
Reconciling Safety and Usability Concerns through Formal

Specification-based Development Process

David Navarre, Philippe Palanque, & Rémi Bastide

Université Paul Sabatier & Université Toulouse 1, France
{palanque, navarre, bastide}@irit.fr

http://lihs.univ-tlse1.fr/{palanque, bastide, navarre}

Abstract
The design of safety critical systems calls for advanced
software engineering models, methods and tools in order to
meet the safety requirements that will avoid putting human
life at stake. When the safety critical system encompasses a
substantial interactive component, the same level of confi-
dence is required towards the human-computer interface.
Conventional empirical or semi-formal techniques, although
very fruitful, do not provide sufficient insight on the reliabil-
ity of the human-system cooperation, and offer no easy way
to, for example, quantitatively compare two design options.
The aim of this paper is to present a method with supporting
tools and techniques for engineering the design and devel-
opment of usable user interfaces for safety-critical applica-
tions. The specific application area that we consider is air
traffic management but most of the results will be valid for
any application areas with similar requirements.

Introduction

Usability and safety requirements in the design and specifi-
cation of Interactive Systems are usually investigated in
separate and limited ways. There is a lack of structured
methods or tools that can drive the work of designers and
developers, especially in safety critical application domains
that require sophisticated interaction techniques such as Air
Traffic Management.

Air Traffic Management (ATM) is an important applica-
tion area, in which many problems are still to be solved.
For example a number of air traffic control incidents rou-
tinely occur because of the undesired effects of interactions
between human actors, or because of the lack of efficiency
of current systems, which ends up by wasting time both for
air traffic controllers and for pilots and above all endan-
gering passengers. The main reason for this seems to be the
misunderstandings resulting from the fact that interaction
between controllers and pilots is done exclusively through
voice communications. Airlines have estimated that an im-
provement in air-traffic control could lead to savings up to

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

20% of fuel costs and of course to reduce significantly de-
lays both at departure and landing phases.
This class of application represents a challenge for people
involved in specification, design and development of user
interfaces.

We believe that the use of formal description techniques
for both task and system can be part of a valid answer to
these problems provided this activity is tool-supported for
edition, simulation and verification of the models. Another
part of the answer is to deal with the contradictions inher-
ent to current practice in the fields of software engineering
and human-computer interaction (HCI). Indeed, software
engineering is reliability and functionality-oriented pro-
moting global and structured development of software
systems (Hall, 96) through, for instance, formal methods
and models while HCI is usability oriented promoting
user/usage-centered iterative development through mock-
ups and prototypes.

This paper addresses the problem of specification and
verification of all the components of a safety critical inter-
active application and presents how formal methods can be
applied on a full-scale case study. Special attention is paid
to the development process of the interactive application
and to tool support for formal development and prototyp-
ing.

The first section of the paper presents a development
process dedicated to the design of safety critical interactive
applications using formal description techniques. Section 3
is devoted to the formal specification techniques used in
this development process namely Interactive Cooperative
Objects (ICO). A case study in introduced in section 4,
while section 5 presents PetShop environment dedicated to
the iterative development of interactive software.

Development Process of Interactive and Safety
Critical Software Systems

The development process of software systems has been the
focus of a significant amount of work in the field of soft-
ware engineering. Early models (including waterfall and V
models (Mc Dermid & Ripkin 1984)) focus mainly on the
identification and the clear separation of the various phases
of the development of software systems. However the way

112 HCI-Aero 2002

From: HCI-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

they represent the process (i.e. in a linear and mainly one-
way structure) is very limited and not able to deal with
prototyping issues. The spiral development model was in-
troduced by Boehm in 1988 (see Figure 1) to deal explic-
itly with prototyping and iteration. Prototyping is a key is-
sue in the development of interactive systems and thus this
model has been widely adopted.

Evaluate alternatives
Identify and solve risks

Define objectives
alternatives and constraints

Plan next phases

Develop and
verify next
product

Risk analysis

Risk analysis

Risk analysis

AR P1 P2 Prototype 3

Operational
prototype

Planify analysis
and life cycle

Planify
developmentPlanify

integration
and tests

Specification
Design

coding

unitary
testing

integ
rationinsta

llation

detailled
design

Define
mission

Figure 1. The Spiral model (from (Boehm, 88))

However, this model does not encompass the various mod-
els that have to be built during the development of an inter-
active system. For instance, it does not refer to task models
that are now recognized as critical for the design of usable
interactive systems. Besides, usability evaluation is not ex-
plicitly represented in the model thus leaving user in-
volvement unsupported and at the discretion of software
engineers. Research has been conducted in this field and
the star model (Hix & Hartson, 92) explicitly introduces
explicitly task analysis and usability evaluation as phases
of the development process. However, most of the phases
must generally be conducted manually i.e. without tool
support for both representing and analyzing the models
built during those phases. This is not critical when dealing
with "classical" (i.e. non safety critical) interactive sys-
tems, but each manual operation may be source of a fatal
error when safety critical systems are concerned.

