
Expert Operator: Deploying YES/MVS II

R. A. Chekaluk1, A. J. Finkel2, E. M. Hufziger1,

K. R. Milliken 2, N. B. Waite2

1GM Research Laboratories
General Motors Corporation

Warren, Michigan

2Thomas J. Watson Research Center
IBM Corporation

Yorktown Heights, New York

Abstract
This paper reports on progress in automating the opera-
tion and control of large MVS-based computing installa-
tions. Automating operations is a problem appropriate
for the application of embedded, real-time, expert systems
techniques. The long-term goal is to ease the effort re-
quired to automate at many computing installations with
different configurations, workloads, and operation poli-
cies. YES/MVS I showed that expert systems techniques
were advantageous for automating operations.
YES/MVS II, reported here, is a collection of compo-
nents, including an architecture, to assist with automation
at many sites. Expert Operator, also reported here, is a
system based on YES;MVS II and currently in pro-
duction use at a General Motors computing center. Ex-
pert Operator, then, is a first deployment of the
components in YES/MVS II and first real test of their
value. Based on this first experiment, YES’MVS II ap-
pears to be successful. Major productivit3, improvements
were achieved in developing Expert Operator as com-
pared with YES/MVS I. Expert Operator is well-
organized, easily understood, robust to changes, easily
expanded, and solves challenging real problems.
YES/MVS II and Expert Operator, represent significant
progress in automated operations. The ideas reported
here should have value in the real-time control of other
complex systems.

Introduction
This paper presents the results of research on the use
of expert systems techniques for automating the oper-
ation of large MVS computer installations.

MVS is IBM’s primary operating system for pro-
duction data processing on large systems. YES/MVS
(Yorktown Expert System/MVS Manager) is an ex-
perimental expert system for automating the operation
of large MVS computer installations. YES/MVS I, the
first version, was used regularly in the computer center
at IBM’s Watson Research Center (Ennis et al. 1986).
YES/MVS II is an experimental collection of compo-
nents that followed from the lessons of YES/MVS I.
YES/MVS II includes support for communication

with target computing resources, support for a model
reflecting the state of target resources, and an architec-
ture used to structure, modularize, and coordinate au-
tomation applications. These components are
intended to ease the effort required to implement au-
tomation at many different installations.

Expert Operator is an expert system based on
YES/MVS II and implemented and placed into pro-
duction use at General Motors Research (GMR).
Expert Operator is the first deployment and test of the
combined components in YES/MVS II.

The Challenge of Large System Operations
The challenge of operation and management of large
MVS installations and networks has been described at
length elsewhere, for example in (Milliken et al. 1986)
and (Mathonet, Cotthem & Vam’yckeghem 1987).
Operating large computing systems and networks is
similar to automatically controlling many other proc-
esses (Chester, Lamb & Dhurjati 1984, Nelson 1982,
Fagan 1980, Klein & Finin 1987), but the sources of
the unique challenge in operating computing and
communication resources are the large scale of such
installations and the needs for high performance and
high reliability.

Due to the numbers of processors, devices, com-
munication links, and software subsystems, due to the
volume and variety of work done, due to interactions
in the work, and due to requirements for short re-
sponse times and almost continuous availability, large
MVS installations are complex. Console operations
plays an important role in both performance and reli-
ability in a large installation. Hence, console oper-
ations is a challenging problem in real-time control of
a large and complex system.

Due to the important role of console operations, the
desire is to automate the function to ensure fast and
accurate response according to installation policy.

In spite of the complexity, it is possible to automate
console operations at a particular installation. How-

30

From: IAAI-89 Proceedings. Copyright © 1989, AAAI (www.aaai.org). All rights reserved. 



ever, designing one software facility in advance that
will automate console operations at many sites remains
difficult for the following reasons:

1. Different sites have very different configurations,
workloads, and policies.

2. At a given site, the configuration, workload, and
policy change with time.

The goal of YES/MVS II is to provide components
that will reduce the effort required both to automate
at many installations and to maintain and enhance an
automatic operator at one site.

