterization
of fault behaviors, fault models serve to improve the ef-
ficiency of the diagnostic algorithm by specifying relative
likelihood of various faults, thereby providing valuable in-
formation for heuristic search strategies. However a fun-
damental limitation of the approach Design Models + Fault
Models, is that the specification of fault modes as alterna-
tive internal states or operational modes of the component
does not alter or extend the as-designed component inter-
face. This representation is unable to manage cases where
the fault in fact does change the interfaces between compo-
nents by producing unanticipated interactions between com-
ponents that diverge in functional signature from those spec-
ified in the as-designed component interfaces.

Model-based diagnosis in COSMOS supports a funda-
mentally more flexible approach to system modeling bet-
ter able to address Interface-Altering Faults (IAF). COS-

679

MOS hyper-models incorporate an ensemble of graphical
networks each capturing the behavior of the device in a dif-
ferent context. Like the extended conflict-based diagnostic
approaches described above, COSMOS hyper-models incor-
porate network models for both normal and fault behaviors.
The selection from a range of alternative models is corre-
lated with the identification of context, where context may
correspond to a normal operating state and region of the de-
vice or to a particular fault mode or to an environmental con-
dition that is out-of-range with respect to the device’s normal
operating regions.

In contexts corresponding to fault states or out-of-range
conditions, observed behavior may conflict with the in-
tended or designed behaviors. These deviations from as-
designed behaviors might be internal behavioral deviations
that can be successfully localized to a single component
fault mode. However they might also be new behaviors aris-
ing from unanticipated and unintended interactions between
components. COSMOS hyper-models are capable of suc-
cessfully adapting to the latter kind of non-localized changes
or faults by learning new models incorporating both altered
intra-component behaviors and interfaces. We now describe
the elements of explicit interfaces of the COSMOS hyper-
modeling system and the way it supports this flexible form
of model-based diagnosis.

In the next section we briefly describe the logic-based
probabilistic language used in COSMOS. We then give an
example to illustrate our transfer-function approach speci-
fying interfaces to probabilistic models. The mapping from
the interfaces to probabilistic models is given in the follow-
ing section. We then discuss related work and conclude.

Generalized Loopy Logic

The COSMOS hyper-modeling system is implemented in
Generalized Loopy Logic. The logic-based representation
gives us the flexibility to dynamically link-in knowledge as
necessary. Generalized Loopy Logic (GLL) is the exten-
sion of a basic stochastic logic language (Pless ef al. 2006).
GLL is a logic-based, first-order, Turing complete stochas-
tic modeling language. Sentences of GLL are Prolog-like
Horn clauses with variables having stochastic distributions.
To perform inference, GLL rules are mapped into a Markov
random field. Loopy belief propagation (Pearl 1988) is used
for inferencing (hence the name “Loopy”). As opposed to
its basic predecessor, GLL can also use other iterative in-
ferencing schemes such as generalized belief propagation
and Markov chain Monte-Carlo. During the mapping to a
Markov random field, two rules with the same head are usu-
ally combined using a product combining rule. GLL extends
that further by employing other functions than product when
combining. One of the major features of GLL is its natu-
ral support for parameter learning via a variant of EM algo-
rithm. In addition, GLL supports dynamic models by using
recursion and controlling the depth of unfolding of recursive
rules when mapping into a Markov random field.

Our approach
Example: a pump system

In this section we introduce a simple mechanical system that
we want to model. We use this example throughout the paper
to illustrate how the domain expert captures the knowledge
about the system, how that knowledge is then transformed
into a stochastic model, and how we can use the model to
solve diagnostic tasks.

Consider a pump system schematically depicted in fig-
ure 1. A water pump sucks liquid up from a reservoir

motor coupled pump
_A pipe 3/71°\|_pipe 2
pipe 4 |

flow control valve

pipe1

| reservoir

filter

Figure 1: The diagram representing the pump system.

through a pipe (pipel) and ejects the liquid into another
pipe (pipe4). The pump is driven by an electrical motor.
The liquid, that can contain emissions, is cleared by a fil-
ter and disposed back into the reservoir. The flow control
modulates the liquid flow.

To diagnose the system, we install a number of sensors
that detect current pressure, flow, and the emission state of
the liquid at different locations, as well as indicating param-
eters such as the rotation rate of the pump and vibration near
the motor. One important task is to detect when the filter
gets clogged leading to possible cavitation in the system.

In the next sections we show how this system is modeled
in GLL using intermediate transfer function diagrams as in-
terfaces, making diagnostic tasks easier to perform.

