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Abstract

Constraint-based causal discovery algorithms, such as the PC
algorithm, rely on conditional independence tests and are oth-
erwise independent of the actual distribution of the data. In
case of continuous variables, the most popular conditional in-
dependence test used in practice is the partial correlation test,
applicable to variables that are multivariate Normal. Many
researchers assume multivariate Normal distributions when
dealing with continuous variables, based on a common wis-
dom that minor departures from multivariate Normality do
not have a too strong effect on the reliability of partial corre-
lation tests. We subject this common wisdom to a test in the
context of causal discovery and show that partial correlation
tests are indeed quite insensitive to departures from multivari-
ate Normality. They, therefore, provide conditional indepen-
dence tests that are applicable to a wide range of multivariate
continuous distributions.

Introduction
Causal discovery algorithms based on constraint-based
search, such as SGS and PC (Spirtes, Glymour, & Scheines
2000), perform a search for an equivalence class of causal
graphs that is identifiable from patterns of conditional inde-
pendencies observed in the data. These algorithms depend
on the probability distribution over the variables in question
only indirectly, since they take a set of conditional indepen-
dence statements as input, and will correctly identify the
class of causal structures that are compatible with the ob-
served data. As long as conditional independence between
random variables can be established, the algorithms produce
provably correct results. The main problem to overcome is
finding conditional independence tests that are suitable for a
given distribution.

While reliable independence tests exist for discrete data,
there are no generally accepted tests for mixtures of discrete
and continuous data and even no tests that cover the gen-
eral continuous case. One special case that can be tackled
in practice is when the set of variables in question follows
a multivariate Normal distribution. In that case, there is a
well established test of conditional independence, notably
partial correlation. If the partial correlation between vari-
ables X and Y conditional on a set of variables Z is zero,
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then X and Y are said to be conditionally independent. Be-
cause the multivariate Normal case is tractable, it is tempt-
ing to assume this distribution in practice. Druzdzel & Gly-
mour (1999), for example, use a data set obtained from the
US News & World Report Magazine to study causes of low
student retention in US Universities. Figure 1 presents his-
tograms of all eight variables in that data set. It seems that
few, if any, of the variables are Normally distributed, so the
question that naturally arises is whether they are ‘Normal
enough’ to yield correct results when the partial correlation
tests are applied. Common wisdom says that partial cor-
relation is fairly insensitive to minor departures from Nor-
mality. What constitutes minor departures and when these
departures are large enough to weaken the power of partial
correlation, has, to our knowledge, not been tested system-
atically.

In this paper, we describe a series of experiments that
we conducted to test the sensitivity of the partial correla-
tion test, and the resulting effect on a basic causal discovery
algorithm, the PC algorithm, to departures from multivariate
Normality. We will show empirically that the partial corre-
lation test is very robust against departures from Normality,
and thus, in practice the PC algorithm yields rather robust
results.

The PC Algorithm
The PC algorithm (Spirtes, Glymour, & Scheines 2000)
makes four basic assumptions that must be satisfied to yield
correct results:

1. The set of observed variables is causally sufficient. Causal
sufficiency means that every common cause of two or
more variables is contained in the data set. This assump-
tion is easily relaxed (see, for example, Spirtes, Glymour,
& Scheines (2000)), but this is not of much importance
for the current paper.

2. All records in the data set are drawn from the same joint
probability distribution.

3. The probability distribution P over the observed variables
is faithful to a directed acyclic graph G of the causal struc-
ture. Faithfulness means that all and only the conditional
independence relations found in P are entailed by the
Markov condition applied to G. The Markov condition
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Figure 1: Marginal distributions of the 8 variables in the
retention data set (Druzdzel & Glymour 1999).

is satisfied if node X in graph G is independent of all its
non-descendents minus its parents, given its parents.

4. The statistical decisions required by the algorithms are
correct for the population.

It is the last assumption that we focus on in this paper. The
PC algorithm works as follows:

1. Start with a complete undirected graph G with vertices V.

2. For all ordered pairs 〈X, Y 〉 that are adjacent in G, test
if they are conditionally independent given a subset of
Adjacencies(G, X) \ {Y }. We increase the cardinal-
ity of the subsets incrementally, starting with the empty
set. If the conditional independence test is positive, we
remove the undirected link and set Sepset(X, Y ) and
Sepset(Y, X) to the conditioning variables that made X
and Y conditionally independent.