Informal
requirements

Spec 1
......

Spec n

Design 1
......
Design n

User testing
Prog. 1
......

Prog. n
Coding

Manual

Specification

Design

User
requirements

Task
analysis

Goal 1
......
Goal n

Tasks 1
......

Tasks n

Levels of
abstraction

Abstract:
properties

Concrete:
code

Figure 2. Various phases of the design process of interactive sys-
tems (left), user related parts (right)

Figure 2 presents the various phases of the development
process of a software system with an emphasis on the out-
put of those phases. The phases that require human crea-
tivity and intervention are represented as clouds on the fig-

ure. An important aspect is that each phase produces sev-
eral models corresponding to the top-down process of tak-
ing into account information in a stepwise refinement man-
ner. Even though the process is highly iterative (as for the
spiral model) we have decided to represent here only the
flow of information between the various phases.

When dealing with interactive systems it is now widely
agreed upon that user information (that leads to usability)
has to be taken into account and that task analysis and task
modeling may support this activity. Right hand side of Fig-
ure 2 shows that user goals have to be analyzed and that
their level of abstraction is the same as the one of specifi-
cation phase, while task analysis level corresponds to de-
sign phase.

The advantage of using formal notations to support the
design of the models is the potential for mathematical veri-
fication they provide. A formal model (whether it describes
a task or a system) may be automatically checked for sev-
eral behavioral properties such as deadlock freedom or
termination or other more user related properties such as
honesty or predictability (Gram & Cockton 96). If, at a
given stage, the model fails to comply with such properties,
it has to be reworked and corrected until the problem is
solved. This process is illustrated on the left hand side of
Figure 3.

If formal methods are used during the design process, the
coding phase can be at least partly automated for instance
by means of code generation. This automation of the cod-
ing phase can also be done by the interpretation at run-time
of the models built in the earlier phases (this is close to the
model-based approaches to the design of user interfaces
(Wilson et al., 93), (Szekely et al., 93) and (Paterno 1999).
We have previously investigated the pros and cons of these
two approaches in (Bastide & Palanque, 96).
It is important to notice that such a process may, at the very
best, ensure the system under design is "defect free". This
process alone can by no means ensure that the system will
be usable at all, and much less that it will be "user
friendly". In order to cope with all the issues a d thus deal
both with safety and usability requirements that are crucial
for safety critical interactive applications, we propose an
iterative development process based on formal notations.

The solution we propose to this end is twofold:
• We propose a development process supporting the use of

formal notations and iterative user-centered prototyp-
ing. This process (see Figure 3) is based both on pro-
totyping and formal description technique in order to
deal with reliability and usability concerns. This proc-
ess is tool-supported as it is shown on the Air Traffic
Management case study in next sections.

• We propose a formal notation for the modeling of inter-
active systems. This brings the advantages of formal
approaches, the most important of which are concise-
ness, consistency and lack of ambiguity. This also
makes task models amenable to mathematical verifi-
cation i.e. the possibility for proving properties over
system models. As this paper deals in priority with the

HCI-Aero 2002 113

development process the formal notation proposed (the
ICO formalism) is only superficially introduced in the
next section.

The left-hand side of Figure 3 presents the iterative proto-
typing phase. This is what we call the super-high fidelity
prototyping development phase. Indeed, this is not a low-
fidelity prototyping activity as the prototype produced rep-
resents the exact look ad feel of the final system. It is more
than a high-fidelity prototype as the system is not built us-
ing a "classical" Rapid Application Development (RAD)
environment (such as MicroSoft Visual Basic for instance).
Indeed, the system is built using the ICO formalism that is
analyzed (through formal analysis) and executed. These
prototyping activities allow for taking into account user's
constraints and needs through a stepwise refinement proc-
ess and ensuring a certain quality of the system through the
formal verification of the specifications.
It is important to notice that the building of the system is

not finished at the end of this prototyping phase. Indeed,
development of safety critical applications require a more
structured and global development process as the one pro-
moted by the waterfall model. The right-hand side of Fig-
ure 3 shows the basics of the waterfall development proc-
ess. This Figure represents also how the prototyping itera-
tive process and the waterfall one are related. The approach
we promote provides several valuable inputs for this "clas-
sical" development process:
• a set of validated requirements elicited and tested by the

users during the prototyping phase and thus reducing
time spent in the requirement phase;

