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Abstract

The Ford Motor Company Direct Labor Management
System (DLMS) is one major subsystem in a multi-
phase Manufacturing Process Planning System (MPPS)
intended to assist in all aspects of the manufacturing
planning process. DLMS plays a central role by auto-
matically generating detailed plant-floor assembly in-
structions from high level structured English descrip-
tions and by providing consistent and accurate estimates
of the associated labor times. Much of DLMS design
was inspired by CONSUL [Mark 81], a system which
uses classification-based reasoning in the process of in-
terpreting natural language requests for interactive
computing services.

The kernel of the DLMS system is a large knowledge
base of automotive assembly expertise constructed and
maintained by the end-user engineering community.
The central Knowledge Base Management System
(KBMS) is a classification-based terminological reason-
ing system implemented on the NIKL model. The
KBMS is tightly coupled with a natural language com-
ponent which interprets the surface language process
description and maps it into a set of standard atomic
assembly instructions within the knowledge base. The
resulting instruction set forms the basis of a knowledge
based simulation which generates any auxiliary work el-
ements necessitated by this process script.

Introduction

The Direct Labor Management System (DLMS) is one
major subsystem of a multi-phase Manufacturing Pro-
cess Planning System (MPPS) designed to assist pro-
duction and planning personnel in all aspects of the
manufacturing process; it will eventually support several
thousand users. The system is extremely ambitious in
scope and has profound implications for the process
planning activity at Ford Motor Company. DLMS is
designed to provide the foundation for several intelli-
gent systems aimed at improving the assembly process
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at Ford and has targeted several key areas in the plan-
ning process. The major objectives are:

1. To achieve standardization in process description
and to improve the clarity of process sheets. The process
sheet is a critical document and is the primary vehicle
for conveying assembly information from the initial pro-
cess planning stage through to assembly at the plant
level. Process sheets and their derivatives should be an
effective means of communicating information at all
stages of the assembly process.

2. To support the creation of work allocation sheets
by automatically generating detailed plant-floor assem-
bly instructions from the more abstract process sheet
text. The allocation sheet contains the detailed assembly
instructions assigned to an individual assembly worker
(several allocation sheets are typically derived from one
process sheet by elaborating and reordering operations
specified on the process sheet).

3. To automatically provide consistent and accurate
estimates of product and non-product labor times in-
volved in the assembly process. (Product times represent
effort directly associated with product assembly. Non-
product times represent any indirect effort required to
carry out the direct operation.) Removing this essential-
ly clerical task frees the industrial engineer to use his
expertise effectively in analyzing the assembly process-
es. Consistent process descriptions help in this respect
by highlighting any process inefficiencies.

4. To provide a foundation for generic processing.
Process sheets are currently written at a fine level of
granularity. The objective of generic processing is to
provide process descriptions at a higher level and thus
to promote standardization in the assembly process
across vehicle types. Process sheets can now be written
at any level of abstraction. Instructions can be written
in terms of the micro motions made by the assembly
worker (e.g., ‘“grasp screw,” “position screw,” etc.) or
alternatively as macro descriptions applied to complete
vehicle subsystems (e.g., “install brake system”).



5. To provide a foundation for machine translation.
Production of automobiles is increasingly an interna-
tional effort and the overhead involved in translating
process instructions into different languages is consider-
able. The standard language is designed to facilitate
this and the taxonomy is structured such that it will
serve as an interlingual form for the target languages.

System Architecture

The first stage in system development was to identify a
grammar for describing assembly processes. This gram-
mar is outlined in the next section. The software system
implemented to interpret process descriptions is de-
scribed in subsequent sections. An illustration of the
software architecture is shown in Figure 1.
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Figure 1: The DLMS Software Architecture

The Process Description Language

A clear prerequisite for system development was the
identification of a standard format for writing process
descriptions: these were originally written in free-form
English and uninterpretable by computer.

