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Abstract
This paper describes an object-oriented model for a
mixed-initiative airlift planning aid. The system
provides a workbench of tools that help airlift
planners build effective plans faster. The system
maintains consistency among objects in its knowledge
base by enforcing constraints. Forward-chaining
through domain rules is used to identify problems in
the routing network. MACPLAN has improved the
productivity of airlift planners by an order of
magnitude.

Introduction
Air Force airlift planners develop airlift plans for
mobilizing forces in contingency operations. Orders
for such mobilizations are given as a series of time-
phased force movements. These movement
requirements can often number in the thousands. The
planners must determine the feasibility of an
operation under the constraints of limited numbers of
aircraft and airfields to support the move.
MACPLAN is a mixed-initiative, knowledge-based

system that helps airlift planners develop resource-
effective airlift plans quickly. A mixed-initiative
system provides the user with automated help, yet
allows the user to drive the problem-solving process.
The user can select what parts of a plan to develop
himself, and what parts to let the system develop.
MACPLAN provides an object-oriented model of

airlift entities, a number of heuristic and algorithmic
tools for analyzing a plan, and graphical plan
manipulation tools.

Background
The airlift planner’s task is made especially difficult
due to the overwhelming quantities of data involved
in the planning process. This includes information
about cargo and passengers, aircraft, operators of
aircraft, airfields, and their related timing and
constraint factors.
A planner’s overall task is to allocate and schedule

resources to satisfy potentially thousands of

movement requirements. A movement requirement
is some quantity of passengers and/or cargo that must
be moved from one port to another in a specified time
window (see figure 1). There are three transportation-
related categories of cargo: bulk, oversize, and
outsize. Bulk cargo fits on a pallet; oversize is cargo
that is too large to fit on a pallet and can only be
moved on certain aircraft types; outsize is the largest
category of cargo and will only fit on a C-5 aircraft.

Port of Embarkation: Airfield A
Port of Debarkation: Airfield B
Tons Bulk: 30
Tons Oversize: 0
Tons Outsize: 0
Number Passengers: 10
Available to Load Date: Day 0
Earliest Arrival Date: Day 1
Latest Arrival Date: Day 3

Figure 1. A sample movement requirement.

Each class of aircraft has certain characteristics that
effect its ability to support the movement. These
include its capacities (by cargo type and passengers),
range, air speed, takeoff and landing requirements, and
average allowed utilization rate. Civilian and military
operators supply the aircraft apportioned for the
movement. Restrictions prevent operators from
using certain airfields, and thereby reduce the number
of aircraft that can use the airfield.

Airfields also have a number of characteristics which
constrain their use. Cargo and passenger throughput
constraints limit the daily amounts of cargo and
passengers that can onload or offload at an airfield.
Real-world parking and runway characteristics, as well
as political considerations, impose additional
constraints on airfield utilization in terms of
allowable aircraft types and operators.

98

From: IAAI-89 Proceedings. Copyright © 1989, AAAI (www.aaai.org). All rights reserved. 



The Concept of a Plan
The goal of airlift planning is to develop a plan that
provides alternative ways to deliver its requirements
on time. Flexibility is important since airfields can
be closed and aircraft can fail.
We do not use the word plan in the conventional

sense of a sequence of actions to perform in order to
reach a goal (Wilkins 1984). An airlift plan
embodies guidelines for airfield and aircraft
utilization. The following are examples of plan
guidelines:

¯ Use airfields A and B for refueling and
reassignment of military aircraft after mission
completion.

¯ Disallow civilian aircraft at airfield C.
¯ Use civilian aircraft for the bulk of the

passenger loads and route them through group
1.

¯ From the first to the ninth day of the plan, use
3 747-100s from operator A, and increase the
amount to 4 from day 10 to the end of the
plan.

The movement requirements and the plan, in the
form of these guidelines, then serves as the basis for
developing a detailed proposed schedule of airlift
movements. As described in the next section, the
current approach to developing such a schedule is to
run a discrete-event simulation of the operation.

Airlift Planning Prior to MACPLAN
Prior to MACPLAN, airlift planning was primarily a
manual process. The only electronic aid was a
simulation that executed as a batch job on a computer
main frame. The planner developed the plan on
paper, and then keyed the information into the
computer prior to running the simulation. To do
this, they reviewed stacks of computer-generated paper
reports, plotted onload and offload airfield locations
on a map, and drew out intended routing strategies on
paper charts, incorporating enroute stops as necessary
to accommodate planes with limited ranges.