Background
YES/MVS I. In 1982 a research project at the Watson
Research Center was started to investigate the use of
expert systems techniques as a base for automated
operations. The result was YES/MVS I (Ermis et al.
1986) developed in OPS5 (Forgy 1981).

YES/MVS I established the feasibility of automating
complicated, operator actions such as resource man-
agement, problem diagnosis and recovery using rule-
based programming techniques. However, it became
clear that improved tools and structure could si~if-
icantly enhance productivity in developing facilities
that automated operator actions.

General Motors Research. Several years ago at GMR,
the requirements of MVS console operations had be-
gun to challenge the human operators. The data cen-
ter had grown to several MVS systems; the individual
systems had grown more complex; the systems had
sitmificant interactions; and the console message traffic
had grown to over 60,000 messages per day.

The first effort to assist human operators was based
on writing a library of short programs in an interpre-
tative procedural language called CLIST (Command
List). The CLIST programs (working with the NCCF
and NetView subsystems of MVS) provided significant
relief. (See Chekaluk & Hufziger 1987.)

This effort, however, soon reached practical limits.
Basically, in the CLIST environment, a particular
console message triggered a particular CLIST routine
from the library. That CLIST routine executed and
’handled’ the message. For responding in fairly simple
ways to just one or a few messages, this approach
proved reasonable. Difficulty was encountered when
the operational task to be performed required multi-
step actions and knowledge of the current global status
of the installation. This experience led to the explora-
tion of expert systems techniques and the adoption of
YES/MVS II as a base.

Overview of Improvements
The effort to develop Expert Operator using
YES/MVS II as a base has established the value of
several advances beyond those of YES/MVS I,
namely:

.
Architecture -- The present work has produced
an architecture for the control portion of a system
for automated operations, used this architecture
in practice, and demonstrated its value.

.
Model and model manager -- The work on both
YES/MVS I at IBM and also with CLISTs at
GMR showed the need for a global model of the
status of the target systems. The present research
has formulated general principles for such models
and, equally important, rules to manage them,
used these principles in practice, and demon-
strated their value.

3. Communications -- Special purpose, data com-
munication support has been developed to pro-
vide high level control over message passing
between automation and the targets.

4. Expert system shell -- Due to the need for im-
proved tools, personnel at IBM’s Watson Re-
search Center designed and implemented the shell
YES/L1 or Yorktown Expert System/Language
One (Cruise et al. 1987). YES/L1 is a data-driven
derivative of OPS5 and includes PL/I as a proce-
dural subset. YES/L1 provides the real-time
constructs and good performance needed for au-
tomated operations. YES/L1 is the prototype of
IBM’s KnowledgeTool product.

YES/MVS II includes the infrastructure for all these
capabilities, but the value of the work is established
by the success of Expert Operator. Similar facilities
and structure should be applicable to the real-time
control of many complex systems, since the basic ideas
are not dependent upon MVS or the automation of
operations.

Of the four advances listed above, this paper con-
centrates on the first two, the architecture and the
model and model manager.

Overview of Expert Operator
Expert Operator should be regarded as an embedded
expert system since it: runs continuously in an MVS
address space, acts in real-time, and executes via
cross-memory communications with NetView, a sub-
system of MVS.

31



Internal Structure
Expert Operator is organized into the following com-
ponents:

1. Communications support for the exchange of
status information and of control commands with
targets.

2. A status model that maintains a summary in data
of the current state of target resources.

3. The model manager, a collection of rules and
routines that establishes and maintains the (status)
model. In Expert Operator, the model manager
is the largest functional component measured by
code volume.

4. Control function, a collection of rules and rou-
tines that implement operational policy. This part
is organized according to a control architecture
based on problems, corrective actions or
solutions, and a technique for selecting which sol-
ution to attempt in a given situation.