• a set of formal specification of the interactive part of the
application. These specifications will be used as inputs
in the specification phase and will thus contribute to
reduce development time;

• a complete user interface (both its presentation and its
behavior) that will have to be re-implemented in the
development phases. Indeed, the user interface pro-
duced by the execution (within PetShop) of the ICO
specification cannot be used for the final system as
PetShop is oriented towards interpretation and thus
cannot reach the level of performance required for
safety critical applications.

The ICO Formal Description Technique

The Interactive Cooperative Objects (ICOs) formalism is a
formal description technique dedicated to the specification
of interactive systems (Bastide & Palanque 1999). It uses
concepts borrowed from the object-oriented approach (dy-
namic instantiation, classification, encapsulation, inheri-
tance, client/server relationship) to describe the structural
or static aspects of systems, and uses high-level Petri nets
(Bastide & Palanque 1990) to describe their dynamic or

behavioral aspects.
ICOs are dedicated to the modeling and the implementation
of event-driven interfaces, using several communicating
objects to model the system. ICO are used to provide a
formal description of the dynamic behavior of an interac-
tive application. An ICO specification fully describes the
potential interactions that users may have with the applica-
tion. The specification encompasses both the "input" as-
pects of the interaction (i.e. how user actions impact on the
inner state of the application, and which actions are en-
abled at any given time) and its "output" aspects (i.e. when
and how the application displays information relevant to
the user).In the ICO formalism, an object is an entity fea-
turing four components: a high-level Petri net (describing
the behavior of the object), a presentation part, and two
functions (the activation function and the rendering func-

114 HCI-Aero 2002

Figure 3. Integrating formal prototyping with software development

Preliminary
needs

Prototyping
User's
evaluation &
verification

no
adequate

yes

Informal needs
Hi-fidelity prototype
Formal specifications
Design rationale

Requirements

Specification

Architecture
design

Detailed
design

Unitary

Implementation
and test

Maintenance

Validation

Coding

tion) that make the link between the cooperative object and
the presentation part.
Presentation part: the Presentation of an object states its
external appearance. This Presentation is a structured set of
widgets organized in a set of windows. Each widget may
be a way to interact with the interactive system (user _
system interaction) and/or a way to display information
from this interactive system (system _ user interaction).
Activation function: the user _ system interaction (inputs)
only takes place through widgets. Each user action on a
widget may trigger one of the ICO's user services. The re-
lation between user services and widgets is fully stated by
the activation function that associates to each couple (wid-
get, user action) the user service to be triggered.
Rendering function: the system _ user interaction (outputs)
aims at presenting to the user the state changes that occurs
in the system. The rendering function maintains the con-
sistency between the internal state of the system and its
external appearance by reflecting system states changes.
An ICO specification is fully executable, which gives the
possibility to prototype and test an application before it is
fully implemented (Navarre et al. 2000). The specification
can also be validated using analysis and proof tools devel-
oped within the Petri nets community and extended in or-
der to take into account the specificities of the Petri net
dialect used in the ICO formal description technique.

An Excerpt of a Case Study

This paper is based on a real-size case study on Air Traffic
Management (ATM).
The airspace is divided in sectors, each of them being con-
trolled by two air traffic controllers managing different
tasks and working in a cooperative way1. The air traffic
controller uses a workstation for handling the traffic over a
given sector, and communicating with the pilots of the
planes currently flying through the sector.
The information about the planes is displayed on a radar
screen. This radar screen is slightly more complex than
classical ones, as several information about the plane are
displayed aside each plane icon (several past positions, air-
craft identification number, speed vector, …). The con-
troller has a kind of memory jogger organized in a set of
paper ribbons called strips. Each strip is initially emitted by
a computerized system that fills up the information corre-
sponding to the initial flight plan of the aircraft. When
controllers ask pilots to modify flight parameters of the
flight (such as speed, heading, ...) they write down the in-
formation on the strip. VHF radio equipment for communi-
cating with pilots is managed by a phone. It is important to
notice that there is no way to target a specific plane for
communication, since all aircrafts use the same frequency.
An alternative system called Data-Link is currently under
study in several countries. This system addresses the
bandwidth problem by providing an additional communi-

