
Interaction of Automation and Time Pressure

in a Route Replanning Task1

                                                            
Copyright  2002, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Kip Johnson, Liling Ren, James Kuchar, and Charles Oman

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

jkkuchar@mit.edu

Abstract
Two experimental studies were performed to determine the
value of several types of automation for time-pressured re-
planning tasks. Subjects modified waypoints of two-
dimensional routes on a computer screen in response to a
sudden change in the displayed environment while having
access to one of four levels of automation. In addition to a
baseline case with no automation, subjects were assisted with
automation that either reduced hazard exposure, ensured
meeting time-to-target and fuel constraints, or combined haz-
ard avoidance with meeting time and fuel constraints. Time
pressure was imposed by requiring a replan of the route
within four different levels of time. The two studies exam-
ined different ranges of time pressure, ranging from four lev-
els between 20 and 55 seconds or four levels between 20 and
125 seconds. Results show that the presence of automation
was most beneficial in the most time-pressured cases, and
that the value of automation decreased as more time was
available to the subject. Mid-level automation resulted in
more routing errors than either full or no automation cases.
Subjects were reticent to deviate from highly automated route
suggestions even when significant improvements were still
possible.

Introduction
Complex, uncertain, and time-critical environments push
the limits of human sensory and cognitive ability, driving
the need for automated decision-support systems. While
there is a clear need for automation that reduces human
cognitive workload, designing for an effective automated
decision-aiding system is a difficult task (e.g., Parasuraman
& Riley, 1997; Sexton, 1988; Sarter & Woods, 1995). Un-
structured and uncertain aspects, with multiple competing
interests and goals, characterize these complex environ-
ments. Full and complete automation may not be appropri-
ate or feasible for complex environments because automa-
tion often does not have access to or cannot accurately
model relationships between all relevant information
(Parasuraman & Riley, 1997; Scerbo, 1996). Rather, auto-
mation working in parallel with a human for decision-
making tasks would be more appropriate (Taylor & Reis-

ing, 1998; Schulte, et al., 1999; Layton, et al., 1994; Aust,
1996). Decision-support systems should take advantage of
the human’s ability to make value and risk judgments in the
face of competing factors that may constrain a problem’s
analytical solution. Therefore, some form of cooperation
between human and automation is generally required.

There are countless examples of beneficial automation
spanning fields including transportation, process control,
battlefield management, and medicine. Unfortunately, there
are also many examples of automation that negatively af-
fected performance due to unexpected interactions with the
human operators. A number of aviation accidents and in-
flight upset incidents, for example, demonstrate the need for
continuing improvement of feedback on the current mode
of automation in civil transport aircraft (Parasuraman &
Riley, 1997). Similarly, conflicting responses from Boeing
757 pilots have been observed on whether cockpit automa-
tion reduced or increased total workload (Wiener, 1988).
One study of navigation expert systems demonstrated that
automated information processing caused a loss in situation
awareness and the degradation of manual skills (Endsley &
Kiris, 1995). These examples give a glimpse of the main
problems associated with the introduction of automation:
complacency, skill degradation, increases in cognitive
workload, and loss of situation awareness.

There is no one solid solution for the design of automa-
tion, and much effort has been expended toward under-
standing what the different types of automation are and how
they may be best applied (Parasuraman et al., 2000). The
design of automation has many issues to resolve: to auto-
mate or not, how much human-in-the-loop interaction
should be required or permitted, and how intelligent or
adaptive to design the automated system (Sexton, 1988;
Scerbo, 1996). One area of interest is that of using automa-
tion in very time-constrained tasks. Research in this area
has been quite limited to date and has focused, for example,
on human monitoring of fault-management automation in
thermal-hydraulic systems (Moray et al., 2000).
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Automation and Decision-Making Timescales
In problems with very little time to make a decision (i.e., on
the order of one second), the human’s sensory, cognitive,
and motor abilities are such that automation must take
action directly if it is to have any impact at all – there is
simply insufficient time for a human to sense, interpret, and
act. Automation is valuable in these situations due to its
ability to obtain and process information more quickly than
the human. In slightly less time-constrained situations (on
the order of several seconds), the human does have time to
sense, make judgments, and act, but can still be assisted by
automation that relieves some of the cognitive workload.
This is the principle behind alerting systems that provide
commands to the operator. In less time-constrained situa-
tions, decision-aiding automation may be correspondingly
less beneficial because the human’s cognitive abilities no
longer limit the quality of the solution. Additionally, a
human can obtain and assess more information as time
pressure decreases, generally opening up problems beyond
easily automated tasks to those dealing with value judg-
ments among different competing constraints. These are
aspects best suited to human decision-making; thus, one
might expect a spectrum of types of automation to be most
appropriate as the time pressure on decisions is changed.