5. Support for interaction with human operators.
This part is the simplest of the functional com-
ponents and is based on NetView panel services.

Communications
The data sent by target systems is in the form of mes-
sages. Each message contains data that identifies the
target system that generated the message and shows the
time the message was generated. Most messages have
a message identifier that shows the kind of message.
Some messages consist of only a single line. Others
consist of multiple lines, and the exact number of lines
may not be known in advance.

The operator, human or automatic, sends the target
systems queries and commands. Queries merely re-
quest information from the target systems. Com-
mands ask that action be taken that will affect the
target system. Both queries and commands cause re-
sponses (messages) to be generated and returned 
MVS.

Expert Operator includes facilities to receive mes-
sages from target systems, to recognize, filter, and parse
messages, and to build and submit queries and com-
mands.

The Model Manager

History
In YES/MVS I, a collection of rules dedicated to a
single type of problem issued its own queries to the
target systems (to obtain status data) and issued its
own commands to the target systems (to take actions).
Experience showed that this approach to target inter-

actions caused problems in two respects: First, the
rules and routines of the separate problems largely
duplicated the function of interacting with the targets.
Second, without a consistent view of target resources,
attempts to concurrently address several problems
could generate conflicting actions.

So YES/MVS II was designed to include a central,
consistent model of the status of target systems and a
collection of rules to manage and maintain the cur-
rency of this model. The model manager in Expert
Operator is a deployment of the YES/MVS II model
manager but has been modified and augmented to
maintain a model of the hardware and software con-
figuration at GMR.

Model Characteristics
The contents of a model vary over time with the
hardware and software configuration of target re-
sources. However, model changes beyond those
driven by configuration changes are much less frequent
than are changes in policy-dependent logic for handl-
ing problems and allocating resources. A functioning
model manager that maintains a broadly applicable
model can be used by rules that automate a wide va-
riety of operator activities. With such a model in
place, the volume of rules that must be written to solve
a problem is typically reduced by at least half.

Data in the model is maintained at the granularity
that would normally be of interest to a human opera-
tor. For example, the current status of individual de-
vices is maintained, but summaries are maintained for
the total number of print lines for small jobs in a
printer queue (rather than keeping data on individual,
small, print jobs). For some resources, MVS volun-
teers (generates) messages indicating all significant state
changes. For other resources, fresh status information
must be requested periodically with the period de-
pending on the volatility of the data. Still other infor-
mation is only collected on demand.

Model Manager Organization
When messages are received, the source is identified,
and the time is recorded. If a message is uninteresting,
then it is discarded. Interesting messages are parsed,
and the status information they contain is used to up-
date the model.

The relation between message identifiers and classes
in the model is many-to-many: a given message might
update several classes, and a given class in the model
might be updated upon the receipt of any one of se-
veral types of messages.

All queries and commands to the target are issued
through the model manager. Control function inter-
acts only with the model and never interacts directly
with the targets.

32



Each query or command to be issued must-be
planned in advance and explicitly supported. Every
planned query and every command is described in its
own query block. A query block anchors a linked list
of message identifiers of all messages that could be
generated by the query.

Any rule or routine in the control part of Expert
Operator can request any query. A query can be re-
quested for immediate execution, for delayed exe-
cution, or for periodic execution. A request for
periodic execution must be accompanied by a starting
time and a period.

Modd Integrity. The crucial issues in the model and
the model manager are the integrity and currency of
data in the model. Currency for a resource is main-
tained by one of three approaches:

1. Frequent, periodic queries.

2. Queries upon demand, before each reference to
the data by control code.

3.. Capturing and recording all state changes as those
changes are broadcast in MVS generated mes-
sages.

Achieving integrity involves several considerations in-
cluding the following:

If a query (or command) has been issued, but the
response messages have not arrived and been proc-
essed, then the query is said to be active. Since the
status model may be in an incoherent state when a re-
sponse is only partially processed, data in the model
that are potentially affected by a query are marked as
invalid while the query is active.

