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Abstract

In this paper we discuss a set of software tools
developed to support the tasks associated with
managing special causes of variation in a
manufacturing process. These tasks include the
detection of significant changes in process
variables, a diagnosis of the causes of those
changes, the discovery of new causes, the
management of performance data, and the
reporting of results. The software tools include
automatic recognition of "out-of-control" features in
critical process variables, rule-based diagnosis of
special causes, a model-based search for
symptoms where a diagnosis is not possible, and
automated reporting aids. It is hoped that these
tools will enhance the efficiency of special cause
management.

Introduction

American manufacturing has recently emphasized
the use of statistical process control methods to limit
process variability and produce higher quality
products (Wadsworth, Stephens, &Godfrey 1986).
This technology relies on the construction of charts,
the observation by a machine operator or engineer
that these charts indicate an "out-of-control"
condition, a diagnosis of the cause of that condition,
and the choice and implementation of a corrective
action. We refer to this collection of tasks as "special
cause management."

Statistical Process Control (SPC) methods are
intended to distinguish a variation in a process signal

that is significantly different than the usual variability of
the process. The statistical process control model
assigns such variation to special causes, events that
occur in time that are not part of the normal operation
of the process. Such events might include material
changes, equipment failures, operator error, or
environmental changes. The unexceptional or
normal variation is said to be due to common causes
of variation.

Distinguishing special cause from common cause
variation is a probabilistic decision requiring
knowledge of the normal process variability when it is
"in control"; that is, when no special cause variation is
present. The usual technique is to apply various
decision rules to control charts (Shewhart 1926;
Shewhart 1931; Maragah & Woodal11988).

Two practical problems occur which limit the
effectiveness of the usual SPC approach. First, in a
complex process like aluminum sheet rolling there are
several process variables that need to be examined.
The need to monitor equipment performance,
operator procedures, environmental factors and
product properties can produce an overwhelming
amount of data. It is difficult for a small group of
engineers to regularly examine all the data. Instead,
their time tends to be devoted to dealing with current
"crises." They can slip into a reactive mode rather
than systematically identifying sources of variability
and removing them, or reducing their effects.
Second, process expertise sufficient to diagnose
problems causing out-of-control conditions varies
dramatically from plant to plant and amongst
engineers. Those skilled engineers who have
enough process knowledge to do this work are in
great demand. They often find it time consuming and
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tedious to manually search out causes for problems
and record them for correction and historical analysis.

These limitations suggest that a scheme which
combines sound statistical principles together with
knowledge of the process and software tools for
managing a database of past performance might allow
a more comprehensive analysis and management of
process consistency. A program called PROSAIC
(Process Signal Interpreters Assistant) has been
developed to explore these possibilities in the
manufacturing process which produces aluminum
sheet.

The program has two major components. The first
is a database and interactive graphics system which
gives the user basic tools to examine process data.
The second part of the program, which is the subject
of this paper, more specifically addresses the process
consistency problem.

Figure 1 is a block diagram of the program. A
method has been developed which recognizes
significant variations in process signals. This method
detects signal features that are impulses, mean shifts,
and/or trends. Thresholds used in this detection
scheme are analogous to limits in the usual control
chart schemes. For each of the various types of out-
of-control phenomena detected there exists a set of
rules which is used to try to diagnose what caused
this occurrence. The rules are based on past
experience and basic knowledge of the relationships
between special causes of variation and the
symptoms they produce in signals observed in the
process.

Detect Out-Of-Control
Events

Log Events In Database

4,
I APPLY RULESETS

DIAGNOSED

REPORT

UN-DIAGNOSED

DISCOVERY I

Figure 1. Special Cause Management
Block Diagram.

Applying the rules for each set of events results in
some events being diagnosed. Information about the
diagnosed events and details of their diagnosis are
stored in an object-oriented database from which

various summary reports can be generated. The
remaining un-diagnosed events can be analyzed in
two ways. First, an exhaustive application of the
ruleset can be applied to inform the user why each of
the tested special causes was not asserted as the
cause of the problem. This allows the detection of
"near misses": cases in which an event nearly meets
all the tests of a given special cause apart for some
exception. Second, an engineer using the program
can call upon an expert’s view of the process, stored
in a network diagram of influences. A method exists
for searching signals in this diagram to identify other
signals which were out of control at the same time that
the problem occurred. The engineer can use the
process model to examine the path along which the
associated changes might be influencing the signal of
interest.