This interaction between automation and time pressure
formed the foundation for two experimental studies. The
primary experimental goal was to determine the relation-
ships between varying degrees and types of automation
assistance and time pressures as inputs, and the resulting
human decision performance for an in-flight replanning
task as outputs. The results from these studies will be used
to help generate a generalized model for decision-support
systems used in complex and time-critical environments.

Experimental Method

The experiment used a military combat flight environment
theme, focusing on an in-flight replanning task. Replanning
is a complex, time-critical, and highly dynamic task, rich
with information input and output sources. The simulated
missions were restricted to constant altitude and constant
velocity flight of conventional military aircraft, with pri-
mary functions including air-to-ground, close air support,
forward air control, and multi-role. Such aircraft could
include, for example, the F-16 C/D Fighting Falcon, F-18
Hornet, A-10 Thunderbolt II, and the AC-130 H/U Gun-
ship.

In the experiment, subjects observed a desktop com-
puter screen that depicted a planform view of an aerial map
containing the flight route and threats such as missile sites
(see Fig. 1). The subjects interacted with the current route
through waypoint manipulation following two primary
replanning goals: 1) to first satisfy mission constraints, and
then 2) to minimize the route cost. Mission constraints
included avoiding the most severe threat level, arriving at a
target point within an acceptable time-to-target (TTT) win-
dow, and having sufficient fuel at an egress (or exit) way-
point. Route cost was a function of the time of hazard expo-

sure and deviation from the TTT goal, respectively modeled
linearly and exponentially.

Threats were shown as irregular polygons in four differ-
ent colors, representing different hazard levels. Threat
severity increased in color from yellow, to orange, to red,
and then to brown. The current and modifiable route was
blue with star-shaped icons representing route waypoints.
The route connected in serial order an entry (or start) point
(upper right corner of Fig. 1), an intermediate rendezvous
point (upper left in Fig. 1), the target (bottom right in Fig.
1), and an egress (or exit) point (bottom left in Fig. 1). Bar
gauges (denoted #3 & #4 in Fig. 1) provided real-time TTT
and fuel information. The fuel gauge showed the predicted
fuel level at the egress point. As the route was lengthened,
the fuel level at the egress point dropped linearly. The TTT
gauge depicted the predicted arrival time at the target rela-
tive to a goal time and an acceptable window around that
goal. As the length of the route before the target was
lengthened, the TTT pointer would move to the right line-
arly. Lengthening a portion of the route after the target did
not affect the time-to-target but did affect the fuel gauge.
Accordingly, there was a challenging balance required
between arriving at the target within the desired window
(by lengthening or shortening the route between start and
target) and not exceeding the fuel limits.

Figure 1. In-Flight Replanner Display

After becoming familiar with the situation a sudden
change in the environment was triggered and data collection
began. Changes included pop-up threats, a shift in the time-
to-target window, and a new fuel level requirement. When
the situation update occurred, varying levels of automation
in three test conditions provided a new route suggestion. In
a fourth test condition (the control case) no new route sug-
gestion was provided. Additionally, a countdown clock
appeared on the screen indicating the time remaining to
complete a final route plan (#2 in Fig. 1). While the clock
counted down, the subject manually moved the route way-
points by clicking and dragging with a computer mouse. As
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the route was modified, the initial suggested route was
continually displayed as a magenta dashed line for refer-
ence. The subject could also save or restore routes as he or
she worked by clicking on dedicated screen buttons.

At the expiration of the time pressure shown on the
clock, the scenario was ended and the computer scored the
route. The route cost was determined based on the weighted
distance through each of the four levels of threat, plus a
component that depended on the actual time-to-target rela-
tive to the desired window. Fuel remaining at the egress
point was also monitored and noted separately. At the end
of each run, subjects were given feedback as to whether
they satisfied threat, fuel, and time-to-target constraints.