Extended capabilities of transfer function
diagrams

In this section we propose an input representation in the
form of transfer function diagrams. We argue that this rep-
resentation is quite similar to a functional model, typically
consisting of interconnected components, created during the
design process of an engineering system. Not only does
this representation provide an intuitive way of engineering
design making the task of modeling a system easier, but it
also keeps the design process tractable by using a variant of
an object-oriented approach. Modularity of the input rep-
resentation provides clarity of the design and reusability of
its components. Our approach extends Srinivas’ mapping
of functional schematics into probabilistic models (Srinivas
1995).

A transfer function diagram is a set of interconnected
components. A component receives a set of inputs (I) and
emits a set of outputs (O). There is also a set of internal state
variables (S) of a component. Note that we assume that all
the variables are discrete. For each output of the component
there is a function computing the output that takes a sub-
set of inputs and a subset of internal states as its arguments:

680

VO € O,3F, 3H{I,..., ;} CI,3{S,...,Sm} C S such
that F/: [1 X ... x [x Sy x...x S, — O

Figure 2 illustrates a component from a transfer function
diagram modeling the pump system introduced earlier. The
component represents a pipe. The boxes inside of the com-
ponent correspond to functions, whereas ellipses correspond
to component’s internal states.

state_clog state_leak
flow ¥ Eflow flow
L
pressure| F.pressure pressure
S
emission F.emission emission
leak

N\ J

Figure 2: A component from the transfer function diagram
representing a pipe of the pump system.

Allowing multiple outputs via objects

Typically, each component in a design model, e.g., func-
tional schematics (Srinivas 1995), corresponds to a single
function and, hence, emits only one output. This is very lim-
iting, since usually components of engineering systems have
multiple outputs, e.g., the pipe in figure 2 has four. Thus, we
need to represent multiple outputs for this component.

A possible simple solution to this problem is to repre-
sent one component with many outputs as a set of compo-
nents with one output each. However, in this case transfer
function diagrams become very large and confusing for the
knowledge engineer, which essentially diminishes the value
of the diagrams as an intuitive input representation. Another
straightforward way of handling the issue of multiple out-
puts is to represent them as a single Cartesian product. This,
however, forces every output of the component to depend
on every input, even if it is not necessary. As a result, the
stochastic model constructed from such a diagram is overly
complicated by redundant information.

We propose an object-oriented methodology for handling
the issue of multiple outputs. Each component can be treated
as an object containing multiple attributes representing dif-
ferent features of the component. The component pipe in
figure 2, for example, contains several attributes such as the
amount of emissions in the pipe, the pressure, etc. Each at-
tribute is modeled by an appropriate function, e.g., the emis-
sion condition in the pipe is represented by a function that
takes input emission, input pressure, and a current state of a
pipe being clogged as its arguments. Note that each function
box encapsulated inside of the component can be modeled
by another transfer function diagram. The object-oriented
representation accepts multiple functions, thus we have dif-
ferent outputs of the exterior object. This alternative gives
us representational clarity.

Note also several other advantages of the object-oriented
representation of transfer function diagrams. By specify-
ing components of the diagram via objects we allow for
reuse of model fragments. Moreover, we can replicate the
inheritance mechanism from the object-oriented program-
ming by combining some attributes of different objects into
another object. After mapping into a probabilistic model,
the stochastic parameters of the inherited attributes can be
learned simultaneously by taking advantage of GLL param-
eter learning mechanism (see later).

Adding indicator variables

We distinguish two types of variables in a model: operating
parameters and indicator parameters. Operating variables
are those participating in operation of the system, e.g., en-
gine speed, flow rate, etc. On the other hand, indicator vari-
ables, such as vibration near the motor, are not related to
functioning of the system.

Al diagnostic representations such as transfer function di-
agrams focus only on operational behavior of the system and
do not use indicator variables. We argue that by adding in-
dicator parameters to the representation we gain a lot of in-
formation. Most notably, the inclusion of indicator variables
supports assigning probability distributions that describe the
operating state of the components.

When modeling a component of a system, we create a la-
tent variable representing a state of the component that is not
observed directly. However, we can classify the state based
on its effects modeled by indicator variables. An indicator
parameter provides evidence describing the current state of a
subsystem that is essential for diagnosis. Note that the rela-
tionship between indicator variables and other parameters of
the representation is not deterministic and is reminiscent of
the relationship between observable and hidden variables in
a hidden Markov model. An indicator variable is a compo-
nent’s output that is not used as an input to any other compo-
nent. In figure 2 the component pipe contains one indicator
variable: leak. It is computed by a function that takes the
flow before the pipe and after the pipe as its arguments and
represented as an output that goes nowhere.