Tools that operate on the database support the
management of special causes. The engineer can
examine a Pareto chart of causes for a particular signal
and observe the impact of corrective actions. He can
also note when new special causes appear that
remain undiagnosed and has tools to focus an
investigation on what might cause them. Finally, he
can automatically generate reports to be sent to other
members of the engineering staff so that they are
informed about the current state of control of the
process.

Detecting Significant Variations In
Time Series

Complications arise in monitoring critical process
variables that constrain the validity of many control
chart schemes. It is usually assumed that successive
samples of the process are independently and
identically distributed. While a case may be made for
this in the manufacture of discrete parts, where charts
have been used extensively, in many manufacturing
processes there are physical, chemical, and other
effects which introduce autocorrelation.
Autocorrelation degrades the hypothesis testing
prescribed in control charts by changing (sometimes
severely) the rates of type 1 errors (false alarms) 
type 2 errors (events which did not trigger alarms)
(Maragah & Woodal11988). Furthermore, increasing
sophistication of measurement and data acquisition
systems has led to higher sampling rates - which
increases autocorrelation.

Additional complications arise due to the high cost
of a broad class of corrective actions. This means that
the process is not often stopped until a regularly
scheduled maintenance period. An analysis of out-
of-control conditions during the run can and should
be used as planning input to the maintenance
session. Under this practice, the standard

24



assumption of identically distributed data is violated in
cases where out-of-control features which change
the process mean occur in the data interval.
Unfortunately, conventional control chart detections
of out-of-control features after a change in mean are
unreliable and often misleading until the chart is
"reset." Frequent resetting is impractical.

Manufacturing process signals contain impulsive
changes due to process shocks, sudden shifts in the
mean, gradual trends, exponential decays to
equilibrium and others. Control chart supplementary
runs rules attempt to detect some of these variations,
but (as stated above) they are compromised 
autocorrelation and mean changes (especially when
they are superposed). In our work, we have
developed a nonlinear signal processing scheme
(Love & Simaan 1988) which detects (in the presence
of noise) the following three basic features in 
process signal: peaks, denoted by P; steps,
denoted by S; and ramps, denoted by R.

Peaks are impulses of short duration, steps are
shifts in the mean value, and ramps are linear trends in
the data. It is assumed that useful information in the
process signal can be summarized by this set of three
signal features. Note that this is equivalent to
modeling the data as a piecewise linear function in
time, with added noise from a contaminated
distribution.

Figure 2. Nonlinear Filtering Scheme to Produce
Peaks, Steps, and Ranps from Input
Signal y(x).

The essence of this assumption is that these
features represent different manifestations of
process variations and consequently are sufficient to
approximate most process behavior. Should process
variation be observed that cannot be described by
some combination of these features then the
"vocabulary" would have to be extended and other
feature detectors would be needed. An example
would be a sinusoidal variation.

The automatic interpretation of signals by detecting
and analyzing signal features has been reported in
several application areas (Stockman, Kanal, & Kyle
1976). This approach to interpretation segments the
signal into regions (features) that share common
statistics. Syntactic analysis techniques are then

applied that treat these features like words in a
sentence. More complex signal structures are
generated by combining features (Fu 1974).

A block diagram of the signal processing scheme is
shown in Figure 2. The input y(x) is the signal to 
processed, and the outputs P(x), S(x) and 
indicate the three features of interest at sample
location x. The basic elements of the scheme are: a
median filter, a slope filter, and a horizontal threshold
filter.

The median filter is an effective technique for
suppressing impulses from a signal (Tukey 1974). 
replaces a sample value at location xi by the median of
sample values in a window centered at xi. The slope
filter replaces the sample value at location xi with the
slope of the data in the same window. This slope is
determined by a linear least squares fit to the signal
values in the window. In both cases the window is
moved over the entire length of the data signal.
Finally, the horizontal threshold filter is a nonlinear
filter which replaces every sample value in the signal
by the average value of all samples in a string of
numbers provided: (i) the length of the string is larger
than a horizontal threshold, and (ii) the average value
of the samples in the string is larger than an amplitude
threshold.