1 For sake of simplicity we will consider in the remainder of this paper
that all the work is done by a single controller.

cation channel between pilots and controllers. This system
implies a modification of both controller's workstation and
pilot's board. In this paper we mainly focus on the air traf-
fic control workstation. This is reasonable as these two
parts of the same system are currently dealt with in a rela-
tively independent manner by different companies. Besides
the prototype we have been working on encompasses a
challenging user interface part featuring both graphical
presentation and direct manipulation.
One of the challenges of building a system encompassing a
graphical user interface for this kind of safety critical sys-
tems is that the level of reliability of the air traffic control
applications as to be guaranteed at the same level as before.
This level is very high as, for instance, in France no air
plane accident has ever been attributed to an error made by
air traffic management. An example of such data-link ap-
plication is presented in Figure 4 showing a snapshot of
Druides system. Only part of the application is shown
here2.

Figure 4. Part of the user interface of the Druides: an ATM proto-
type featuring Data Link communication

The menu (currently opened on Figure 4) is used by the
controller for building data-link commands (called clear-
ances). This menu is a pop-up menu that appears when the
user clicks on the label of an aircraft. The left-hand side of
the menu offers three commands, SEND and ABORT (for
sending or canceling the current data-link clearance) and
VOICE for asking the pilot to call the controller using the
VHF communication channel. On the right-hand side of the
menu the controller can select one out of five commands:

• FREQ (for asking the pilot to switch form one radio
frequency to another one),

• CFL (for changing the Cleared Flight Level of the
aircraft),

2 The other part of the application is dedicated to the user interface for
handling strips in an electronic way (called electronic stripping). This is
not taken into account here as it is a separated issue with respect to data-
link communication facilities.

HCI-Aero 2002 115

• SPEED (for changing speed),
• HEAD (for changing the heading of the plane)
• BEACON (for changing the route of the plane i.e.

the next beacon it has to fly over).

On Figure 4 the controller has already selected the second
command (CFL). In response the system has opened a pull
down menu offering the most suitable possible values for
changing the CFL. By pressing CNC (cancel) this pop-up
menu is closed, by selecting a value, the parameter is set
(the data-link command in built), and by clicking on the ar-
rows, the values presented are scrolled.
The formal description of this case study is not the purpose
of the paper and thus will not be presented here. The com-
plete description of the case study is available on ME-
FISTO web site http://giove.cnuce.cnr.it/mefisto.html.

Petshop Support for Prototyping

In this section we present the PetShop environment and the
design process it supports.
At run time, the user can both look at the specification and
the actual application. They are in two different windows
overlapping in Figure 5. The window PlaneManager (on
the right hand side) corresponds to the execution of the
window with the high-level Petri net (on the left hand
side).

Figure 5: The execution of ICO specification in PetShop

Each time the user acts on the PlaneManager the event is
passed onto the ICO interpreter. If the corresponding tran-
sition is enabled then the interpreter fires it, performs its
action (if any), changes the marking of the input and output
places and perform the rendering associated (if any).
Within PetShop, prototyping from specification is per-
formed in an interactive way. Anytime during the design
process it is possible to introduce modifications either in
order to make the specification more precise or to change
it. The advantage of model-based prototyping is that it al-
lows designers to immediately evaluate the impact of a
modification and thus to make communication between us-
ers and designers easier.
Figure 6 presents the overall architecture of PetShop. The
upper part of the Figure presents activities and models at

design time while the lower part deals with runtime. In fact
those two activities are deeply intertwined and the main
difference is related to the user. At design time the designer
edit the ICO specifications and can immediately execute it
to see whether or not it behaves as expected. When the
specification is "good enough" it can be presented to the
user for validation/modification. At that time, the designer
can directly amend the specifications according to user's
comment and test immediately the modification. This envi-
ronment supports in a synergistic way usability (through it-
erative prototyping and user testing) and reliability
(through formal description techniques and verification).

ICO
Interpretor

ObCs
Graphical

editor

Analysis
Tools

ObCS User Interface
Builder

Activation
Function

Rendering
Function

UI layout

Comprehensive ICO description Design Time

Runtime

Figure 6: Architecture of the PetShop Environment

Related Work

Since the early work from D. Parnas (Parnas, 69), a lot of
work has been devoted to the use and the development of
formal methods for interactive systems. However, no for-
mal approach has been fully successful yet, and some even
wonder whether a unique formalism will ever permit a full
description of an interactive system (Palanque et al., 96),
leading to a variety of partial approaches. An interactive
system can be considered according to its intrinsic nature
or to its design process, these approaches are partial in the
sense they only address:

• part of the design process,
• some of the components of an interactive system.
• For instance, some focus on the early stages of the

design process such as requirements elicitation and
analysis or early specification (McCarthy et al. 95),
(Johnson & Jones, 97), (Johnson, 96).