We categorize indicator variables as two types: direct
(sensory) and indirect (functional). When we have a sensor
monitoring some aspects of the system (such as vibration
near the motor in our example), it is directly represented by
a sensory indicator variable. When needed to monitor some
internal states of a subsystem for which no sensors are avail-
able, we use a function of inputs and outputs to model an
indirect (functional) indicator variable. The output leak in
figure 2 is a functional indicator variable computed as a ratio
between the input and the output. We can see a functional
indicator variable as a virfual sensor that provides the infor-
mation whether a specific function (such as a ratio) within
the subsystem is consistent with the data. Moreover, the
task of the virtual sensor can be to indicate which function is
currently describing the behavior of a subsystem most accu-
rately. In the case of the indicator variable 1eak in figure 2,
it represents a virtual sensor that tells whether the I/O ratio of
the flow is equal to the degree of the leak of the pipe. Note
that virtual sensors allow representation of the consistency

681

of the data at the initial representation stage as opposed to
factoring this information directly into stochastic models.

Consider a single complex indicator variable that takes
inputs from all components of the system. Such a vari-
able produces some general diagnostic information about the
system. In this case, however, we encounter a significant
complexity issue: if the system consists of a large number
of components, then the indicator variable has a very large
number of inputs (fan-in/fan-out problem). In order to ad-
dress this problem we use a divide-and-conquer approach
by introducing to the model more indicator variables each
of which is associated with a small subsystem.

Coping with dynamic systems

One of the limitations of the functional schematics approach
(Srinivas 1995) is the lack of an efficient way of represent-
ing dynamic systems. Srinivas identified how functional
schemas can be adapted to specify time and dynamic feed-
back and proposed to map the extended diagrams into a vari-
ant of dynamic Bayesian networks. We also emphasize the
importance of being able to monitor dynamic systems. As
seen in the pump example earlier, a knowledge engineer
must represent temporal relations between components as
well as within components to diagnose such situations as
cavitation in the system.

In order to explicate the temporal dynamics of the sys-
tem, we explicitly specify all states of each component.
For example, we identify two states of component pipe,
state_clog and state_leak, representing the amount
of clogging in the pipe and the presence of leaks (see figure
2). The temporal change of a component’s state is, then,
captured by a functional dependency on the values from
the previous time steps. These dependencies are depicted
with dotted arrows, e.g., in figure 2 three dotted arrows
point to state_clog which means that the current state
depends on the state’s value and two inputs (pressure and
emission) from the previous time step.

In figure 2 all the temporal connections (dotted ar-
rows) within the component pipe represent local dynamics.
However, we can also use temporal links outside of a sin-
gle component representing more global dynamics between
components that are not directly connected to each other.

Once the transfer function diagram is complete, its com-
ponents are mapped to GLL rules. Since a GLL program
represents classes of probabilistic models, switching to GLL
rules provides the modeling system with additional power
for capturing dynamic processes. Recursive rules of GLL,
for instance, lend themselves nicely to representing a po-
tentially infinite structure where some variables have a self-
dependency over time. In the next section we describe this
mapping to GLL rules in more detail.

Combining transfer-function diagrams with GLL

Once a domain expert has specified every system compo-
nent within a transfer-function diagram, it is converted into
a GLL program for further inferencing. In this section we
specify the mapping rules guiding this conversion.

First, each function of every component in the diagram is
mapped into a GLL sentence as shown in figure 3. Every

)-(1\

—

i Y, = Yi(N)IX4(N),..., X(N)=D(F)

Figure 3: Mapping of a transfer function into a GLL rule.

input and the output of a function corresponds to a variable
in GLL. Note that N stands for the current time step of the
system, thus function F; has an instant effect (the output is in
the same time step as the input). Additionally, D(F,) stands
for the probability distribution corresponding to function F;,
provided by an expert. Note that the functions producing
indicator variables are handled similarly.

Second, each state of every component in the diagram is
mapped into a GLL rule according to figure 4. Note that

X1
X
Figure 4: Mapping of a component’s state into a GLL rule.

temporal influences on the state are easily described by a
recursive GLL rule. We use D(S;) to denote the probability
distribution corresponding to the function representing the
temporal change of state .S;.

Third, connections between neighboring components are
included in the corresponding GLL program according to
figure 5. If the output O; of component C; is an immediate

C

replace Y;(N) by X;(N) in C,

=

replace Y;(N) by X;(N+1) in C

G

Figure 5: Mapping connections between components into a
GLL program.

