
Application-Driven Architecture: A Case Study of SVNTELTM

Peter E. Hart

SynteUigence
1000 Hamlin Court

Sunnyvale, California 94089

Abstract

The special requirements imposed by important classes of
financial risk assessment applications have driven the
development of a new expert system architecture. We
discuss the relation between the demands of these
applications and features of the architecture, and describe
our experience with large-scale, deployed products that
have been built using this new approach.

Historical Context

The 1980’s can already be seen as the decade in which the
expert system technology developed in research
institutions during the 1970’s first began to be exploited on
a substantial commercial scale. Naturally, the initial
applications of expert systems were guided by the lessons
of the 70’s, and made as much use as possible of the
familiar rule-based and frame-based representations that
had been first developed to address m~k~ in medical and
other technically-oriented domains. By adopting the
strategy of heeding these lessons, exploiting established
technology, and judiciously selecting applications, a
significant number of expert systems were successfully
fielded [Feigenbaum (1988)].
We describe here our experience over the past five years

with financial expert systems where this strategy was
quickly seen to be infeasible, chiefly because the existing
technology was poorly matched to the demands of the
selected financial applications. As the application
requirements became better understood, our design
response led to a new architecture that departs sharply
from the rule- and-frame-based architecture that
dominates--and indeed is virtually synonymous with-
expert systems today. The new architecture, termed an
active functional system, is embodied in a programming
system called SYNTELTM that has been used as the basis

for two lines of commercial products: the Underwriting
AdvisorTM system and the Lending AdvisorTM system.
Technical details of SYNTEL have been reported elsewhere
[Reboh and Risch, (1986); Duda, et al., (1987); Risch,
al., (1988)]; in this note we focus on the application
setting, describing only enough about SYrZrEL to make the
discussion (hopefully) intelligible.

Design Requirements for Financial Expert
Systems

There are many opportunities for applying expert system
technology within the broadly-defined financial field.
[See, e.g., Clifford, et al. (1986); Friedman & Jain (1986);
Dhar & Croker (1988); or Leinweber (1988) for examples
and commentary.] The great diversity encountered makes
it difficult to define a useful set of system requirements
that adequately characterizes all such financial applications
but, as always, this difficulty is greatly eased by focussing
on a selected subset.

Our own interest has centered specifically on two
applications: underwriting commercial insurance risks and
assessing commercial creditworthiness. These two
applications are similar in many respects. They both are
concerned with estimating or assessing numerical and
symbolic quantities (among which "financial risk" is an
important but not unique instance); both tasks prove, upon
investigation, to involve comparable styles of reasoning;,
both involve substantial amounts of case-specific, or
transient, data as well as more permanent reference data;
both serve business users having comparable attitudes and
needs; and, while both applications are largely self-
contained, they both must exist in the real world of
commercial data processing with its attendant interface and
operational requirements.

Even this brief summary of application requirements
suggests a number of technical implications for system

94

From: IAAI-89 Proceedings. Copyright © 1989, AAAI (www.aaai.org). All rights reserved.

architecture. We review here the most important of these,
noting where appropriate why conventional rule- or frame-
based approaches do not appear to be well-suited to the
needs.

Assessment vs. Classification Reasoning Styles
A fundamental reasoning task for our applications is to
assess (or estimate) the value of a continuous quantity such
as "Projected Profit". Any number of such sub-
assessments--whether numerical or symbolic--are then
weighed together in order to perform the overall "apples-
to-oranges" assessments that are part of every business
analysis (e.g., as in assessing the importance of a f’n’m’s
poor financial performance against its attractive market
and strong management team.) This style of reasoning
contrasts with classification (or diagnostic) reasoning
styles in which a selection is made from among a finite set
of alternatives, and which are so well-addressed by rule-
and frame-based representations.

The distinction between estimation and classification
might superficially appear unimportant; one could imagine
discretizing a continuous variable, thereby converting
estimation to classification and making a rule-based
approach an obvious one. Unfortunately, this becomes
increasingly unattractive with increasing depth of sub- and
sub-sub-assessments, because the number and complexity
of rule antecedents needed to identify various
combinations of assessments increases exponentizlly.

Inexact Reasoning
We expect the system to offer advice (more properly,
assessments) in the face of imprecise knowledge or
missing input data. Obviously, we prefer to have a smooth
transition in the "exacmess" of computed assessments as
input data is made more complete. This suggests the need
for a principled approach for dealing with missing data,
default assumptions, and imprecise knowledge. More
specifically, because of the importance of continuous
variables, it suggests using probability distributions to
represent the several forms of inexactness.

User Initiative
We have observed that users insist on retaining the
initiative in moving through the system. This suggests that
the overall control scheme will have to be data driven, like
the standard spreadsheet applications that are so familiar to
business users. However, data-driven approaches can lead
to serious inefficiencies when used on very large
knowledge bases; means for controlling excessive
computation must be part of the basic design.