Independent and Dependent Variables
Four route automation assistance categories were evaluated:
None, Constraint, Hazard, and Full. The None condition did
not provide any route suggestion beyond the original route
that was displayed before the situation update occurred.
Constraint automation provided a route suggestion that
satisfied only the time-to-target and fuel constraints by
extending the length of the route near the entry point as
needed. It did not make any additional changes to the route
to avoid hazard regions. Hazard automation shifted the
original route to locally reduce the distance flown through
threat regions. These routes might still violate the TTT or
fuel constraints. Finally, in the Full automation condition
both the Constraint and Hazard automation components
were activated, producing a route that satisfied the time-to-
target and fuel constraints and reduced the threat exposure.
Even in the Full automation case, however, the route cost
could be improved significantly from the starting plan gen-
erated by the automated route suggestion. This represented
the fact that automation generally cannot observe all the
required information and the human may still be able to
make improvements.

The time pressure values included four conditions in
each experiment. In the first experiment, the clock on the
screen (denoted #2 in Fig. 1) counted down beginning at 20,
28, 40, or 55 seconds. In the second experiment, the clock
counted down from 20, 55, 90, or 125 seconds, providing a
cross-check of performance at low times and also opening
up the study to slightly longer timescale decision-making.
In four scenarios in each experiment, the subjects were
allowed to continue to improve the route plan after the time
allotment had expired and their route was scored. This
allowed them to spend as much time as needed to generate
their best plan. This optimal plan was then used in data
analysis as a baseline for comparison by representing the
best performance each subject could attain on a given map.

Sixteen scenarios were used in each experiment in a
within-subject repeated measures experimental design. A
four-by-four Graeco-Latin Square test matrix counterbal-
anced type of automation assistance, time pressure, and
maps. Each subject ran through the 16 data collection sce-
narios in the same order. Each experiment used the same
four base scenario maps of similar complexity, each one
rotated four times by 90 degrees to generate the 16 effective

scenarios. In post-experiment questioning, subjects indi-
cated they did not recognize the similarity of the four ro-
tated maps. The design of the maps was carefully controlled
in an attempt to make them as similar as possible in terms
of route complexity, yet different enough that familiarity
with the best solution did not grow as the experiment pro-
ceeded.

The combination of map and automation level was such
that all cases using None, Constraint, or Hazard started with
some form of route failure (crossing the highest level threat,
arriving at the target outside the time-to-target window, or
arriving at the egress point without the required fuel level).
Accordingly, one of the first tasks for the subjects in these
cases was to correct these route failures. In the Full auto-
mation case, all scenarios began with a route that satisfied
all the mission constraints.

Dependent variables included the route cost at the expi-
ration of the time pressure, the number and type of con-
straint violations, the number of route modifications made
by the subject, and subjective comments from question-
naires during and after the experiment.

Before beginning data collection, subjects were exten-
sively trained using the computer interface to replan routes.
They also received specific training on each of the automa-
tion levels and had opportunities to replan under each of the
tested time pressure conditions. During initial training, the
subjects could view an additional display that indicated the
current route cost. The route cost display allowed them to
gain a better understanding of the relative contribution to
cost of flight through a hazard region vs. deviating from the
TTT goal. The route cost display was not shown during
data collection, however, since it represented an additional
layer of automation that was beyond the scope of this study.
To prepare the subjects for the lack of a route cost display,
the subjects also completed several runs duringlater stages
of training while using the same display configuration as
the data collection runs.

Results

Fourteen graduate students participated in the first experi-
ment, and eleven subjects (from a different pool of graduate
students) participated in the second experiment. A repeated
measures analysis was performed using a mixed regression
and a two-way analysis of variance (ANOVA). The mixed
regression best matched the Latin-Square design, and the
ANOVA allowed for easy contrasts. Route costs were nor-
malized for each subject against their minimal cost route
(achieved from scenarios without time pressure) using the
corresponding map. This enabled a direct comparison of
each subject’s rerouting performance under time pressure
relative to their best possible routes under no time pressure
with the same map.