The simulation requires that the planner specify
routes for each requirement to move from its onload
to its offload airfield. To reduce the complexity of
the routing network, airfields are grouped geo-
politically. In this way, it is only necessary to
specify a routing from every requirement’s onload
airfield group to its offload airfield group. Figure 2
shows the reduction of complexity realized when
airfields are grouped in this manner. The dots
represent individual airfields, the thin arrows represent
requirements that must move, and the ovals describe
groupings. The thicker arrows represent the only
routes that are necessary to specify routing at the
group level. Route distances are then calculated by

using the longest airfield to airfield distance between
groups.
The simulation operates upon the resource

utilization and routing guidelines set by the planner
to produce a detailed schedule of movements. The
simulation "loads" cargo onto aircraft and "moves"
the aircraft from airfield to airfield using a set of
heuristics to guide the process. The system
chronicles any late arrivals or bottlenecks that occur.
After the simulation has completed, planners analyze
the simulation’s results to see how well their
specification of resource use moved the cargo and
passengers. If something moved late, or not at all,
the planner must figure out why, and what to do
about it.
While the simulation produces accurate predictions

on the ability of the plan to execute the operation, it
is cumbersome to use for several reasons. No
qualitative checking of the plan is performed, and thus
plans that could be identified as logistically infeasible
or inconsistent prior to a simulation, are simulated
anyway. Moreover, the simulation’s reports on plan
execution tend to be cryptic, making it difficult to
determine the source and scope of problems
encountered. The combination of the lack of pre-
simulation plan development aids and qualitative
checking, as well as difficulty in understanding the
simulation’s output, necessitated many iterations of
modification and simulation before a good plan was
developed.
The high turnover rate of expert airlift planners also

contributes to lengthening plan development time.
By the time a planner becomes efficient and expert at
airlift planning, it is often time to leave for another
assignment. For this reason, the Air Force needed a
system that would retain some planning expertise and
help new planners learn their job quickly.

Figure 2. Routing Abstraction

The MACPLAN Concept
When the Air Force asked us to help them improve
the planning process, it became evident to us that the
simulation, although outdated in its technology, still
performed its intended function of dynamic analysis
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quite well. We instead focused our attention on the
plan development phase, with emphasis on preparing
a logically consistent and complete plan to be
ultimately checked by the simulation. We also
realized that, for the purposes of deliberate planning,
development of the "best plan" for a given operation
was unnecessary. For this reason we designed
MACPLAN to be a knowledge-based planning aid
that would help produce feasible plans faster than
before, and could operate as a front-end to the
simulation process. MACPLAN’s quality control in
plan development reduces the number of lengthy
simulation runs to only one or two. MACPLAN
provides a suite of automated tools for quick plan
development and "what-if’ analysis. To further
ensure that the plan is ready for detailed simulation,
MACPLAN contains its own cruder internal
simulation to detect dynamic difficulties in a plan.
Special attention was given to the user interface so
that the system could be learned quickly.

Modelling of Airlift Planning World
MACPLAN bases its model of the airlift planning
domain on the Flavors1 object-oriented extension to
LISP. Flavors can be used to represent an extensive
amount of declarative knowledge, and its natural
hierarchical organization of classes (Winston & Horn
1989) allows many relationships to be derived by
inheritance. In addition, the modular construction of
Flavors gave us the critical ability to expand and
modify MACPLAN incrementally. This was
particularly important since MACPLAN had to be
able to evolve as our understanding of the complex
military airlift domain evolved. A meta-langnage was
also built on top of Flavors and the LISP substrate to
provide constraint checking capabilities (Abelson 
Sussman 1987b).

Objects in MACPLAN
The objects in the MACPLAN model consist of
requirements (cargo and passengers to be transported),
aircraft, operators of aircraft, airfields, and routing
networks. The plan element knowledge base is
represented as a class structure hierarchy in which
each class of objects can be treated as an object itself.
All objects in the model descend from the flavorplan
element. The plan element object infrastructure
contains an identifier name and a method for enforcing
slot documentation. A plan element class is created
by first defining a flavor of its class name with the
desired instance variables. The macro def-plan-
element is then called to create the following class
structure:

1 Flavors is a trademark of Symbolics Corporation

(defstruct (plan-element (:include
kernel)

(:type :named-array)
(:predicate PLAN-ELEMENT?)
conc-name)

name ;from kernel
documentation ;from kernel
dz!ahase-mapper ;map for indexing

;instances in file and memory
instances ;list of all existing

;instances of this object class
inferiors ;all classes that inherit

;attributes from this class
superiors ;all classes that this class

;inherits attributes from
inst-vars ;list of all instance

;variables(slots) local to this
;class and inherited from
;superiors

All plan element class objects are either resources
or tasks. A resource is any entity, such as an airfield
or aircraft, that helps to complete a task. A task is
something that must be done, in this case something
to be moved. They. each contain specific key
attributes that are used for their respective roles in
resource allocation and task execution.