For many queries, when the query has been issued
but no response has been received, repeating the query
could be harmful. The model manager either serializes
such queries, or it recognizes that the response from
the first query will suffice for the second query.

The meaning of a response can be ambiguous unless
the query is also known, so the model manager does
not update the model based on responses that the
model did not request. However, some important
messages are generated by MVS upon the detection of
events by MVS. These are recorded in the model
whenever they are received.

A query that remains active for an unusually long
time can be a symptom of a problem with the target
systems. To detect this situation, a rule is written to
fire whenever a query has been active too long. The
record of active queries must be cleaned-up by this
rule. (This concern is similar to the situations reported
in Fox, Lowenfeld, & Kleinosky 1983).

Control Architecture
While the model manager is the largest component in
Expert Operator, the control component is more likely
to change with changes in operational policy, and its
organization is critical in simplifying the development
of automation applications.

The goals in adopting an architecture for control
include the following:

1. A modular framework can organize and
compartmentalize the development of rules and
routines to solve a new operational problem.

2. The real-time environment of Expert Operator
means that resolutions of several problems are
often in progress at once. The architecture should
provide a framework so that processing for mul-
tiple problems can be interleaved.

.
An architecture can organize the resolution of
conflicts encountered in the concurrent solution
of different problems.

4. Partitioning Expert Operator by function, into
modular components with clean interfaces, makes
the facility easier to understand, enhance, and
maintain.

Solving One Problem
Consider an experienced operator working on just one
problem. Some approximation to :the following steps
would be taken:

1. Detect an exceptional condition in the target sys-
tems, that is, a problem.

2. Make initial hypotheses about the problem.

3. Query the target systems for more information ff
necessary.

4. Revise hypotheses based on new information.

5. Attempt a solution.

6. If this attempt did not solve the problem, return
to step 3.

For work on a single problem, we want our archi-
tecture to conform essentially to these six steps. In
particular, the central part of the architecture is based
on problems and solutions.

Problems and Solutions
Whenever a problem is detected in a target system,
Expert Operator creates an instance of class PROBLDL
This instance is deleted when the problem is known to
have been solved. The PROBLEH instance serves as an

33



anchor for all other data relevant to solving that
problem.

A solution is a planned course of action intended to
solve a problem. Such a course of action need not
consist merely of a command or two to the targets.
Instead, such a course of action can be of arbitrary
complexity. In particular, a course of action may in-
volve examination of data in the model, requests for
various queries to update the data in the model, addi-
tional inferences from the results of these queries,
commands to the targets, more queries to follow-up
on the results of the commands, etc.

For each solution, there is a class of instances. The
existence of an instance in that class records the appli-
cability of that solution to an existing problem. The
course of action that is a solution is encoded in rules
that are enabled by an eligible instance of the solution
class. A field on the solution instance records the el-
igibility of the instance.

A solution instance is always linked to the problem
instance for which it records apphcability. When a
problem is detected and a problem instance is created,
the detection process initiates the selection of apphca-
ble solutions and the creation of corresponding sol-
ution instances. Several solution instances may be
associated with a problem instance. Each such sol-
ution instance is initially marked as ineligible to solve
the problem.

Selecting and Enabling a Solution
Each solution has three ratings as follows:

¯ problem severity, i.e., the severity of problems for
which this solution is appropriate,

¯ expected effectiveness of the solution,

¯ impact, i.e., a measure of the disruption caused in
the target system by applying this solution.

The values of these ratings axe recorded in the member
of the solution class and can be adjusted dynamically.

Due to the variety of possible situations to which
one solution could apply, and due to the potential for
dynamic change to solution ratings, the choice is made
only after a problem occurs as to what solution to ap-
ply. A particular rule, which is named the recta-rule,
makes the selection and sets the selected solution to
execute. From among all solutions instances created
but not yet eligible, the meta-rule selects the solution
that has the highest problem severity rating, breaks ties
by selecting the solution with the highest effectiveness
rating, and breaks ties by selecting the solution with
the lowest impact rating. Having selected a solution
in this manner, the recta-rule sets the field in the sol-
ution instance that indicates that the solution is ehgi-

ble. Rules that match against this solution are then
enabled to fire and take corrective action.