(in the same time step) input I; to component C;, then for
the GLL rule representing the function of C; producing 0;,
replace 0;(N) with I;(N). Similarly, when the output 0; is an
input I; at the next time step, then we replace corresponding
0,;(N) with I;(N+ 1). Note, again, how recursive rules of
GLL easily capture the time change in the system.

During the mapping of the transfer function diagram into
a GLL program the deterministic function, specified by a
domain expert as a matrix, is straightforwardly transformed
into a probability distribution table with zeros and ones.
Moreover, the noise and the rate of change can be simulated
by adding a probabilistic bias to the deterministic function
during the mapping. It is possible in GLL to omit specifi-
cation of a probability distribution of a sentence by marking
it as learnable. The GLL system uses EM-based learning
mechanism to infer the distribution from data. Therefore,
by using functions from the expert knowledge as an initial
approximation of the system and, then, utilizing the learn-
ing capabilities of GLL, the model of the system is further

682

refined to closer represent the domain. This is another ad-
vantage of combining transfer function diagrams with GLL.

flow
: emission :
Pipe, Pipe,
pressure Pump pressure’
pressure Tmn1 pressure emigsion
e . flow
emigsion Englne
flow VaIVe —T Tvoltage Reservoir
Control
pressure pressure emigsion
resistance P
— ow
pressure . pressure
. =sion| Filter ool .
emission emission
Pipe, Pipe,
flow

Figure 6: The general transfer function diagram of the pump
system.

In the pump system example, the transfer function dia-
gram (figure 6) is mapped into a GLL program:
filter_state<-{ok, soso,bad}
engine_vibration<-{no, low,med, hi}

..snip..

filter_state(N+1) |filter_in_emission (N),

filter state (N)=

(rt:,0,01,10.95,.05,0],..snip.., [0,0,1]]]

engine_vibration (N) |engine_in_electro(N),
engine_state (N),
engine_in_resistance (N)=

rrgr,0,0,01,..8nip. ., [0,0,.05,.951111

After specifying initial conditions of the system, we per-
form various forms of analysis, e.g., we can submit a query
filter_state (4)?. GLL inferences over the model
represented by stochastic rules instantiated with initial pa-
rameters. If the initial parameters correspond to a normal
operation of the system, then the result of the query is

(filter_state 4) [.923, .073, .004]

indicating that at time 4 the filter will be clean with probabil-
ity .92. As we increase the emission in the pump system, we
can observe the state of the filter change to more clogged,
e.g., when emissions are high the result of the query is

(filter_state 4) [.0, .239, .761]
meaning that the filter is dirty with probability .76.

Related work

For the knowledge engineering component of modeling, two
frameworks are often used: logic-based and probabilistic.
First-order logic captures relationships between the entities
in a domain (Poole 1988) and has clear declarative seman-
tics independent from its operational semantics. While this
allows domain experts to focus purely on the application,
logic-based systems are unsuitable for representing uncer-
tainty and cumbersome in generalizing evidence. Proba-
bilistic graphical models (Pearl 1988) handle uncertainty

and noise, and support stochastic inference. However, be-
ing propositional in nature, they are not suitable for express-
ing first-order relations as well as time-dependent or recur-
sive structures. Recent research (Ngo & Haddawy 1997;
Kersting & DeRaedt 2000; Getoor et al. 2001; Pless et
al. 2006; Richardson & Domingos 2006) combines these
two frameworks to overcome these limitations. These sys-
tems have a sound declarative semantics independent of the
inference algorithm and an ability to represent uncertainty.
Yet, representing complex models with first-order rules it-
self can be daunting. However, complex systems can be de-
scribed via functional schematics and automatically mapped
to Bayesian networks (Srinivas 1995).

Other methods for tackling the knowledge engineering
problem are decomposition and knowledge induction. Data-
centric methods for the induction of causal links in graphi-
cal models (Lam & Bacchus 1994; Twardy et al. 2004) are
limited in scalability and reliability in sparse-data situations.
Knowledge engineering still relies heavily on contributions
from domain experts (Pradhan ef al. 1994). Approaching
these problems with decomposition-based methods, as is of-
fered through object-oriented design, aids usability.

Object-Oriented Bayesian Networks (Koller & Pfeffer
1997) allow complex domains to be described in terms of
inter-related entities. This approach allows the encapsula-
tion of variables within an object enabling the reuse of model
fragments in different contexts. Similar object-oriented ap-
proaches focus on the modularization of the knowledge rep-
resentation (Langseth & Bangso 2001; O. Bangsg 2004;
Laskey & Mahoney 1997) detailing how large networks can
be woven together from smaller, coherent components.