3. For each triple of vertices X, Y, Z, such that the pairs
{X, Y } and {Y, Z} are adjacent in G but {X, Z} is not,
orient X −Y −Z as X → Y ← Z if and only if Y is not
in Sepset(X, Z).

4. Orient the remaining edges in such a way that no new
conditional independencies and no cycles are introduced.
If an edge could still be directed in two ways, leave it
undirected.

We illustrate the PC algorithm by means of a simple ex-
ample (after Druzdzel & Glymour (1999)). Suppose we ob-
tained a data set that is generated by the causal structure in
Figure 2a, and we want to rediscover this causal structure.

Figure 2: (a) The underlying directed acyclic graph. (b) The
complete undirected graph. (c) Graph with zero order con-
ditional independencies removed. (d) Graph with second or-
der conditional independencies removed. (e) The partially
rediscovered graph. (f) The fully rediscovered graph.

Figure 3: Resulting graph when the statistical test failed to
find the independency A ⊥ B.

In Step (1), we start out with a complete undirected graph,
shown in Figure 2b. In Step (2) we remove an edge when
two variables are conditionally independent on a subset of
adjacent variables. The graph in Figure 2 implies two (con-
ditional) independencies (denoted by ⊥), namely A ⊥ B
and A ⊥ D|{B,C}, which leads to graphs in Figure 2c and
2d, respectively. Step (3) is crucial, since it is in this step
where we orient the causal arcs. In our example, we have
the triplet A − C − B and C is not in Sepset(A,B), so
we orient A → C and B → C in Figure 2e. In Step (4)
we have to orient C → D, otherwise A ⊥ D|{B,C} would
not hold, and B → D to prevent a cycle. Figure 2(f) shows
the final result. In this example, we are able to rediscover
the complete causal structure, although this is not possible
in general.

It is important to note the impact of an incorrect statis-
tical decision. If, for example, our statistical test failed to
find A ⊥ B, the resulting graph would be that of Figure 3.
In general, failing to find just one conditional independence
could have a severe impact on the output of the PC algo-
rithm.
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Partial Correlation Test
If P is a probability distribution linearly faithful to a graph
G, then A and B are conditionally independent given C if
and only if the partial correlation is zero, i.e., ρAB.C = 0.
Partial correlation ρAB.C is the correlation between residu-
als R1 and R2 resulting from the linear regression of A on
C and B on C, respectively.

Since the sample partial correlation will almost never be
exactly zero, we have to resort to a statistical test to make
a decision and this is where the assumption of multivariate
Normality shows up. Fisher’s z-transform (Fisher 1915) as-
sumes a multivariate Normal distribution and is given by:

z(ρ̂AB.C) =
1
2

√
n− |C| − 3 log

(
1 + ρ̂AB.C

1− ρ̂AB.C

)
,

where ρ̂AB.C is the sample partial correlation, n is the
number of samples, and |C| denotes the number of variables
in C. Because z(ρ̂AB.C, n) will follow the standard Normal
distribution, we can apply the z-test with H0 : ρ̂AB.C = 0
and H1 : ρ̂AB.C 6= 0. We reject H0 at a significance level α
if

|z(ρ̂AB.C)| > Φ−1(1− α/2) ,

where Φ−1(·) is the inverse cumulative distribution function
of the standard Normal distribution, also known as the probit
function.

One sufficient condition for a distribution to be multi-
variate Normal is the following. A random vector X =
[X1, . . . , Xn]T follows a multivariate Normal distribution
if every linear combination Y = a1X1 + . . . + aNXN is
Normally distributed. Because a sum of linearly dependent
Normal variables is Normally distributed, a sufficient con-
dition for Y to be multivariate Normal is that the marginal
distributions of the variables Xi in the data set are Normal
and that the variables depend on each other only linearly.

Experiments
In this section, we show a series of experiments that aim at
testing how sensitive the partial correlation test is to viola-
tions of the assumption of multivariate Normality. The setup
of all the experiments is similar and consists of three steps:

1. Generate a data set of 100 records from a joint probability
distribution (the distribution is different in every experi-
ment).

2. For each data set, perform a series of partial correlation
tests, with α = 0.05. For simplicity, we introduce only
one conditioning variable in each test, unless explicitly
stated otherwise. The null hypothesis is that the given
variables are conditionally independent, and the alterna-
tive hypothesis is that they are not.