Process sheets in the re-engineered system are de-
scribed using a case grammar developed specifically to
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meet the requirements of automotive assembly. It pro-
vides for the expression of imperative English assembly
instructions at any level of detail. The fact that the lan-
guage had to be accessible to potentially thousands of
engineers with different educational levels meant that
the necessary coverage had to be achieved without sig-
nificant loss of expressivity or “naturalness.” Approxi-
mately three hundred engineers have been trained to
use the language to date without experiencing any sig-
nificant difficulties.
A typical process sheet is illustrated in Figure 2.

SHEET EJ540000000 CONNECT HEATER HOSES TO A/C EVAPORATOR
ASSY.

10 OBTAIN LUBRICANT FROM STORED POSITION

20 SPRAY LUBRICANT ONTO A/C EVAPORATOR ASSEMBLY NIPPLES

30 OBTAIN 2 CLAMPS FROM STOCK

40 POSITION 1 CLAMP ONTO OUTLET HOSE

50 SEAT HOSE TO A/C ASSY.

60 POSITION EXISTING CLAMP ON HOSE BETWEEN A/C
EVAPORATOR ASSY. NIPPLE AND ASSY.

70 SECURE OUTLET HOSE TO HEATER NIPPLE WITH 1 HOSE CLAMP

80 POSITION 1 CLAMP ONTO INLET HOSE

90 SEAT HOSE TO A/C EVAPORATOR ASSY.

100 POSITION EXISTING CLAMP ON INLET HOSE BETWEEN A/C

EVAPORATOR ASSY. NIPPLE AND ASSY.

SECURE INLET HOSE TO HEATER NIPPLE WITH 1 HOSE CLAMP

USING A NUTRUNNER

110

TOOL (70 110) 1 P AAPTCA TSEQ RT ANGLE NUTRUNNER TORQUE

SHUT OFF
TOOL (70 110) 1 S 2H12E10H16B56 TSEQ 3/8 HEXSRT BDY1/2

ODLONG LNGTH.

PROCESS-PREFIX EJ
REPEAT-OPPOSITE-SIDE N
PLANT AGO

VEHICLE CQA

Figure 2: A Typical Process Sheet

Process data falls into 2 categories. Process descriptions
are specified in the main body of the text and in part
and tools areas of the sheet. This is supplemented by
contextual data: the sheet title, vehicle and plant infor-
mation for example.

Certain word categories in the language possess very
specific semantics: these were defined by the engineer-
ing community. Verbs in the language are associated
with specific assembly actions and are modified by sig-
nificant adverbs where appropriate. So, for instance, the
fragments “inspect,” “visually inspect” and “manually
verify” all have different interpretations. Important
cases in the language are denoted by specific tokens.
Sentence 110 from the example sheet is illustrated with
its constituent cases in Figure 3.



INSTRUMENT: FASTENER INSTRUMENT: TOOL

OBJECT

GOAL
Figure 3: Example Sentence and its Constituent Cases

Other areas of the process sheet containing part, tool,
vehicle and other related information are parsed to pro-
vide extra detail and also to provide context for the
sheet.

The Knowledge Base and Associated Management
System

At the center of the DLMS system is a large taxonomy
of automotive assembly expertise. This maintains de-
scriptions of any concepts required to interpret the sur-
face language and to generate the implied atomic work
instructions. Concepts in the taxonomy include parts,
process equipment, standard operations and geometric
workstation models. A portion of the current taxonomy
is illustrated in Figure 4.

The DLMS knowledge representation system is im-
plemented on the NIKL [Moser 83] [Kaczmarek, Bates
and Robins 86] model. All concepts in the environment

are described in terms of a Frame-based Description

Language (FDL): this is a variation of - the
FL—language described by Brachman and Levesque
[Brachman and Levesque 84]. It meets all the identified
requirements for terminological reasoning in this appli-
cation domain and avoids the computational limitations
implied by FL—. (See [Brachman and Levesque 84]
[Nebel 88] for formal treatments of issues involved in
selecting a language to support terminological reason-
ing).