To set thresholds for this scheme the user is
required to pick data intervals that are "in control."
These intervals are assumed to be devoid of special
cause variation, to collectively contain many points
(say, 1000+), and to be indicative of the variability 
the in-control process due to common causes.
These intervals are passed through the signal
processing scheme with all thresholds set to zero.
Histograms of the processed data at the point where
thresholding is to be applied are generated. These
histograms are assumed to represent the likelihood of
observing certain values for peak heights, step sizes,
slope lengths, etc. in the in-controldata; they define
values for rare events. Given a user-specified
confidence limit, thresholds can be determined by
calculating the area under these histograms. This
area is the approximate Type 1 error rate. The
program can also estimate the Type 2 error associated
with these levels for various process shifts.

After features are detected by the nonlinear filters,
a list of features is generated and parsed to determine
if some subset of features should be combined as a
description of a more complex event. The word
"parsed" is used to describe the procedure of
analyzing features and forming events using certain
grammar rules: rules that describe the structure of
events of particular types. As an example, define a
"thermal," denoted by T, as a sharp step increase
followed by a ramp with negative slope (the name
"thermal" is chosen because such an event is
sometimes associated with thermal disturbances in a
process). After the list of features has been scanned,
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all features that do not participate in more complex
events are promoted to the same status as events.
The final set of events, formed by the union of parsed
events with promoted features becomes the set of
detected events for the data interval. Events are
represented in the computer as objects in an object-
oriented programming system called FLAVORS
(Weinreb & Moon 1981). When events are detected
they are stored in an object-oriented database.

The operations described above can be performed
interactively via a specially designed user interface.
These same operations can also be run automatically
by a process that starts up at user specified times and
generates reports of its activities in both electronic
and hardcopy form.

Diagnosing Causes For Out-Of-
Control Events.

Rule-based diagnosis systems are commonplace in
the literature of applied computer science. (Hayes-
Roth, Waterman, & Lenat 1983; Buchanan & Shortlife
1983) Rule-based systems are typically constructed
by specifying situation-action or if-then statements.
They possess a working memory which keeps track of
all facts that have been proven and an inference
system that tries to prove new assertions using logical
tests on facts already proven. It is assumed that the
data to be tested and the knowledge that is used to
construct rules are both static and reliable. Such
systems work best if the number of possible solutions
or diagnoses is small. Rule-based systems are easily
extended by adding rules, an important feature since
new special causes often arise.

To limit the number of diagnoses and increase the
modularity of the system, the overall rule base has
been partitioned by defining rulesets for each event
type. Each ruleset is used to diagnose the special
cause of variation that led to that event. Such
modularity makes it easier to add knowledge when it
becomes available.

Diagnosis is performed by applying the appropriate
ruleset to a given event in a backward chaining
fashion. That is, a list of hypothesized special causes
is tested sequentially by the rules. Each rule in a
ruleset is composed of a set of predicates which
examine other data in the database to see if
conditions correspond to a set of symptoms that have
in the past been indicative of a particular special cause
of variation.

An example rule, written in English, is as follows:

IF

AND

there was a cobble or sample taken on this
coil.

AND

there are thickness spikes in the
body of the coil

one or more of those spikes is roughly at a
distance in the coil that corresponds to the
distance between the 96 inch reversing mill
and the 80 inch continuous mill.

THEN
diagnose this peak event as a cold spot on
the slab due to the slab lying in contact with t
he 96 inch workroll after it was backed out of
the continuous mill.

In this rule, a cobble is a special situation in which
tension is lost in the coil being rolled and the mill must
be stopped. A sample is sometimes taken from a coil
by stopping the mill and cutting the metal. Each of
these pieces of information about the processing
history of a particular coil is stored in the database.
The rule above expresses some process knowledge
related to the distance between successive rolling
mills and how that might be related to the production
of thickness spikes. If this set of data conditions
obtain, then the rule concludes that the out-of-control
peak in the signal was due to a particular special cause
- a cause that is actually an operator error in handling
the coil during a cobble or sample operation.