3. Repeat Steps (1) and (2) 1,000 times.

There are many ways for a distribution to be non-Normal
and, therefore, finding out the effect of non-Normal distri-
butions on partial correlation tests is somewhat like probing
in the dark. To make this investigation systematical, we fo-
cussed on the third and fourth central moments around the

mean, skewness, and kurtosis, respectively. Because both
central moments are zero for the Normal distribution, and
most of the time non-zero for other distributions, this is one
measure of closeness to Normality.

In the first experiment, we focus on the third central mo-
ment using the Pearson IV distribution, because it is capable
of keeping the kurtosis constant and change the skewness.
The second experiment is the converse, namely fixing the
skewness and changing the kurtosis, using the Pearson VII
distribution. The third experiment changes both of the mo-
ments at the same time using the Gamma distribution. As a
last experiment, we investigate the effect of multiple condi-
tioning variables on the partial correlation test.

In the experiments, we measure the effect of using non-
Normal distribution by counting Type I and Type II errors. A
Type I error is committed when the null hypothesis is falsely
rejected, and, conversely, a Type II error is committed when
the null hypothesis is falsely accepted. The value for α is the
probability that the statistical test will make a Type I error.
The probability of a Type II error depends on α, the sample
size, and the sensitivity of the data.

Manipulation of the Third Central Moment
We used the Pearson type IV distribution (Heinrich 2004)
to manipulate the skewness while keeping the kurtosis con-
stant. The Pearson type IV distribution is given by:

f(x|m, ν) = k
(
1 + x2

)−m
exp(−ν tan−1(x)) ,

where m > 1/2 and k is a normalization constant. We
chose standard values for the location and scale parameters,
because they do not influence the skewness and kurtosis.
Skewness γ1 and kurtosis γ2 are given by:

γ1 = −4ν
r−2

√
r−1

r2+ν2

γ2 = 3(r−1)[(r+6)(r2+ν2)−8r2]
(r−2)(r−3)(r2+ν2)

,

where r = 2(m−1) and m > 5/2 for the kurtosis to exist.
The data were generated by the following joint distributions:{

X ∼ PearsonIV(r, ν)
Y ∼ X + PearsonIV(r, ν)
Z ∼ X + PearsonIV(r, ν){

X ∼ PearsonIV(r, ν)
Y ∼ PearsonIV(r, ν)
Z ∼ X + Y + PearsonIV(r, ν)

Graphs implied by the distributions used in the experiments
are depicted in Figure 4a and 4b, respectively.

We used the following values for r and ν such that the
kurtosis is kept constant:

r ν Skewness Kurtosis
4 0 0 9
5 2.40 -1.15 9
6 4.90 -1.41 9
7 9.04 -1.55 9
8 19.60 -1.63 9
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Figure 4: Graphs implied by the distributions used in the
experiments. (a) Graph with a common cause. (b) Graph
with a common effect. (c) Graph with multiple conditioning
variables.

The skewness is bounded by the value for kurtosis and
the range of allowable parameter values in the Pearson IV
family and, therefore, we could only achieve a skewness of
-1.63. For all generated data sets, we tested the correlation
and partial correlation between all

(
3
2

)
· 2 = 6 possible com-

binations of variables. In this setting, the partial correlation
test performed as expected without any surprising results.
The following are the results for the graph in Figure 4a:

Skew XY XZ Y Z XY |Z XZ|Y Y Z|X
0 0 0 0 0.002 0 0.043

-1.15 0 0 0.003 0 0 0.052
-1.41 0 0 0.001 0.001 0 0.061
-1.55 0 0 0.001 0.001 0 0.047
-1.63 0 0 0.003 0.001 0 0.044
The numbers in the table denote the error frequencies. So,

for example, when the skewness is -1.55, the error frequency
of the partial correlation of Y and Z given X is equal to
0.047. This means that about 5 percent of the time the partial
correlation test lead to an incorrect result, which is exactly
what we would expect with α = 0.05. Also, when the vari-
ables were (conditionally) dependent, which is the case for
all the other combinations of variables, the test made very
few mistakes.