Concepts in the taxonomy fall into two basic catego-
ries. Primitive concepts (corresponding to NATURAL
KINDS) are concepts whose structure contains neces-
sary, but not sufficient, criteria for determining sub-
sumption. This means the system will never automati-
cally infer that a supplied concept is subsumed by a
primitive concept, it must be specifically instructed to
make the connection. The “operation” concept in Fig-
ure 4 is an example of a primitive concept. Non-primi-
tive concepts are assumed to be fully defined by their
descriptions which contain necessary and sufficient cri-
teria for determining subsumption.

Non-primitive concepts are defined by their roles
which describe properties of a concept by relating it to
another concept. Roles correspond approximately to
slots in a frame and form a sub-taxonomy in their own
right. A role is attached to a domain concept (the most
general concept for which the role has meaning) and
represents a set of fillers for each instance of that con-
cept. Role restrictions are used to constrain the set of
values which a filler can take. The “Secure threaded
fastener using power tool” concept from Figure 4 is a
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Figure 4: Part of the DLMS Taxonomy
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non-primitive concept. A partial description of the con-

cept and some of its superconcepts are shown in Figure

5 (the notation follows the example of [Moser 83]).

SECURE SUALL
HECHANCAL
FASTERER

FASTENER USNG

Figure 5: Taxonomy Structure for Secure Operations

Concepts can also be attributed with non-definitional
information. One use of this is to associate a mini pro-
cess script with each standard operation.

An important result of the precisely specified seman-
tics of the concept description language is that a formal
definition of subsumption and an associated classifica-
tion procedure can be defined. The process of classifica-
tion involves determining the most specific subsumers
and most general subsumees of the current concept with
the taxonomy.

]The notion of subsumption is intuitively clear [Nebel
881

“Concept 1 subsumes Concept 2
<=> all objects which are a Concept 2 are also
a Concept 17
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The test for subsumption used in this application is as
follows.

Concept 1 subsumes Concept 2 iff:

— All primitive concepts that subsume Concept 1
also subsume Concept 2.

— For each roleset of Concept 1 and the corre-
sponding roleset of Concept 2, the value descrip-
tion of Concept I’s roleset subsumes that of the
value description of Concept 2’s roleset.

More detailed presentations of classification in the KL-
ONE family of systems are given in [Schmolze and
Lipkis 83] and [Lipkis 81].

The DLMS classifier is incremental in nature. As
concepts are added or modified, only those inferences
which are required to position the current concept and
to reclassify any related others are made.

Two interfaces to the KBMS are provided. A proce-
dural interface has been developed to support reasoning
within the process sheet and end-user Knowledge Base
Update (KBU) subsystems. An interactive graphical in-
terface inspired by the ISI grapher [Robins 86] supports
taxonomy maintenance for system development pur-
poses.

The number of concepts and the level of detail at
which they must be represented is determined by the
requirements of any standard operations and the need
to discriminate between them. The set of defined opera-
tions determines the “granularity” of the resulting plan
and hence the resolution of any associated time esti-
mates. The required granularity or resolution can only
be determined with respect to the processing require-
ments of any downstream client application. The resolu-
tion of the system increases over time as significant de-
rivatives of existing operations are identified. This leads
to a definition of operational redundancy: a concept is
redundant (for the purpose of creating work instruc-
tions) if there is no associated standard operation which
refers uniquely to it. To clarify this, consider the taxon-
omy fragment shown in Figure 5. The concept “nut” is
clearly redundant as the only operation of significance
refers to the concept “threaded fastener” which sub-
sumes the concept “nut.”

The Parsing Subsystem

The parser produces a structure for grammatically cor-
rect sentences and provides information about the state
of the parse to the error subsystem when parsing fails.
It was designed primarily to support efficient processing
of syntactically correct sentences and to provide for
flexible extension of the grammar. As the system is
transaction oriented and no direct user interaction is
possible, any errors are processed as a group at a later
stage in the analysis.



The parser is implemented as an Augmented Transi-
tion Network (ATN) [Winograd 83] [Allen 87]. To im-
prove the performance of the ATN, the implementation
includes a “cut” operator which eliminates back-
tracking in cases where traversing a specific arc clearly
excludes all other alternatives. In addition, to eliminate
the cost of undoing actions during backtracking the
parser defers most of its actions to a second phase
which it performs once a successful parse has been
achieved. This second phase generates a predicate-based
representation of the parse tree used in the element
analysis subsystem described later.