Going back to the components of interactive systems as de-
fined in the Arch architectural model (Bass et al., 91) a
significant amount of work has been devoted specifically to
the Dialogue component. This kind of work does not deal
with Logical Interaction and Physical interaction compo-
nents, as they make the reasonable assumption that these
components have been taken care of by some error-free in-
dustry developer. In this category we find all the work
done on the formal design of WIMP interfaces relying on
the set of predefined interaction objects (for instance (Beck
et al., 95).

116 HCI-Aero 2002

Another trend in the field of formal methods for interactive
systems is the investigation and the elicitation of generic
properties (Dix, 91). This kind of work is very important as
it characterizes interactive systems and then allows for
verification of these properties over models. In the case of
the framework we present here, this issue corresponds to
the generic requirements for interactive systems as stated in
section 5.1.
Lastly, significant work in this area has been devoted to de-
fining interactive systems by means of elementary compo-
nents called interactors. Two main models have been par-
ticularly studied York interactors (Duke & Harrison, 93)
and CNUCE interactors (Paternò & Faconti, 92), and a
comparison of this work can be found in (Duke et al., 94).
Formal notations featuring graphical representation have
been extensively used for the design of various parts of in-
teractive systems. The dialogue part of classical interactive
systems have been modeled using various existing formal-
isms such as state diagrams as in (Parnas, 69) (Jacob, 86),
data flow diagrams as in (Schreiber, 95), statecharts as in
(Carr, 94), Petri nets as in (Beck et al., 95), Petri nets with
objects as in (Bastide & Palanque, 90). Some authors have
enhanced exiting graphical notations in order to cope more
efficiently with specific aspects of interactive systems as in
(Schlungbaum & Elwert, 96) or in (Torres et al., 96).

Conclusion

Prototyping is now recognized as a cornerstone of the suc-
cessful construction of interactive systems as it allows
making users at the centre of the development process.
However, prototyping tends to produce low quality soft-
ware as no specification or global design is undertaken. We
have shown in this paper how formal specification tech-
niques can contribute to the development process of inter-
active systems through prototyping activities.
While the ICO formal specification technique has reached
a maturity level allowing coping with real size dynamic
interactive applications, the Petshop environment is still
under development. A real size application has been com-
pletely specified in the field of the European project ME-
FISTO (http://giove.cnuce.cnr.it/mefisto.html). More in-
formation about PetShop can be found on PetShop's web
site: http://lis.univ-tlse1.fr/petshop/
However, the work done on this Air Traffic Control appli-
cation has also shown the amount of work that is still re-
quired before the environment can be used by other people
than the ones that took part in its development.
In order to make it attractive to developers we are inte-
grating additional features such as:

• tool-supported verification of properties,
• analysis of conformance with other representations

such as tasks models
• performance analysis in order to support design de-

cisions and informal users' validation.

Another stream of research we are investigating is the gen-
eration of test cases from the formal specification in order

to help developers checking whether an implementation is
conformant with respect to the specification. This will al-
low development teams to take the specifications, still use
their favorite programming environment and later check
whether their implementation is conformant with it.

Acknowledgments

The work has been partly funded by the Esprit project ME-
FISTO n° 24963.

References

Bass, L., R. Little, R. Pellegrino, S. Reed, R. Seacord, S.
Sheppard, and M. R. Szezur. "The Arch Model: Seeheim
Revisited." User Interface Developpers' Workshop, Apr.
26. Version 1.0, 1991.

Bastide, Rémi, and Philippe Palanque. "Petri Net Objects
for the Design, Validation and Prototyping of User-Driver,
Interfaces." 3rd IFIP Conference on Human-Computer In-
teraction, Interact'90, Cambridge, UK, Aug. 1990, 625-31.
North-Holland, 1990.

Bastide, Rémi, and Philippe. Palanque. "Implementation
Techniques for Petri Net Based Specifications of Human
Computer Dialogues." in CADUI'96, 285-302. Presses
Universitaires de Namur, 1996.

Bastide, Rémi, and Philippe Palanque. "A Visual and For-
mal Glue Between Application and Interaction." Journal of
Visual Language and Computing 10, no. 3, 1999.