Figure 2 provides a summary of the route costs for all
subjects in both experiments. The vertical axis shows the
mean log-normalized route cost across all subjects, while
the horizontal axis shows the time pressure. Standard error
of the mean is indicated by the error bars. The normalized
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route costs were generated by first dividing a subject’s
route cost for a map with time pressure by their best route
cost for the same map when not under time pressure. The
natural logarithm of this normalized cost was then taken to
transform the cost data into an approximately normal distri-
bution. Accordingly, a route cost of 0 in Fig. 2 corresponds
to a route with the same quality as one developed with no
time pressure. Increasing costs represent decreased replan-
ning performance relative to this baseline value. Each in-
crement of 0.1 in route cost in Fig. 2 is equivalent to ap-
proximately one minute of flight time through a second
severity level hazard.
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Figure 2. Time and Automation Interaction Results

Figure 2 first shows that performance in the None con-
dition did significantly improve as more planning time was
available, reducing the mean cost from 0.60 at 20 seconds
to 0.07 at 125 seconds.

Performance using partial automation levels (Constraint
and Hazard) was more complex relative to None. At 20
seconds, any automation level out-performed None, though
the differences between Constraint and None or Hazard and
None were not significant. At 55 seconds, None signifi-
cantly out-performed Constraint or Hazard automation,
p<0.005 with a paired t-test. At 125 seconds, there was no
significant difference between None, Constraint, or Hazard
automation.

Full automation likewise elicited an interesting and
complex relationship with time pressure. At 20 seconds,
subjects were able to perform as well with Full automation
as they did when there was no time pressure on the same
map. At 55 seconds, however, performance with Full (mean
of 0.19) was significantly worse than at 20 seconds, for
reasons that are explained below, p<0.005 with a paired t-
test. In fact, at 55 seconds there was no significant differ-
ence between subjects using None and subjects using Full
automation. At 125 seconds, there was no significant differ-
ence between Full and the other automation conditions
tested. This trend suggests that automation loses value as
time pressure is relaxed.

Figure 3 shows the rate of route failure for both experi-
ments. A route was defined to have failed if it either (1)

intersected a highest-level threat region, (2) did not arrive at
the target within the acceptable time window (shown as #4
in Fig. 1), or (3) arrived at the egress point with less than
the minimum amount of required fuel. The failure rate is
defined as the fraction of all scenarios in which failures
occurred in a given condition. As a reference, if subjects
made no changes to the suggested route the failure rates
would have been 100% for None, Constraint, or Hazard, but
0% for Full.
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Figure 3. Total Failure Rate vs. Time Pressure

As Fig. 3 shows, no failures occurred at 125 seconds,
while some degrees of failure occurred at other time pres-
sure conditions. There was no significant difference be-
tween overall failure rates at 20 or 55 seconds. At 40 and 90
seconds the overall failure rates were significantly less than
at 55 seconds. The rise in overall failure rate between 40
and 55 seconds (by a factor of three) appears to be due to a
critical shift in subject behavior. When given 40 seconds or
less, subjects generally made small, local improvements to
the route in an attempt to resolve mission constraints. This
is explained by the significant reduction in overall failure
rate between 20 and 40 seconds with only minor changes in
route cost (referencing Fig. 2). It appears that at 55 seconds,
subjects felt they had enough time to attempt larger, more
global route changes (for example rerouting in a different
direction around a threat region). Often, however, the sub-
jects apparently did not actually have enough time to suc-
cessfully accomplish this global route change. When 90 or
more seconds were available, such global route changes
generally could be made, and both route cost and failure
rate dropped.

It is also worth noting that the failures that occurred in
the Full automation condition were entirely induced by the
subjects. The scenarios with Full automation all began with
a route that satisfied the mission constraints, so any failure
that did occur was due to an error by the subjects.