The parser has an associated rule-based error
processing component tailored specifically to match the
standard grammar. It both detects errors and suggests
appropriate corrections to the user. No attempt was
made to implement a general mechanism, for instance
of the type proposed by Weischedel and Sonhdeimer
[Weischedel & Sonhdeimer 83} Error system require-
ments were derived by exhaustively analyzing the types
of errors made by process engineers during their initial
attempts to use the process description language.

Data is passed to the error subsystem by the parser
which maintains a set of states representing the pro-
gress it has made in interpreting a given sentence. This
set contains those partial parses having the greatest
number of edges. If the parser is blocked, it recon-
structs the partial parse tree for each of these states and
applies rules to select one as the most likely intended
interpretation.

The error system proceeds by using information from
the lexicon to identify case markers in the unparsed
portion of the sentence. These case markers are then
used to hypothesize any constituent phrases intended by
the user from clues provided by the marker itself, the
partial parse and the position of the phrase relative to
other datum tokens (any verb or direct object for in-
stance). These hypotheses are tested using the appropri-
ate transition sub network. When a complete hypothesis
for the intended sentence structure has been determined
and validated it is translated into an error message and
an appropriate correction strategy for return to the user.

The Element Analysis Subsystem

The objective of element analysis is to generate a set of
atomic work elements representing the direct labor con-
tent implied by the sheet. This can be interpreted as a
process script for performing the assembly task. Direct
labor is defined to encompass all those actions which
contribute directly to the product assembly process. In-
direct labor constitutes all the activities which are re-
quired to effect the associated direct actions.
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The process sheet illustrated in Figure 2 is used to
motivate the discussion.

A preliminary task involves identifying any signifi-
cant contextual data (vehicle, plant and functional sub-
system of the vehicle for example) from the appropriate
regions on the sheet and establishing plausible defaults.

The system continues by interpreting the parse trees
supplied by the parsing subsystem. The first phase re-
solves any weak or implied references in the sheet (el-
lipsis, intra and inter-sentential, anaphora, etc.).

The next phase is to map individual statements on
the sheet into the corresponding operation concept with-
in the taxonomy. Consider statement 110 from Figure
2. Objects implied by the constituent noun phrases in
the statement are identified:

— Appropriate prepositional phrases are trans-
formed into a normal noun-noun modifier form.

— Noun-noun modifiers are analyzed and individual
concepts identified using a precompiled dictio- -
nary structure.

— Concept descriptions are created and classified to
determine the corresponding persistent taxonomic
concept.

Significant cases in the statement are identified from
the appropriate tokens and are mapped onto their corre-
sponding roles. Any tools associated with the statement
are identified as necessary instrumental cases.

An operation description is constructed and classified
to identify its counterpart standard operation and the
assembly script stored with the definition of this opera-
tion is retrieved. The operation description created for
statement 110 is illustrated in Figure 6.

After any necessary variable bindings have been estab-
lished for the script its constituent activities are in turn
classified to identify their standard counterparts. This
process continues until a set of terminal scripts has been
identified. This set represents the direct labor content of
the statement. This set is then supplemented by adding
any tool handling information required to undertake the
operation.

The set of direct allocatable elements generated by
statement 110 are illustrated in Figure 7. Redundant
data is embedded in the output to maintain contextual
information when the elements are split up into opera-
tor work allocations. The codes in parentheses represent
the direct labor times associated with each element.