Multiple rules in the ruleset come into play in
proving some of the conditions. For example, a
separate rule does some data analysis to conclude
that thickness spikes occurred in the body of the coil
as opposed to the leading edge or the last few feet.
When a diagnosis operation is performed on a set of
events, the events are partitioned into diagnosed and
undiagnosed sets. A report lists which causes could
be diagnosed for each event. Multiple diagnoses are
possible for one event. Further explanation of the
diagnosis of a particular event can be requested.
Figure 3 shows an English explanation printed by the
program, of the diagnosis of a bandwidth-peak event
on 12 Feb 88 at 6 p.m.

Event BANDWIDTH-PEAK at 79358 Lot Numb4r = 88785] on 12 Feb 88 6:0Opm.
Diagnoda is (COLD,.SPOT-FROM-9~POUE*TO’CORBLE"OR’SAMPLE)¯

Re, port of Special Cause COLD.SPOT.FROM-O6-DUE-TO-COBBLE-OR-SAMPLE
Them was a 4-stand sample taken on th~s coll.
There are 3 Lpikes In the body of this coll.

There is a gauge spike at 1832 ft. Into coil of amp|rude 2570 micro-inch,
There is a gauge Spike at 1811 ft. into ¢o~1 of arnp|tude -1450 r~cro~inch,
There ia a gauge a~oike at 171 ft. into coil of arnplifude 1589 micro-inch.

Figure 3. Printout of Program generated
Explanation of Diagnosis

Undiagnosed Events: Using
Process Knowledge to Discover

Associated Variation

There will be new special causes that cannot be
diagnosed with the current rules. The undiagnosed
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events that result must be analyzed to discover
causes, and accompanying symptoms. A human
expert would carry out such an investigation in several
ways. A first step might be to examine other data
collected, based on some model of what variations
might have influenced the signal of interest. Out-of-
control variations which occur at the same time as the
signal variation of interest should be strong clues
which may lead to a theory of what happened. These
associations are typically augmented with information
that may be unrecorded (operator observations, etc.).

We have developed a "discover" feature that uses a
qualitative model of the process to look for associated
symptoms in other signals. Figure 4 shows a greatly
simplified association diagram or network which
expresses the associations among the physically
related variables that lead to variation in bandwidth.

Figure 4. An Association Diagram for
Bandwidth.

The internal representation of our association
diagrams (also called an ANET) is a network of objects
which are built using the FLAVORS programming
system. There are two basic types of objects:
measured quantities and derived quantities. Each
"derived" object can contain links to measurements
and other derived objects. Measurement objects
contain a reference to a generator procedure which
may be invoked to construct a set of signal features
over a given interval of investigation. In Figure 4 the
measured quantities are shown by oval symbols while
the derived quantities are the rectangular boxes. The
diagram suggests that workroll diameter variations
influence bandwidth directly and are measured by
both harmonic power and roll force noise.

The links between boxes can express more
quantitative relationships. For example, one signal
can influence another as a simple proportion. It could
also have an integral relation where a spike in one
signal leads to a step in another. Operators that

express these relationships are carried on the link
data structures in the network.

An ANET is a static, declarative representation of
process knowledge. To be useful, it must be
combined with a search procedure. For the purpose
of discovering associated variations, a backward
search through the network is appropriate. A
backward search starts with the node representing
the signal under investigation, i.e. the signal for
which an event has been detected. A list of signal
features is collected for the interval of investigation for
all measurements of the starting node. These lists of
signal features are then propagated recursively back
through the network. When an association link is
traversed, any operators attached to the link are used
to transform the feature lists. When a node is reached
which has measurements, feature lists for the
measurements are generated and compared with the
propagating lists. If a coincidence is found, an
association is established and saved. The search is
exhaustive and all associations which can be reached
from the starting node are considered. The result of
the search is a list of signals with one or more features
that are coincident with some feature of the signal
under investigation. Note that this result is close to
the one desired when people study draftsman plots
(a draftsman plot is a large, graphical covariance
matrix, where each entry in the matrix is a scatterplot
of the row vs. the column variable). However, cause-
and-effect conclusions can generally be drawn more
confidently from sets of signals which have been thus
identified by an ANET than from draftsman plots for
two reasons. First, draftman plots are limited by
graphics device resolution to no more than twenty or
so variables. Second, the ANET-based results
contain domain-specific knowledge - consistently
applied, whereas draftsman plots are ignorant of the
domain.