Current status and future work

Work on COSMOS to this point has focused on developing
formalism and algorithms, and building an initial implemen-
tation. This implementation has been tested and run on sim-
ulated data sets for a pump system. The target for this imple-
mentation is live data from an actual pump system testbench.
This bench is equipped with a variety of electrical and me-
chanical sensors, including a number of vibration sensors,
at various positions. Within the next few months we expect
to test our system on actual testbench data to demonstrate
the value of COSMOS’ context sensitive model switching
mechanisms in providing enhanced capabilities in diagno-
sis and prediction. In the medium and longer term, we are
planning experiments to demonstrate COSMOS’ capabili-
ties with respect to model adaptation and learning. We hope
soon to validate COSMOS’ potential to automatically con-
struct new models with interfaces that accurately track the
unplanned destructive interactions that sometimes arise in
the use of compromised devices.

Acknowledgements

We thank the NSF (115-9800929, INT-9900485) and the US
Navy (SBIR NOOT001, STTR N0421-03-C-0041) for earlier
support in the design of the Loopy Logic language. The
research presented in this paper is partially funded by an
Air Force Research Laboratory SBIR contract (FA8750-06-

683

C0016). We thank Daniel Pless and Chayan Chakrabarti for
many helpful discussions.

References

Davis, R., and Hamscher, W. C. 1992. Model-Based Rea-
soning: Troubleshooting. Readings in Model-Based Diag-
nosis 3-24.

deKleer, J., and Williams, B. C. 1989. Diagnosis with
Behavior Modes. 1324-1330. Proc. of IJCAIL

Getoor, L.; Friedman, N.; Koller, D.; and Pfeffer, A. 2001.
Learning Probabilistic Relational Models. Relational Data
Mining 307-335.

Kersting, K., and DeRaedt, L. 2000. Bayesian Logic Pro-
grams. 138-155. Proc. of 10th Int. Conf. on ILP.

Koller, D., and Pfeffer, A. 1997. Object-Oriented Bayesian
Networks. 302-313. Proc. of the 13th Conf. on UAI

Lam, W., and Bacchus, F. 1994. Learning Bayesian Be-
lief Networks: An Approach Based on the MDL Principle.
Computational Intelligence 10:269-293.

Langseth, H., and Bangso, O. 2001. Parameter Learning
in Object-Oriented Bayesian Networks. Annals of Mathe-
matics and Artificial Intelligence 32(1-4):221-243.

Laskey, K., and Mahoney, S. 1997. Network Frag-
ments: Representing Knowledge for Constructing Proba-
bilistic Models. 334—-340. Proc. of the 13th Conf. on UAIL

Ngo, L., and Haddawy, P. 1997. Answering queries from
context-sensitive probabilistic knowledge bases. Theoreti-
cal Computer Science 171(1-2):147-177.

O. Bangsg, J. Flores, F. V. J. 2004. Plug and play object
oriented Bayesian networks. 457-467. LNAI 3040. Proc.
of the 10th Conf. of the Spanish Assoc. for AL

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann.

Pless, D. J.; Chakrabarti, C.; Rammohan, R.; and Luger,
G. F. 2006. The Design and Testing of a First-Order
Stochastic Modeling Language. International Journal on
Artificial Intelligence Tools 15(6):979-1005.

Poole, D. 1988. Representing knowledge for logic-based
diagnosis. 1282-1290. Proc. of International Conference
on 5th Generation Computing Systems.

Pradhan, M.; Provan, G.; Middleton, B.; and Henrion, M.
1994. Knowledge Engineering for Large Belief Networks.
484-490. Proc. of the 10th Conf. on UAI

Richardson, M., and Domingos, P. 2006. Markov Logic
Networks. Machine Learning 62(1-2):107-136.
Sakhanenko, N. A.; Rammohan, R.; Luger, G. F.; and
Stern, C. R. 2007. A Contex-Partitioned Stochastic Model-
ing System with Causally Informed Context Management
and Model Induction. Proceedings of IICAI-07.

Srinivas, S. 1995. Modeling techniques and algorithms
for probabilistic model-based diagnosis and repair. Ph.D.
Dissertation, KSL, CS Dept., Stanford University.

Twardy, C.; Nicholson, A.; Korb, K.; and McNeil, J. 2004.
Data mining cardiovascular bayesian networks. Technical
Report 165. School of CSSE, Monash University.