The description of each plan element class object
in the knowledge base consists of three parts: a
description of the class of objects to which the object
belongs, the flavor instance representing the object to
be used for creating instances of the class, and its
attributes. Each class description defines its own
attributes and inherits any that are defined by
ancestors in the hierarchy.
In addition to defining class attributes, each plan

element class description maintains a list of its
instances. This allows the knowledge base to quickly
retrieve all instances of a particular class, and to
collect all instances of a class’s descendents by
traversing the class hierarchy.
An instance of a plan element class is instantiated or

retrieved by calling the following function:

(get-object
plan-element-class-name
object’s-official-name
attribute-initialization-list
documentation)

First the knowledge base looks to see if an object of
this plan element class and official-name is already
iustantiated in memory. If not, the knowledge base
then looks in its permanent files of information on
plan elements. If an object of this class with this
official-name is found in the permanent knowledge-
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base, the object is instantiated with the specific
attributes recorded in its permanent description.
Otherwise the object is unknown to MACPLAN, and
it receives default attribute values from its class’s
flavor definition, or uses values for attributes as
specified in the attribute-initialization-list. In
addition, get-object fires any initalizafion methods
that have been defined for this class. Initialization
methods might be used to create associated display
objects, or other instances or structures that this class
refers to in its slots. Get-object returns two values,
the object instance and an indicator of whether or not
it was newly instantiated.
Each attribute, or instance variable, of a plan

clement class is defined as an object itsclf by the
macro def-plan-slot. These slot objects are stored in
the inst-vars slot of its corresponding plan element
class’s structure. By defining slots in this way we are
able to introduce constraints on slots (I-Iuang, Unger,
& Fan 1988). Every slot has at least one constraint,
a datatype constraint required by def-plan-slot. For
instance, a slot can be constrained to contain one of
several types of flavor instances, a number within a
certain range, a list comprised of certain types of
items, etc. Constraints are discussed in more detail in
the next section.

Predicate
Functions

Rule Dispatcher Plan
Processor

(LlanElement
wledge Base~__~ Constraint

w-, Checker

I ,
~ Plan Element ~ ~ Constraint~Constraints Library )

Figure 3. MACPLAN Core Architecture

How MACPLAN Reasons
Reasoning mechanisms in MACPLAN are closely
coupled with MACPLAN plan elements (see figure
3). Predicates, rules, and constraints form the basic
reasoning mechanisms in MACPLAN. MACPLAN
predicates are hand-coded LISP functions that return

two values, either true or false, and a justification for
the veracity (a string value). Constraints and rules
contain declarative plan element information.
Predicates are called only by constraints and rules, but
are themselves independent of plan element
representation. Thus, predicates are not effected by
changes in plan clement structure.
Forward-chaining (Winston 1984) comprises one 

the major mechanisms by which MACPLAN
reasons. The forward chainer uses rules that infer
route planning errors, inadequacies, or conflicts.
Rules are a natural medium for describing the event-
driven nature of the network routing problem, because
collections of rules correspond to network conditions
(Abelson & Sussman 1987a). The rules are derived
from route planning experts (Hoffman 1987) and
describe the relationships between routes and cargo
movement. The domain rules are categorized by the
cargo type to which they apply, and sub-categorized
by degree of criticality. Rules are true statements
such as:

¯ A critical problem exists if there are
passengers to be moved along a specific
route and there are no aircraft that can carry:
passengers.
¯ A critical problem exists if there are
passengers to be offloaded at a specific
airfield, but no operator supplying passenger
carrying aircraft is allowed at that airfield.

Such rules are expressed declaratively as follows:

(defnetrule critical-pax
passenger crit-pax critical
:documentation "Can airfield
handle at least one passenger
aircraft and corresponding
operator?.")