Figure 4 shows a view of the overall failure rate as a
function of the type of automation being used. Most of the
failures occurred with either the Constraint or Hazard levels
of automation, suggesting that incomplete automation may
actually induce failures beyond a condition with no auto-
mation. If the failure rate is treated as a binomial process
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with some probability, then each of the differences in Fig. 4
is statistically significant, p < 0.01.
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Figure 4. Failure Rate vs. Automation Level

Finally, Figure 5 shows the rate at which route changes
were made by subjects during the second experiment. The
mean rate of route modifications under Full automation
(average of 0.19 per second) was significantly less than
under the other conditions (average of 0.28 per second).
This implies some degree of complacency with Full auto-
mation even though significant improvements in route cost
could often be made. Route modification rates between
None, Constraint, and Hazard were not significantly differ-
ent.
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Figure 5. Route Modification Rates

Discussion

Based on the route cost metric, Full automation provided
more benefit at higher time pressures; at less-constrained
time pressures, performance with None was similar to per-
formance with any type of automation. In addition, at short
timescales Full automation provided more benefit than the
sum of its individual Constraint and Hazard subcompo-
nents. This implies there is a compounding benefit from

automation that more fully integrates information. It is
interesting to note, however, that subjects with Full made
fewer route modifications than in other conditions with
automation, even though significant route improvements
could still be made. This suggests that good automation
may induce some degree of complacency.

Automation can certainly provide a major benefit in
time-pressured decision-making. However, the use of par-
tially integrated information may induce human errors not
otherwise observed without the decision-aiding automation.
Trends suggested that Constraint and Hazard automation
could actually be detriments to subject performance. There
was a higher mission failure rate with Constraint (with
failures in 14% of the scenarios) and Hazard (28%) than
with None (11%). Full automation (6%), however, kept
failure rates at levels lower than observed with None.

Performance trends suggest that replanning perform-
ance does not monotonically improve with increasing time
available. From 20 to 55 seconds, performance with Full
automation significantly decreased. From 55 to 125 sec-
onds, performance with Full significantly improved. In
addition, mission failures tripled from cases at 40 seconds
(7% failure rate) to 55 seconds (23%). This deserves further
investigation. At this point, however, it appears that the
following observations may support the performance data.
To achieve an acceptable plan, subjects needed to perform
three cognitive subtasks. First, mission constraints (high-
level threat, time-to-target, and fuel) needed to be satisfied
or else the entire plan would be unacceptable. Second,
small, local modifications to the route could be made to
reduce threat exposure or improve the time to target. Third,
major changes in the route were generally necessary to
significantly improve route cost from the initial automated
route suggestion. For example, the subject might signifi-
cantly improve the overall route by flying an entirely dif-
ferent route around a threat region. These subtasks could be
interleaved or performed in different orders or iteratively
depending on the amount of time available.

In general, the three subtasks (constraint satisficing, lo-
cal improvements, and global modifications) each required
different amounts of time to complete. Achieving signifi-
cant improvements in constraint satisfaction was possible
within 20 seconds; this appeared to be one of the subjects’
first subtasks because they made 80% of the initially unac-
ceptable routes acceptable. From 20 to 40 seconds, subjects
also generally made small improvements to routes to lo-
cally reduce route costs. At 55 seconds, however, many
subjects began making large changes to the initial routes in
an attempt to find the global minimal cost route before then
making local adjustments. This subsequently required more
time than anticipated to complete successfully, as evi-
denced by a significantly higher rate of mission failures at
55 seconds than at 40 seconds. Beyond 55 seconds, enough
time appears to have been available to develop a low-cost
route while still successfully satisfying the mission con-
straints.

The implication of this behavior is that as some level of
time becomes available in time-constrained problems, hu-
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mans may induce errors over automation because the hu-
man falsely believes there is enough time to make an im-
provement, when in fact there is not. A more time-
pressured condition would instead compel subjects to re-
main safe in replanning the initial route with small and
local route modifications. Again, more study into these
effects is warranted, including additional automation to aid
the human in determining what types of modifications or
decisions should be pursued.

In conclusion, the experimental findings show that re-
planning performance indeed varies with both automation
type and time pressure. This alludes to the possibility of
using some form of adaptive automation when integrating
information for decision-assistance in time-critical and
complex tasks. Adaptive automation would respond to the
demands of the external environment and to the real-time
performance of its individual user. In the increasingly com-
plex and lethal nature of combat environments, the need is
evident for in-flight replanning cockpit technology that can
accurately and quickly assist pilots in making time-critical
and life-dependent decisions. A user-centered approach to
the design of decision-support automation is crucial for the
successful implementation of replanner technology and
other automated systems for cognitive assistance.
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