This approach is similar to that suggested or adopted
by other developers, for example (Kastner 1983),
(Slagle & Hamburger 1985), and (Klein 1985).

Interaction with Human Operators
A problem can be in one of two modes, active or ad-
visory. A selected solution inherits the mode, active
or advisory, of its problem. In active mode, solutions
go ahead and take the actions on the targets as
planned. In advisory mode, solutions merely advise
the operator about the recommended action to take.

In advisory mode, the actions recommended by a
solution are organized into units called suggestions. A
suggestion is implemented as a linked list of the com-
mands to the targets recommended by the solution.
Each recommendation presented to an operator con-
sists of all the commands associated with a solution.

For each problem, solution, or suggestion Expert
Operator can have one line of prewritten,
parameterizable, English text. An operator explana-
tion facility supports the display of this English text for
any instance of a problem, solution, or suggestion.
For example, if an operator makes the request

EXPLAIN SUGGESTION 12

then Expert Operator might respond

There are too many jobs on the NVSA
system

Therefore, I am invoking system cleanup
routines

The suggestion will invoke a cleanup
routine for class T output

The text is parameterized by the insertion of short
character strings typically when the instance of the
problem is created.

Rationale
This architecture should be evaluated in terms of the
motivations for an architecture listed previously.

Compartmentalization. When one starts to attack a
new problem, one already knows that problems, sol-
utions, and suggestions will be the major elements, and
each of these three will have one line explanations.
Each solution needs three ratings. And, for each sol-
ution class, there will be a collection of rules that
match against its members. The solution can be de-
bugged in advisory mode. This is enough to constitute
a good running-start toward the development of a sol-
ution. This same compartmentalization makes activ-
ities easier to understand and to maintain.

34



Interleaved Activities. For the rules in the solutions,
the right-hand sides typically are short pieces of code.
When a rule has completed firing, the KnowledgeTool
inference engine selects another rule to fire, and the
next rule can be associated with a completely different
activity. So, the KnowledgeTool inference engine acts
as a kind of intelligent task dispatcher. (The solution
members in working memory act like task control
blocks, and the inference engine’s conflict set is some-
thing like a task ready list.) So work on several con-
current problems is interleaved.

Coordinating Independent Solutions. It is also possible
to achieve significant coordination of separately devel-
oped solutions: For example, suppose suddenly there
is an instance of a very high priority problem. Sup-
pose part of the solution for this problem is to restrict
other queries and commands to the targets until this
problem is solved. Then, one merely writes a rule
subroutine to mark lower priority solutions as ineligi-
ble until the high priority problem is solved.

As a second example, suppose a solution is under-
way, but suddenly new data indicates that another
solution procedure is preferable. Then, it is possible
to mark the eligible solution as ineligible and the pref-
erable solution as eligible. Entire problems can be
permanently eliminated in mid-stream when appropri-
ate in light of new data.

Sample Domains
We briefly describe some of the domains of MVS op-
erations currently addressed by Expert Operator.

Backlogged Jobs
One of the major subsystems of MVS is JES (Job
Entry Subsystem). There are two versions, JES2 and
JES3. GMR uses JES3, and Expert Operator auto-
mates a subset of JES3 operations.