Similar results were obtained for the graph in Figure 4b:

Skew XY XZ Y Z XY |Z XZ|Y Y Z|X
0 0.054 0 0 0 0.005 0

-1.15 0.045 0 0 0.002 0 0
-1.41 0.042 0 0 0.004 0 0
-1.55 0.068 0 0 0 0.004 0
-1.63 0.054 0 0 0 0.005 0

Manipulation of the Fourth Central Moment
In the second experiment, we investigated the impact of
changing the kurtosis of a distribution, while keeping all
other moments constant. To achieve this goal, we used the
Pearson type VII distribution of which the density function
is given by:

f(x|a,m) =
Γ(m)

a
√

πΓ(m− 1/2)

[
1 +

(x

a

)2
]−m

,

Figure 5: Gamma distributions for various values of the
shape parameter k. Please note that for k < 1 the distri-
bution becomes extremely skewed.

where a is a scale parameter and m is a shape parameter. We
reparametrize with a =

√
2 + 6/γ2 and m = 5/2 + 3/γ2,

where γ2 is the kurtosis. The data were generated by the
following joint distributions:{

X ∼ PearsonVII(γ2)
Y ∼ X + PearsonVII(γ2)
Z ∼ X + PearsonVII(γ2){

X ∼ PearsonVII(γ2)
Y ∼ PearsonVII(γ2)
Z ∼ X + Y + PearsonVII(γ2)

The Pearson VII family of distributions is symmetric, so the
skewness is always zero. γ2 ranged from 1 to 20 with incre-
ments of 1. The partial correlation test performed similar to
the results in the previous experiment, i.e., it did not affect
the probability of a Type I error and made very few Type II
errors.

Manipulation of the Gamma Distribution
In the third experiment, we changed the skewness and kur-
tosis at the same time. For this we used the Gamma distri-
bution, given by:

f(x|k, θ) =
1

Γ(α)θα
xα−1e−x/θ ,

where k > 0 is a shape parameter and θ > 0 is a scale
parameter. The skewness is given by γ1 = 2/

√
k and the

kurtosis is given by γ2 = 6/k. One important property of
the Gamma distribution is that it approximates the Normal
distribution when k goes to infinity. Therefore, we start our
experiments with large k and decrease its value to see the
effect on the statistical tests. Figure 5 shows four different
Gamma distributions that change from approximately Nor-
mal to very non-Normal distributions. Note that decreasing
k increases the skewness and kurtosis. We performed this
experiment in a similar setup as the previous experiments.
The data were generated by using the following system of
simultaneous equations:{

X ∼ Gamma(k, 1)
Y ∼ X + Gamma(k, 1)
Z ∼ X + Gamma(k, 1)
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Figure 6: (a) Histogram of 1,000 samples from a Gamma
distribution with k = 0.1 and θ = 1. (b) Histogram of the
logarithm of the samples in (a).

{
X ∼ Gamma(k, 1)
Y ∼ Gamma(k, 1)
Z ∼ X + Y + Gamma(k, 1)

Figure 4a and 4b show the causal structures implied by the
above systems of equations. Please note that the marginal
distributions of X , Y , and Z will be Gamma distributions,
because a sum of independent random variables following
Gamma distributions with the same scale parameter will fol-
low a Gamma distribution.

For k we chose the values 1,000, 100, 10, 1, 0.1, and 0.01.
For these values, we have the following skewness and kur-
tosis:

k Skew Kurt
1,000 0.063 0.006
100 0.2 0.06
10 0.63 0.6
1 2 6

0.1 6.32 60
0.01 20 600

Please note that setting very high theoretical values will
not result in limited size samples that match these values,
but nonetheless they are relatively higher than samples with
a lower theoretically chosen skewness and kurtosis. Our ex-
periments support this.

The partial correlation test turned out to be very robust in
most of these cases. It made a Type I error around 5 percent
of the time as one would expect, and when k < 0.1, this per-
centage even approached zero. When we consider Type II
errors, the test makes very few errors in most of the cases.
Only if k < 0.1, the test increases its frequency of Type II
errors, but the number of errors never exceeds 35 percent.
Also, please note that k < 0.1 yields a distribution that is
extremely skewed (γ1 > 6.32). Figure 6 shows a histogram
of data generated from a Gamma(0.1, 1) distribution, where
it is clear that the distribution is skewed to the right. Figure 6
shows the histogram of the logarithm of the samples.

We also ran several trials, in which we randomly selected
different values for k. In this case, the tests again were very
robust. Only when at least one of the k’s was close to zero
the tests yielded incorrect results.