"What.If’s?": Controlling Side Effects
Users frequently engage in "what-if?" explorations in
which input data is repeatedly entered, modified, and then
returned to its initial state. Understandably, users expect
system-generated outputs to be consistent with restored
inputs regardless of intervening computations. This
suggests that the basic internal computations must be
referentially transparent, so that restored output values
depend only on the restored input values and not on
sequence- or side-effects.
We note in passing that applications built on conventional

expert system approaches usually embody procedural
escapes to the underlying implementation language, a
practice that considerably complicates the problem of
satisfying this requirement.

Data Management and Data Models
The number of variables needed to describe a single case
(e.g., a borrower) is large enough to require a significant
data management facility. This transient ,lat~ is accessed
and modified so frequently that it is desirable for efficiency
reasons to have the d~t~ management facility be an integral
part of the expert system, rather than to rely on calls to an
external database server. For theoretical and pragmatic
reasons, it is most desirable to have a uniform data model
for both transient data, permanent reference data and
expert knowledge.

The User Interface
Business users operate in a world of standardized business
forms. To be acceptable, the user interface will have to
mimic this familiar world as closely as possible.

The SYNTEL Programming System

We sketch now the principal elements of SYNTEL, drawing
particular attention to the relation between arehitecuwal
features and the application requirements noted above.
Further details can be found in the cited references.

Value Tables and Probability Distributions
SYNTEL uses a value table as its means for storing
permanent reference data, case-specific input d~t~ and the
assessments derived therefrom. A value table can be
regarded as a single _d~_t_abase relation having an arbitrary
number of keys and exactly one non-key column. For
example, the value table Revenue[Year,State] might hold
historical and projected values of Revenue for several
years and states. Formally, value tables fit the functional
data model [see, e.g., Gray (1984)].

95

Each row, or instance, of a value table can contain in its
non-key column either an exact (numeric or symbolic)
quantity, a probability distribution over that quantity, or a
token indicating that the quantity is entirely unknown.
Value tables are supported internally by efficient data
structures and indexing schemes, in recognition of the
corresponding need to handle substantial amounts of
transient data.

Primitive Functions
SYNTEL uses a collection of some 60 primitive functions to
represent how input data are to be combined into
progressively higher-level assessments. In addition to the
usual classes of arithmetic, logical and string manipulation
functions, there are special functions that express how sub-
assessments are to be weighed against each other to
produce a higher-level assessment. There are also
functions that modify the structure of value tables (e.g., by
reducing the number of keys.)

Primitive SYNTEL functions are considerably more
complicated than the functions found in conventional
procedural languages. First, notice that a single function
maps a set of value tables into a single value table; as a
simple example, the function Difference could be used to
map Revenue[Year$tate] and Cost[Year~tate] into
Profit[Year, State]. All functions make use of a join-like
operation when computing derived instances. In addition,
since function arguments can be probability distributions,
primitive functions must map a set of (assumed
independent) distributions into a derived distribution.

Primitive functions for knowledge representation mesh
with value tables (note that value tables mathematically are
extensional functions.) Taken together, this representation
has proven to be well-matched to application requirements:
Most importantly, it accommodates the reasoning style
characteristic of the domain (including graceful
degradation when data is absent); it supports "what-if’sT"
because primitive functions are referentially transparent;
and, with the control strategy described below, it provides
the user-initiative capability that has proven to be essential.

Forms: The User Interface
Syntel incorporates a major sub-language called the forms
system for defining the appearance, structure and behavior
of typical business forms. The role of the forms system
extends much beyond being a conduit for input and output
information. Indeed, it is an integral part of the overall
control mechanism, as described next.

Data-Driven Control and Efficiency Issues
SYNTEL operates, with a few exceptions, in a da)a- driven
mode. Whenever a value table element is changed
(whether by the user or by accessing external data through

system interfaces) SYm’m. re-computes functionally
dependent values to maintain consistency with the new

¯ independent values. For this reason, we term SYNTEL an
active functional system; each function springs into action

’ when its arguments change. As noted earlier, this provides
user flexibility at a potentially large computational cost.

SYNTEL employs several interacting mechanisms to
control this cost. Using information derived both from the
current state of the user interface as well as from an
extensive compile-time analysis of functional
dependencies, the run-time system effectively implements
a strategy that is easy to subscribe to but less easy to
implement: viz., identify the minimal set of logical
dependencies, compute only those dependencies that are
required to support the current display state, and compute
them only once.

User efficiency is at least as important as system
efficiency. SYNTEL Can conditionally display objects, a
capability that allows an interactive session to be
dynamically tailored to reflect the current state and thereby
shield the user from irrelevant information or data requests.

Implementation Status

The SYNTEL formalism has been fully implemented since
mid-1986, following three years of development, and
supports a family of knowledge bases that define the
Underwriting Advisor and Lending Advisor product lines.
These products were originally d~veloped on Xerox llxx
workstations. However, they are delivered to end users in
a cooperative (or distributed) processing environment
consisting of an IBM Systemf370 mainframe under
MVS/XA using CICS and an IBM PC/AT or PSf2
workstation.