Jobs enter the system from various sources and then
work their way through several queues. Each queue
is work for a DSP (dynamic support program), 
component of JES3. The number of jobs for each
DSP can be obtained by means of the JES3 command
8i b. The following is a sample of output from an
8i b issued to a JES3 system:

IATB688 eeoc(w) eses(A) OUTSERV
IATBGBB eees(w) eee4(A) 
ZATaeB8 eeee(w) eeez(A) 
IATeGBB eeee(w) eeel(A) 
IATBG88 eeee(w) eeez(A) 
IAT8688 oBoe(w) eee3(A) INTRDR
IAT8GBB eeee(w) BBOO(A) NJE
IATeG88 eeee(w) COOl(A) NJECONS
IAT868B eeee(w) eeez(A) 
IAT868B oBoe(w) eeel(A) WATCH
IATBG8B eeee(w) eeel(A) 

These messages may be identified by the IAT8688
identifier. Each line of output gives data for one DSP,
and the name of the DSP is the last token on the line.
The numbers show the number of jobs either waiting
(W) or active (A).

The number of jobs active or waiting in each DSP
and the total number of jobs in JES3 should be kept
under thresholds. When numbers exceed thresholds,
they are said to be backlogged.

Expert Operator detects a variety of abnormal situ-
ations based on the contents of the DSP queues.
Considerations include numbers of enqueued jobs,
thresholds, active or waiting, the DSP, the total num-
ber of jobs in JES3, etc. Many corrective actions are
straightforward, but the variety of possible, abnormal
conditions is interesting.

CI Monitoring
One of the most important DSP’s is CI (converter-
interpreter) that reads the job control language of the
job. The CI DSP executes so fast that usually its
queue is empty. For example, the command 8i a
d=ci yields

8i a d=ci

IAT8520 NO JOBS ACTIVE ON CI

However, in unusual situations, for example, a lock
is held on a crucial data set, jobs can backlog in the
CI queue.

Expert Operator watches the CI queue every three
minutes, and it purges and cleans-up after any jobs in
CI longer than one minute.

DR Monitoring
A DR (disk reader) is a special type of job in a JES3
system. Installations commonly write DR’s for utility
or monitoring tasks.

One common technique is to write a DR to run and,
then, just before it stops, resubmit itself to run again
at some later time. For example, a DR could be

35



written to run once-an-hour on the half-hour, but only
on weekdays.

Sometimes a new DR will contain logic errors. One
common error causes the DR to resubmit itself as fast
as possible. This error can quickly fill JES3 with un-
wanted jobs and impact the operation of the entire
system. For such a problem, fast response is needed
from an operator.

Expert Operator monitors the total number of DR’s
in the system. If that number becomes abnormally
large, then repeating DR’s are individually identified
and abended by Expert Operator.

Development Effort
The work on YES/MVS I consumed approximately
fifteen person years of labor. In comparing complexity
of function, it is estimated that Expert Operator deliv-
ers approximately forty percent of the volume of
function in YESiMVS I. However, the work at GMR
on Expert Operator consumed about 1.5 persons for
about 15 months. Of these 15 months, most of the
time was spent on enabling software outside the central
structure of control actions. With the enabling soft-
ware complete, additional control function continues
to be added with much less effort.

Due to the feature of advisor?, and active modes, the
system was used in production, in advisory mode al-
most immediately after rules were written. Production
use in full active mode began only a few months after
the initial rule development.

Summary
We review the current status of Expert Operator:

¯ The system is in production use. On weekends
and other off-shift times, the system runs unat-
tended.

All but the most recently developed problem
solving rules in the system currently run in active
mode, providing explanation to operators only as
requested.

The problem solving function in Expert Operator
was developed by a few skilled people in a few
man-months of effort. Function in YES/MVS I
to solve problems of similar complexity required
markedly greater development effort.

The model manager and control architecture have
partitioned and organized the system’s rules and
routines into components by function and by the
type of external changes that require adaptation
in the automation facility.

The individual components of the system have
proven to be self-contained, easily understood,
and comparatively easy to enhance and maintain.

We and others (Strandberg et al. 1985) have ob-
served that it is often difficult to accurately measure the
advantages that accrue to a software assistant. It is
nevertheless clear based on the function implemented
to date, that Expert Operator has improved the reli-
ability and availability of the MVS production com-
puter systems at GMR, and the demand for attention
from the human operators has been reduced. The
project has provided an open path to automation of
additional aspects of console operations and systems
management in the future.