The associated variations of an event can be
viewed as a "signature" which characterizes the
event. This signature can be used to investigate the
nature of the event. The most obvious use of an
event signature is to focus attention on the set of
signals it reveals. It is often possible to gain insight
into an event by scrutiny of simultaneous graphs of
the set of signals in the event signature. A more
intriguing possibility is the use of event signatures to
classify (cluster) events. Classification of events 
this manner can be either a manual or an automated
procedure.

Development History

In early 1985 one of the authors (PLL) was involved
in a new project at Alcoa Technical Center (ATC)
which required the examination of large volumes of
data from an instrumented rolling mill. The objective of
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this project was increased understanding of the
rolling process and phenomena which impact product
quality and consistency. It was discovered that a major
impediment to this project was access and
manipulation of the online data. The data were not
organized in any rational manner and there were no
software tools for effective interactive presentation of
the data. It was decided that the importance of the
project warranted the development of a software tool
designed to support highly interactive access and
manipulation of large volumes of data.

PROSAIC was developed on the Symbolics Lisp
workstation. The choice of this platform was based
on: (1) superiority of the software development
environment, (2) need for a high level of hardware
resources to support the proposed performance of
the tool, (3) the intent to add automated reasoning
capabilities. An initial prototype was built within about
three months. This progress was due to the
enlistment of the consulting services of BBN
Laboratories (KRA), the use of a commercial software
shell (KEETM), and the recycling of code from 
existing application (CRH).

Initially, the system was installed and used at ATC.
Development and use proceeded in parallel. The
initial users of the system were ATC engineers
working on the rolling process consistency project.
This initial period of use resulted in many
enhancements to the user interface predicated on
user needs. In October, 1986 PROSAIC was installed
at Alcoa’s Tennessee Works.

The shift in usage from a research environment to a
plant environment triggered many changes to
PROSAIC. User support became a significant
overhead issue. Previously ignored issues of
interface robustness became critical. The initial
implementation of the data system was found to be
cumbersome and a complete reimplementation was
necessary (DAS). As part of reimplementation of the
data system, the frame based data dictionary was
ported from KEE to an existing, in-house frame
system (CRH). Considerable effort was expended
toward rationalizing and generalizing the user
interface (KRA). Much of the impetus for this work
came from the plant users of the system. Their
contributions included not only reports of system
deficiencies but also suggestions for new tools and
features which would aid them in their work.

Early in the development of PROSAIC it was
realized that automated mechanisms for data
exploration were highly desirable. The initial work on
signal feature detection (PLL & MS) began shortly
after the initial installation of PROSAIC at ATC. This
early work resulted in some general concepts around
what we now call special cause management (SCM)
(Love & Simaan 1988). The press of events delayed
extension of these ideas unitl September 1987 when
the work described in this paper began.

The initial focus of the SCM work was to represent
the physical causes of process variation as a diagram
of relationships between signals (PLL &CRH). It was
quickly apparent that this approach works well as a
mechanism for discovery of new causes of process
variation but that the more traditional, rule-based
approach is appropriate for identifying well
understood special causes. The rule-based system
for diagnosing special causes was implemented with
an existing, in-house rule system (CRH) together with
an interface to the object oriented representation of
events (PLL & CRH). The combination of these two
approaches to special cause diagnosis and discovery,
together with event archiving (CRH & DAS) and
statistical refinements to signal feature detection
(PLL, DEC, & APJ), constitute the framework for
SCM.

Current Status and Future
Directions

PROSAIC has been in use in a plant setting for well
over two years. During this time the system has
proved to be useful for many purposes, some of
which are listed below:
¯ Investigation of out-of-control bandwidth events,
leading to procedural changes and a reduction of
bandwidth exceptional coils. Knowledge gained in
this study has been implemented in SCM rules.