This macro creates a rule object, places it into the
appropriate category of similar rules (critical
passenger), and places a pointer to the predicate
function crit-pax in its predicate slot. This particular
predicate determines whether the specified airfield can
handle passenger aircraft and a legitimate operator.
Rules are applied to the routing network when the

user invokes the network analysis tool. The rule
dispatcher is activated when the consistency of a route
is questioned. It invokes the appropriate category of
rules, based on cargo type expressed in the
antecedents, and returns the results of the associated
predicate function that includes an explanation of any
problem encountered. Rules within each category are
fLred by the rule dispatcher in order of decreasing
criticality.
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We kept MACPLAN’s rule-base small and
manageable by limiting rules to only represent
network routing knowledge. Knowledge about plan
element relationships is instead expressed in
constraints. Constraint satisfaction (Charniak 
McDermott 1986, Rich 1983) comprises the second
major reasoning mechanism in MACPLAN. The
airlift planning process can be viewed as filling slots
subject to constraints (Brown 1987). A constraint
says if a certain condition is true, then the contents of
certain slots must satisfy certain conditions and
certain other conditions cannot be true. Each slot of a
plan element object is in itself an object containing
slots for its value and any constraints on its value. A
constraint deflmes the relationship which holds among
a set of slots (Stefik 1986). Constraints may also 
maintained between slots of different plan element
classes. A plan element slot may have many
constraints, which are run automatically when the
slot is altered.
Constraints are built as objects, so different

constraints are defined as different classes of objects.
Instances of the same type of constraint can thereby
be used for different classes of objects in the plan
element hierarchy. The constraint object is pushed
onto the constraint slot of the plan element slot(s)
whose value(s) it will constrain. Constraints are
declaratively expressed as follows:

(defconstraint min-max-launch-
interval

requirements
:min-launch-interval
:max-launch-interval
:shorter-eq
"rain-max")

The predicate :shorter-eq determines whether the time
interval for the slot :rain-launch-interval is longer
than the time interval for its related slot :max-launch-
interval for any object of class requirements.
Enforcing constraint checking at the slot level was

accomplished by meta-linguistic abstraction, or the
creation of a language on top of another language.
We built upon LISP’s innate message-sending
facilities to base constraint checking upon plan
element slot access. Each time a message that sets a
plan element’s slot is sent, the constraint checker is
fired and works through the set of constraints
identified for that slot. A message to a slot is built
as follows:

(SEND plan-element-instance
slot-message
[new-value1
[setting-indicator]
[justification])

The setting-indicator determines if constraint-
checking should be performed and how to apply the
new value to the slot. The default value indicates that
constraint checking should be performed and, provided
that all constraints are satisfied, the new value should
be placed into the slot. Other setting-indicator values
indicate that constraint checking should be 1)
performed but the new value should not be placed into
the slot, 2) bypassed with the new value placed into
the slot, 3) performed and, provided that no
constraints are violated, the new-value should be
deleted from the slot, 4) performed on new value as 
member of a set and, provided that no constraints are
violated, the new value should be inserted into the
set, 5) performed on new value as a member of a set
and, provided that no constraints are violated, the new
value should be excluded from the set. What happens
when a particular constraint is violated depends on
what type of constraint it is. In some cases, a
resumable error, with an explanation of the violation,
is signalled. In other cases the new value is simply
not applied to the slot.

MACPLAN Features

Plan Development Aids
MACPLAN provides the planner with several features
that facilitate fast plan development.

¯ Movement requirements can be viewed
graphically or textually, in the same format they were
reviewed previously on paper listings, but with the
added ability to select the level of viewing detail.

¯ MACPLAN can group airfields geo-
politically to reduce the complexity of the routing
network.

¯ The system can generate direct routes for
each movement requirement to travel from its onload
group to its offload group. Any legs that cannot be
flown by all the aircraft in the plan are displayed in
red.

¯ MACPLAN allows the planner to select a
region on the map in which he would like to use
some airfields for stop-overs. Any qualified enroute
airfields in the geographic area selected are brought
into the plan.

¯ A graphical plan routing tool, called the
Abstract, provides an interactive electronic version of
the previously described method of developing a
network on paper charts.

¯ MACPLAN automatically adds all known
information about referenced entities to the plan.

¯ MACPLAN tolerates incomplete
information. If the system encounters an airfield that
it does not know about, it accepts the airfield with
default attribute values, allowing the planner to
complete the information at his leisure.
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¯ Planners can expand and modify
MACPLAN’s permanent knowledge base of aircraft,
operators, and airfields.

¯ MACPLAN tracks available versus
requested aircraft totals.

¯ MACPLAN provides the ability to save
and load plans at any point in development. This was
accomplished by writing a genetic module that can
save a list of directly or indirectly referenced objects,
arrays, lists, etc, to file. The file can then be loaded
so that the objects in it are re-instantiated to their
previous state.