Beck, A., C. Janssen, A. Weisbecker, and J. Ziegler. "Inte-
grating Object-Oriented Analysis and Graphical User In-
terface Design." editors Joëlle Coutaz, and Richard Taylor.
Lecture Notes in Computer Science (1995).

Boehm, B. W. "A Spiral Model of Software Developement
and Enhancement." IEEE Computer 21, no. 5, 61-72, 1988.

Dix, Alan. Formal Methods for Interactive System Aca-
demic Press 1991.

Duke, David J., Giorgio Faconti, Michael Harrison, and
Fabio Paternò. "Unifying Views of Interactors."
AVI'94.1994.

Duke, David J., and Michael Harrison. "Abstract Interac-
tion Objects." EUROGRAPHICS'93, 25-36.1993.

Gram, Christian, and Gilbert Cockton, editors. Design
Principles for Interactive Software Chapman & Hall 1996.

Hall, Antony. "Using Formal Methods to Develop an ATC
Information System." IEEE Software , no. 3, 66-76, 1996.

Hix, Deborah, and Rex Hartson. Developping User Inter-
faces Wiley 1992.

Jacob, R J K. "A Specificationlanguage for Direct Ma-
nipulation User Interfaces." ACM Transactions on Graph-
ics 5, no. 4, 283-317, 1986.

Johnson, Chris W. "Literate Specifications." Software En-
gineering Journal , 225-37, 1996.

HCI-Aero 2002 117

Johnson, Chris W., and S. Jones. "Human-Computer Inter-
action and Requirements Engineering." SIGCHI Bulletin,
Editorial for Special Issue on HCI and Requirements 29,
no. 1, 31-32, 1997.

McCarthy, J, Peter Wright, and Michael Harrison. "A Re-
quirements Space for Group-Work Systems." in Human-
Computer Interaction, Interact'95, LilleHammer, Norway,
June 1995, 283-88. Knut Nordby, Per H. Helmersen, David
J. Gilmore, and Svein A. Arnesen, editors. Chapman &
Hall, 1995.

Mc Dermid, John et Ripkin K., Life cycle support in the
ADA environment. Cambridge University Press; 1984.

Palanque, Philippe, Fabio Paternò, Rémi Bastide, and
Menica Mezzanotte. "Towards an Integrated Proposal for
Interactive Systems, Based on LOTOS and Object Petri
Nets." Design, Specification and Verification of Interactive
Systems'96, 162-87. Springer-Verlag, 1996.

Parnas, D. L. "On the Use of Transition Diagrams in the
Design of a User Interface for an Interactive Computer
System." 24th ACM Conference, 379-85.1969.

Paternò, Fabio, and Giorgio Faconti. "On the LOTOS Use
to Describe Graphical Interaction." in BCS HCI'92 confer-
ence, Cambridge University Press, pp. 155-74.

Andrew Monk, Dan Diaper, and Michael Harrison, Editors.
BCS Conference, 1992.

Paternò, Fabio, Model Based Design and Evaluation of In-
teractive Application. Springer Verlag; 1999.

Schlungbaum, Egbert, and Thomas Elwert. "Dialogue
Graphs: a Formal and Visual Specification Technique for
Dialogue Modelling." in BCS-FACS Workshop on Formal
Aspects of the Human Computer Interface. Chris Roast,
and Jawed Siddiqi, Editors.Sheffield Hallam University,
Springer-Verlag, 1996.

Schreiber, Siegfried. "The BOSS System: Coupling Visual
Programming With Model Based Interface Design." Inter-
active Systems: Design, Specification and Verification.
Fabio Paternò, Editor, 161-78. Springer verlag, 1995.

Szekely, P., O. Luo, and R. Netches. "Beyond Interface
Builders: Model-Based Interface Tools." INTERCHI'93,
Amsterdam, The Netherlands, 383-90. ACM Press, 1993.

Torres, J. C., M. Gea, F. L. Gutierrez, M. Cabrera, and M.
Rodriguez. "GRALPLA: An Algebraic Specification Lan-
guage for Interactive Graphics Systems." Design, Specifi-
cation and Verification of Interactive Systems, 1996, 272-
91.eds. F. Bodart, and J. Vanderdonckt, Springer Verlag,
1996.

Wilson, S., P. Johnson, C. Kelly, J. Cunningham, and P.
Markopoulos. "Beyond Hacking: a Model Based Approach
to User Interface Design. " HCI'93, Loughborough, U.K.,
217-31. Cambridge University Press, 1993.

118 HCI-Aero 2002