Multiple Conditioning Variables
As a last experiment, we investigated the effect of having
multiple, instead of only one, conditioning variables. Statis-

Figure 7: Results for the network with multiple conditioning
variables. The horizontal axis shows the number of condi-
tioning variables, and the vertical axis shows the error fre-
quency. Clearly, a smaller number of conditioning variables
yields more accurate results.

tical test do not work quite as well compared to the situation
with only one conditioning variable. In this experiment, we
wanted to find out if this effect on a non-Normal distribution
is different than on a Normal distribution. We generated the
data by sampling from the following joint probability distri-
bution:

X ∼ Gamma(kX , 1)
Y1 ∼ X + Gamma(k1, 1)
Y2 ∼ X + Gamma(k2, 1)
...
Yn ∼ X + Gamma(kn, 1)
Z ∼ Y1 + Y2 + . . . + Yn + Gamma(kZ , 1)

All the ki were drawn from a Uniform(0, 1) distribution.
The graph implied by this joint distribution is depicted in
Figure 4c.

We calculated the partial correlation between X and Z
given {Y1, . . . , Yn−1}, where we ranged n from 3 to 10.
For comparison, we ran another trial with the same setup,
but replaced the Gamma distributions by standard Normal
distributions. The results are displayed in Figure 7. Al-
though the setting with the Gamma distribution performs
not as well as the standard Normal case, the difference is
very small. Especially when we take into account the fact
that the Gamma distributions used in the experiments had
ki ∼ Uniform(0, 1) and are all extremely skewed to the
right (see Figure 5), the result is surprising. Please note that
100 samples is quite a small number for so many condition-
ing variables. We ran the same experiment with 1,000 sam-
ples, and this resulted in no errors for both the Normal and
Gamma distributions.

Violations of Linearity
In the previous section, we showed that partial correlation
tests are quite robust against departures from the multivari-
ate Normality assumption, although we have not tested the
influence of departures from linearity of interactions. It is
well known that non-linearity can make the partial correla-
tion test fail. To get an idea how stong the non-linearity has
to be for the partial correlation test to fail, we created the
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Figure 8: (a) Scatterplot of one of the samples when a = 5.
(b) a on the horizontal axis, versus the error frequency on
the vertical axis.

following example:{
X ∼ Uniform(−5, a)
Y ∼ X2 + Normal(0, 5)

The idea here is that changing a has an effect on how non-
linear the relation beween X and Y is. Increasing a will
have the effect that the dependence of Y on X will change
from almost a linear to a quadratic dependency on X . We
sampled 100 data points for every a that ranges from 0 to
5 with increments of 0.5, and performed correlation tests
for each of these cases. We display the results in Figure 8.
As you can see, the correlation tests only failed when a ap-
proached 5. The underlying reason is that the regression line
becomes almost horizontal, so knowing X gives almost no
information about the value of Y . Obviously, non-linearity
of interactions can have a large influence on the tests and in
this way the tests can be fooled.

Discussion
We have shown experimentally that the partial correlation
test is quite robust against deviations from multivariate Nor-
mal distributions. All of our experiments support this claim.
Only if the deviation from multivariate normality is very
large, the tests might yield incorrect results. This means that
assuming a multivariate Normal distribution in practice is
reasonable and one could look at the histograms to see if
the distributions are not too non-Normal. Note that we only
used a sample size of 100, and testing with a sample size of
1,000 gave only slightly better results. It is likely that there
are cases not covered by us, where the partial correlation is

quite sensitive to the distribution in use, e.g., a multimodal
distribution. The rule of thumb seems to be that as long as
the distributions are not too non-Normal, the statistical tests
will lead to reasonable results and so will the causal discov-
ery algorithms. The problems of non-linear relationships in
the data is harder to deal with and we presented merely a
simple example that visually shows a case when the test will
go wrong.

There are two lines of work that take an alternative ap-
proach by not assuming multivariate Normal distributions
at all. In Shimizu et al. (2005), the opposite assumption
is made, namely that all error terms are non-Normally dis-
tributed. This allows them to find the complete causal struc-
ture, while also assuming linearity and causal sufficiency,
something that is not possible for Normal error terms. Of
course, this brings up the emperical question whether error
terms are typically distributed Normally or non-Normally.

The second approach does not make any distributional as-
sumptions at all. Margaritis (2005) describes an approach
that is able to perform conditional independence tests on
data that can have any distribution. However, the practical
applicability of the algorithm is still an open question.
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