¯ Planners can download a plan to the
external simulation by directing MACPLAN to
convert its object-oriented plan format to the
simulation’s record-based format.

Plan Analysis Tools
For quick plan checking, a set of analysis tools was
implemented.

¯ The airlift vs. requirements comparison
determines the ability of the different types and
quantities of available aircraft to move the
requirements as a function of time.

¯ Extraneous network components can be
viewed and selectively deleted from the plan.

¯ A network checker identifies
inconsistencies and potential conflicts in the plan.
Rules incorporating the planner’s knowledge are used
to ensure the consistency of the routing network.

¯ A workload estimator provides a rough
estimate of the airfields’ abilities to sustain the
planned movement.

¯ An internal simulator generates
approximate movement schedules, and identifies more
precisely the times and locations of bottlenecks in the
plan. Although some backtracking is required during
the simulation, it is minimized by identifying the
repeated invariant constraint checks and performing
these checks once prior to scheduling.

User Interface
The user interface was implemented fhst so that we
could effectively evaluate the functionality of the
system with the users as it was developed. We made
a special effort to provide a natural approach, or
interface, to the problem. Thus, the planners played a
key role in designing the interface.
MACPLAN utiliTJeS a dual-headed, tiled-screen

approach to maximize the viewing area and to better
organize information. Menus pop-up in a predictable,
context-dependent manner. Color graphics, with
structured techniques in the visualization of data,
portray the plan and results of analysis tools. Layered
levels of abstraction and detail are used to represent
entities and information in the plan, with the top

level of display containing the least amount of detail.
Mousing on specific icons reveals further levels of
detail. Icons can be directly manipulated to alter the
information they represent. Graphs and maps, with
extensive use of color coding, snapshot movement
tasks versus movement capability at any given time
or place in the plan.
The user interface organizes all of MACPLAN’s

tools and displays. Natural language, implemented
via a semantiC grammar, enhances the intuitive nature
of the interface. Plan guidelines can be easily entered
using natural language, as illustrated below:

Disallow C-5s at airfield A.
Recover all military from group 1 to
group 2 using airfield C
and airfield D.

Implementation Status
MACPLAN runs as a standalone, multi-process, dual-
screen system, on a Symbolics 3600 Lisp Machine.
It is written in LISP using Symbolics’ object-oriented
extension, Flavors. Two and a half years elapsed
from conception of MACPLAN to its deployment in
an operational environment. MACPLAN has been
operationally evaluated by planners for the past six
months.

Evaluation
MACPLAN has enabled planners to develop airlift
plans an order of magnitude faster than before.
Planners often comment that they would have
overlooked important plan details if it had not been
for MACPLAN’s help. New planners, even those
with little or no experience using computers, come
up to speed quickly, and they find MACPLAN
extremely easy to use.

Conclusion and Future Work
MACPLAN employs an integration of AI, numerical
formulae, and graphics technologies to support a
mixed-initiative decision aid. MACPLAN has
successfully enabled new planners to learn their job
more quickly.
Through the success of MACPLAN, our belief in

the viability of artificial intelligence has been
reinforced. Interest in MACPLAN and the problem it
addresses has identified new fields of research in
resource allocation and scheduling at MITRE. Case-
based reasoning and problem partitioning, within the
discipline of linear programming, comprise two of
these areas. These areas will continue where
MACPLAN leaves off. Case-based reasoning will
perform more of the work for the planner. While
MACPLAN allows the planner to reuse a plan for
different movement requirements, the planner has to

103



do all the work in identifying an appropriate plan and
modifying it to move the new set of requirements.
Given a set of requirements, case-based reasoning will
be used to select and adapt a suitable existing plan for
the planner. This type of reasoning also provides a
richly-detailed knowledge base for producing
explanations about behaviors within the domain.
While case-based reasoning reduces the amount of

planning work necessary by utilizing plans already
made, problem partitioning can be used to optimize
those plans. MACPLAN generates a plan which is
feasible but not necessarily optimal. Problem
partitioning will be employed to optimize the plan by
decomposition.
In addition to identifying further research areas in

artificial intelligence, MACPLAN has confirmed our
beliefs in rapid prototyping with emphasis on
developing the user interface up front. Without an
interface to serve as a sounding board, the user
typically loses sight of the benefits that the system
could provide. In addition, the participation of the
user is critical throughout the life of the prototype.
Reviewing functionality periodically enables the user
to see his problem more clearly and to suggest
additional functionality.
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