¯ Discovery of work roll grinder problems leading to
excessive bandwidth events. Investigation of these
events lead to a better understanding of the
relationship between roll grinding and bandwidth.

¯ A better understanding of the relationship between
product metallurgical properties and process
parameters.

¯ A better understanding of limitations intrinsic to the
current rolling equipment. This information was used
to plan for a major mill medemization.

¯Monitoring and evaluation during the installation of
new processes and comparison of trial runs to
historical data.

¯ Process and equipment troubleshooting.
¯ Investigation of customer complaints.

The accomplishments listed above were achieved
using the manual data exploration features of
PROSAIC. Much of the knowledge gained during
these activities has been coded in the newer SCM
features of the system. Much work remains before the
SCM features of PROSAIC begin to perform at a level
sufficient to replace manual data exploration activities.
Only a small part of the rolling process - bandwidth
anomalies- is currently embodied in the SCM tools.
The system does a reasonable job of identifying
special causes for bandwidth events, although
approximately 30 to 40% of the detected bandwidth
events still go undiagnosed.
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The PROSAIC system continues to be actively
developed. The system has recently been ported to
the MaclvoryTM microcomputer with the objective of
providing a low cost delivery platform which can be
spread to multiple sites. The data system is being
enhanced and generalized to enable application of
PROSAIC to domains other than the aluminum rolling
process. Finally, refinement and extension of the
SCM tools discussed in this paper are a major priority
for future work.

Acknowledgements

The authors wish to acknowledge the significant
contribution of Mark Pate to the development of
PROSAIC. Mark, who is an engineer at Alcoa’s
Tennessee Works, has been the major user of the
system since its installation. He has provided
invaluable input as a computer literate and
enthusiastic user, and has provided the system
developers with numerous ideas for system
enhancements.

References

H.M. Wadsworth, K.S. Stephens and A. B. Godfrey
1986. Modern Methods For Quality Control And
Improvement, New York:Wiley.

W. A. Shewhart 1926 "Quality Control Charts," Bell
System Technical Journal, pp. 593-603, October.

W.A. Shewhart 1931. Economic Control Of Quality
And Manufactured Products, New York: Van
Nostrand.

H.D. Maragah and W.H. Woodal11988. "The Effect
of Autocorrelation on the Shewhart Quality Control
Chart with Supplementary Run Rules," paper
presented at the Joint Statistical Meetings, ASA.

P. L. Love and M. Simaan 1988. "Automatic
Recognition of Primitive Signals in Manufacturing
Process Signals," Pattern Recognition, Vol 21, No.
4.

G. Stockman, L. N. Kanal and M. G. Kyle 1976.
"Structural Recognition of Cartoid Pulse Waves Using
A General Waveform Parsing System," Commu. Ass.
Comput. Mach., Vol 19, pp. 690-695.

K. P. Birman 1982. "Rule-Based Learning For More
Accurate ECG Analysis," IEEE Trans. Pattem Anal.
Mach. Intell., Vol PAMI-4, pp. 369-379.

K. R. Anderson 1982. "Syntactic Analysis Of Seismic
Waveforms Using Augmented Transition Network
Grammars, Geoexploration, Vol 20, pp. 161-182.

K. S. Fu 1974. Syntactical Methods In Pattern
Recognition, New York: Academic Press.

J. W. Tukey 1974. "Non-linear (nonsuperposable)
Method For Smoothing Data," Proceedings of the
1974 EASCON Conference.

D. Weinreb and D. Moon 1981. The Lisp Machine
Manual, Cambridge: MIT Press.

F. Hayes-Roth, D. A. Waterman and D. B. Lenant
1983. Building Expert Systems, Reading: Addison-
Wesley.

B. G. Buchanan and E. H. Shortliffe 1983. Rule-
Based Expert Systems: The Mycin Experiments of
the Heuristic Programming Project, Reading:
Addison-Wesley.

KEETM is a trademark of Intellicorp.

MaclvoryTM is a trademark of Symbolics, Inc.

29