Each knowledge base contains several thousand value
tables and about the same number of functions, A single
value table might hold hundreds or even-in exceptional
cases--over one hundred thousand instances. The depth of
sub-assessments (more formally, the depth of function
composition) can exceed 300. We know of no principled
means for directly comparing functions with rules or
frames, although for reasons described earlier it does seem
clear that a much larger number of rules would be needed
to represent equivalent expertise. Regardless of
comparisons, these are by any measure large expert
systems; careful attention to efficiency at all levels of
design and implementation is mandatory.
Creating SYNTEL and all its surrounding software, as well

as creating the various underwriting and lending
knowledge bases, has not been inexpensive; over five
years and well over one hundred person-years of direct
technical development effort have been invested to date.

96

Deployment and Measures of Success

The Underwriting Advisor and Lending Advisor products
based on SYNT~L have been purchased by insurance
companies and banks in the US and abroad. Noting that:
(a) the software system price ranges from half a million
several million dollars; (b) internal expenses of purchasers
make total installation cost rise above product price alone;
and (c) each purchase was made only after a sophisticated
institution conducted a lengthy evaluation and analysis,
one might well conclude that the innovative SYNT~
functional architecture has been successfully deployed.
This conclusion is buttressed by the observation that the
products go far beyond typical "back office" automation;
they directly affect the "front office" decision-ma~ng
process that lies at the core of every financial institution.

On a deeper level, things are less simple. The roll-out
schedule for conventional large-scale system software in
the financial industry is measured in calendar quarters or
years, not weeks or months; expert systems are unlikely to
shorten this timetable. Once fully deployed, a period of
years is required before enough history accumulates to
judge the consequences of the decision-making process
(Did the loan eventually go bad? Did the building burn
down?). Even then, it is difficult to establish objective
standards of evaluation because of ever-changing business
conditions: e.g., the changing business cycle, changes in
tort law, changes in personnel, or changes in institutional
policy.

For these reasons, a statistically valid analysis of results
based on large, multi-year sample sets is beyond reach at
present. Lacking that, we are forced to rely on less formal
evaluations based on our current users’ experiences in
processing actual lending and underwriting cases. On this
non-statistical basis we have seen remarkably favorable
results: Users at all levels of experience have reported
many examples of "I would have overlooked (or
misinterpreted) the significance of a critical piece of data
regarding...". More importantly, system-generated
assessments have been in full agreement with the
judgments of senior credit and underwriting officers. At
this juncture, it is fair to say that the issue of "Does the
system work?" has been resolved affirmatively.

Summary and Conclusions

We have emphasized that the real-world requirements
imposed on financial risk-assessment systems differ in
many important ways from what might be encountered in
more traditional application domains. The unique
architecture of SYNTEL arose not from an innate desire to

invent something new, but rather as a design response to
those requirements as we came to understand them.

The payoff from all this invention and effort comes in
many forms, some of which still lie in the unknowable
future. At present, the most tangible is a profitable and
growing company.

Acknowledgments

The writer is merely the chronicler of, and contributor to,
the efforts of a talented group of colleagues too numerous
to name.

References

Clifford, J., Jarke, M., and Lucas, H. C., Designing expert
systems in a business environment, in Artificial
Intelligence in Economics and Management, (L. F. Pau,
ed.), Elsevier Science Publishers, Amsterdam, 1986,
pp.221 - 232.

Dhar, V. and Croker A., Knowledge-based decision
support in business: issues and a solution. IEEE Expert
3,1 (Spring 1988) 1313.53-62.

Duda, R.O., Hart P.E., Reboh R., Reiter, J., and Risch, T.,
Syntel: using a functional language for financial risk
assessment. IEEEExpert, 2,3 (Fall 1987) pp. 18-31.

Friedman, J.Y. and Jain A., Framework for prototyping
expert systems for f’mancial applications. Proc. AAAI-86
(Philadelphia, Augns0. Morgan Kanfman, Los Altos,
1986, pp. 969-975.

Feigenbaum, E., Nii, H. P., and McCorduck, P., The Rise
of the Expert Company, Times Books, New York, 1988.

Gray, P., Logic, Algebra and Databases, Ellis
Horwood/Jolm Wiley and Sons, New York, NY, 1984.

Leinweber, D., Knowledge-based systems for financial
applications. IEEEExpert 3,3 (Pall 1988) pp. 18-31.

Reboh, R., and Risch, T., Syntel: Knowledge
programming using functional representations, Proc.
AAA/-86, (Philadelphia, PA, Aug.). Morgan Kaufman, Los
Altos, 1986, pp. 1003 - 1007.

Risch, T., Reboh, R., Hart, P.E., and Duda, R.O., A
functional approach to integrating database and expert
systems, Comm. ACM, 31, 12 (December 1988) pp. 1424
1437.

97