These preliminary results based on one use of the
components and architecture of YES/MVS II at GMR
indicate that marked improvements have been made
in reducing the complexity of function that must be
provided by users who want to automate operations
at a particular MVS-based computing center.

References

Chekaluk, R., and Hufziger, E., 1987. An Approach
to Automated Operation of Complex Computer Sys-
tems. Research Pubhcation GMR-5891, General
Motors Research Laboratories.

Chester, D., Lamb, D., and Dhurjati, P., 1984. Rule
Based Computer Alarm Analysis in Chemical Process
Plants. In IEEE Micro-Delcon 1984: Proceedings, the
Delmvare Bay Computer Conference.

Cruise, A., Ennis, R., Finkel, A., Hellerstein, J., Klein,
D., Loeb, D., Masullo, M., Milliken, K., Van
Woerkom, H., and Waite, N., 1987. YES/LI: Inte-
grating Rule-Based, Procedural, and Real-Time Pro-
gramming for Industrial Apphcations. In Proceedings
of Third Conference on Artificial Intelligence Applica-
lions.

Ennis, R., Griesmer, J., Hong, S., Karnaugh, M.,
Kastner, J., Klein, D., Milliken, K., Schor, M., and
Van Woerkom, H., 1986. A Continuous Real-Time
Expert System for Computer Operations. IBM Jour-
nal of Research and Development, Volume 30, Number
1: 14-28,

Fagan, L., 1980. VM: Representing Time-Dependent
Relations in A Medical Setting. Ph.D. Diss., Stanford
University.

Forgy C., 1981. OPS5 User’s Manual.
CMU-CS-81-135, Department of Computer Science,
Carnegie-Mellon University.

36



Fox, M., Lowenfeld, S., and Kleinosky, P., 1983.
Techniques for Sensor-based Diagnosis. In Pro-
ceedings of IJCAI 1983.

Griesmer, J., Hong, S., Kamaugh, M., Kastner, J.,
Schor, M., Ennis, R., Klein, D., Milliken, K., and Van
Woerkom, H., 1984. YES/MVS: A Continuous Real
Time Expert System. In Proceedings of AAAI 1984.

Kastner, J., 1983. Strategies for Expert Consultation
in Therapy Planning. Ph.D. Diss., Rutgers Univeristy.

Klein, D., 1985. An Expert System Approach to
Realtime, Active Management of a Target Resource.
MBA/MSE Thesis, University of Pennsylvania.

Klein, D., and Finin, T., 1985. On Requirements of
Active Expert Systems. In Proceedings of
A VIGNON-87, Seventh International Conference on
Expert Systems and Their Applications.

Mathonet, R., Van Cotthem, H., and Vanryckeghem,
L., 1987. DANTES: An Expert System for

?

Real Time Network Troubleshooting. In Proceedings
of I J-CA1 1987, 527-530.

Minlken, K., Cruise, A., Ennis, R., Finkel, A.,
Hellerstein, J., Loeb, D., Klein, D., Masullo, M., Van
Woerkom, H., and Waite, N., 1986. YES/MVS and
the Automation of Operations for Large Computer
Complexes. IBM Systems Journal, Volume 25, Num-
ber 2:159-180.

Nelson, W.R., 1982. REACTOR: An Expert System
. for Diagnosis and Treatment of Nuclear Reactor Ac-
cidents. In Proceedings of AAAI 1982.

Slagle, J., and Hamburger, H., 1985. An Expert Sys-
tem for a Resource Allocation Problem. Communi-
cations of the ACM, Volume 28, Number 9.

Strandberg, C., Abramovich, I., Mitchell, D., and PriU,
K., 1985. PAGE-l: A Troubleshooting Aid for Non-
impact Page Printing Systems. In Proceedings of Sec-
ond Conference on Artificial Intelligence Applications.

37