SECURE-110

10

KPPLE1

Figure 6: Operation Structure for Sentence 110:

“SECURE INLET HOSE TO HEATER NIPPLE WITH 1 HOSE CLAMP
USING A NUTRUNNER"

GRASP POWER TOOL (RT ANGLE NUTRUNNER TORQUE SHUT OFF)
(01M4G1)

POSITION POWER TOOL (RT ANGLE NUTRUNNER TORQUE SHUT OFF)
TO HOSE CLAMP

SECURE INLET HOSE (01M4P2) TO HEATER NIPPLE USING POWER TOOL
(RT ANGLE NUTRUNNER TORQUE SHUT OFF) WITH HOSE CLAMP
(01M2P5M4PEM1PO)

RELEASE POWER-TOOL (RT ANGLE NUTRUNNER TORQUE SHUT OFF)
(01M4P0)

Figure 7: Direct Elements for the Sentence:
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The Assembly Process Simulation Subsystem

The assembly simulator elaborates the set of direct ele-
ments by generating any additional indirect (non-prod-
uct) work elements required to implement the current
plan. These are essentially the motions the operator
needs to make to move around in the workstation.

The first stage in this process is to identify the stan-
dard workstation configuration in which the assembly
operation is assumed to take place from a taxonomy of
standard configurations. This is done by creating a
workstation description from contextual information in
the sheet and classifying it. Each work element is then
processed in sequence to identify any datum locations
referred to in the text. The operator is assumed to relo-
cate between datum locations in carrying out the assem-
bly operation. The absence of a datum location for a
given element is taken to mean that the operator re-
mains in situ for that element. Datum locations are
once again identified by creating concept descriptions
and classifying them. This allows a location to be asso-
ciated with a concept at any level of detail.

The complete set of elements for sentence 110 of
Figure 1 is illustrated in Figure 8.

WALK TO POWER TOOL

GRASP POWER TOOL (RT ANGLE NUTRUNNER TORQUE SHUT OFF)
(01M4G1)

WALK TO HEATER

POSITION POWER TOOL (RT ANGLE NUTRUNNER TORQUE SHUT OFF)
TO HOSE CLAMP

SECURE INLET HOSE TO HEATER NIPPLE USING POWER TOOL (RT
ANGLE NUTRUNNER TORQUE SHUT OFF) WITH HOSE CLAMP
(01M2P5M4PEM1PO)

RELEASE POWER TOOL (RT ANGLE NUTRUNNER TORQUE SHUT OFF)
(01M4P0)

Figure 8: The Complete Set of Elements for Sentence
110:

Updating the Knowledge Base

The Knowledge Base Update (KBU) tool is designed to
be accessible to any of the process or industrial engi-
neers who use the system. The design goal was to allow
the user unrestricted access to maintain that part of the
taxonomy which directly relates to his area of assembly
expertise. This was necessitated by the fact that there is
no single source of assembly expertise: in fact there are
several hundred experts in the assembly community
who all contribute parochial expertise to the final objec-
tive.

The KBU is divided into 2 basic areas of functionali-
ty. The process engineering community maintains a
common dictionary and adds descriptions of parts, tools



and other assembly equipment to the taxonomy. The in-
dustrial engineering groups are responsible for main-
taining that part of the taxonomy which contains stan-
dard operations. A query facility is universally available
to facilitate knowledge base interrogation.

The Deployment Architecture
The DLMS system is installed within the existing Ford
Motor Company systems network and is accessible
worldwide. An overview of the “Back end Processor”
architecture is shown in Figure 9.
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Figure 9: DLMS Deployment Architecture

The hardware platform is the Texas Instruments
Multi-Processor (MP). The MP utilizes a 16-slot
Nubus architecture and allows 4 Explorer II processors
to share the same chassis and console. System software
supports inter-processor communication and individual
processor rebooting. It also allows processors to share a
common load band.

Communication with the IBM host is effected via the
TI SNA II processor which acts both as a 3274 termi-
nal controller and as a terminal emulator.

Software Tools

The rule-based system components were implemented in
ART from Inference Corporation. All other software
was written in Common Lisp.

Current Status and Future Development

The system was developed with continuous input from
the process and industrial engineering communities. Be-
cause the potential consequences for the organization
are significant, the system is being deployed incre-
mentally. This is critical as the quantity of knowledge
required to competently handle all Ford vehicles is huge
-and the integrity of the knowledge base is of paramount
importance. The system was introduced experimentally
six months ago and is being used by a small subset of
the process and industrial engineering community. The

87

system is part of a major initiative at Ford Motor Com-
pany and will continue to be built on for a number of
years to come.
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