
Harnessing Detailed Assembly Process Knowledge

William J. McClay and John A. Thompson

Boeing Computer Services Electronics Support
P.O. Box 24346, MS 7L-45
Seattle, WA 98124-0346

Abstract

The Connector Assembly Specifications Expert is an
AI system in use at Boeing which advises personnel in
the proper assembly of electrical connectors. The
information delivered is in strict accordance with the
complex set of Boeing process specification
documents. The system is written entirely in Prolog
and has more than 25,000 rules contained in over 300
knowledge base flies. A companion knowledge
acquisition system written in Lisp and Knowledge
Craft is in development, and a uniform programmatic
query interface is being designed to make the
knowledge bases accessible to any computer system in
the company.

Introduction

The Connector Assembly Specifications Expert System,
CASE (pronounced Casey), is an AI system which has
been in use at Boeing in a production mode since
October, 1986. It advises engineering, manufacturing,
and field service personnel in the proper assembly of
electrical connectors and other electrical terminations
which require special tools for assembly.

Detailed assembly instructions, including graphics, are
printed at the user’s terminal at the end of a typical
consultation; these provide just the information needed to
build a particular device for a particular program (e.g.
747, B-52, Minuteman). The information delivered is in
strict accordance with the Boeing process specifications,
which are contained in the Boeing Corporate Standards,
various program standards, and a large number of military
standards, and whose combined volumes contain over one
hundred thousand pages.

Although the number of pages of specification data
used for electrical assembly is probably no more than
twenty thousand, the process of finding the necessary
information is far from simple. The specification search

time for a person has been measured by industrial
engineering at an average of forty two minutes.

The system of documents to be searched can be likened
to the building codes which apply to a contractor. There
are federal laws, state laws, county laws, and city laws
which all have to be considered before the contractor
starts construction. Certain state laws may take
precedence over federal or local laws, and various aspects
of construction will be found in different books. But all
laws must be considered together, applying those which
take precedence. From these, a set of guidelines must be
assembled which will guide the construction.

The user of the standards documents faces essentially
the same, complex situation. First, all the pertinent bits
and pieces of information must be collected from all the
various documents and sections which might apply to the
assembly at hand, then the instructions and options which
do apply must be sorted out and resolved. Finally, of all
the tools and materials which could be used, the
researcher must decide which tools are available to the
assembler and which methods will be most cost effective
for that shop.

It requires many years of experience to be familiar
enough with the standards system to know where to look
for all the relevant information and not be misled by what
often appears to be conflicting statements in different
sections. The ability to resolve such conflicts and provide
clear and concise instructions to the shop is a rare and
highly valued skill possessed by a small number of "shop
expertS."

One previous system which attempted to automate this
task collected all the bits and pieces which might apply,
but was not able to eliminate irrelevant information. It
produced reports as long as 50 or 60 pages for a single
connector. Another attempted system managed to reduce
the amount of irrelevant information, but the knowledge
about the organization of the specs was distributed
throughout the Fortran code which accessed the database.

Iii

From: IAAI-89 Proceedings. Copyright © 1989, AAAI (www.aaai.org). All rights reserved.

This presented a considerable maintainance problem,
since specs change frequently and sometimes radically.

In late 1984, when this problem was once again
brought up by Boeing Electronics factory management as
lacking a go(xl solution, it was suggested by our
Manufacturing Research and Development Organization
that Artificial Intelligence might be able to contribute
something towards a better solution. It was clear that if
AI were going to provide any help for this problem, it
would be in the area of representing the standards
knowledge in such a way that it would be very easy to
capture, maintain, and reason about.

System Design

There are only a small number of basic questions which
any particular connector assembly standard is intended to
answer, for example:

"What types of connectors are covered in this
document?"

"What is the value of attribute X for connector Y?"

"What contact part numbers can be used in connector
X?"

"What wire sizes can be used with contact X?"

"What tools, materials, and assembly steps are
required to assemble wire size X into contact Y?"

"What tools and procedures are required for inserting
contact X into the connector shell?"

"What sealing is required for unused connector
cavities?"

"Are there any special problems in assembling this
connector?"

It seemed natural that these questions should serve as the
interface between the basic consultation control
mechanisms and the standards knowledge base. This
would eliminate the need for the program using the
knowledge to know anything about internal table
structures, precedence relations between specs, or how to
interpret any lower level data items, which had been the
failings of the earlier database oriented attempts. These
"interface questions" would also provide a basic
framework of goals which would take certain input values
and, through some reasoning process, provide direct
answers without any "ifs" in them.

This type of organization seemed to suggest some type
of intelligent database which could ask questions when
necessary to eliminate the "ifs" and return a set of values
for each solution found. Forward chaining systems did
not seem to fit, since the user must have all solutions to a
given question returned on demand. Exhaustive
backward chaining seemed to be more appropriate for this
purpose and did not seem frightening in terms of search
time, since the standards themselves limit the depth and
breadth of search by explicitly referencing supplemental
documents when needed. Certainty factors were not
needed, since process specifications are very definite
about what is allowed and what is not.

System Implementation

The first prototype system was built using a PC based
expert system building tool and proved to be very
satisfactory with respect to the intelligent database idea.
However, a number of problems surfaced during this
exercise. The f’trst was that processing time during a
consultation was close to ten minutes, which was twice as
long as expected. The next problem was that the system
was required to retain certain information between
consultations. Although there was a solution for this, it
was anything but straightforward using this tool.

Another problem was that it seemed desirable to have a
separate knowledge base for each standards document, so
that each one Could be maintained independently of the
others, but this was not supported. Also, it was inevitable
that this knowledge based system, if successful, would be
widely used throughout the corporation and would have
to run on some sort of mainframe computer system. It
was evident that progressing beyond this early prototype
would be painfully slow unless a better tool could be
found.

An evaluation was made of virtually all the expert
system shells and languages available at that time which
supported the declarative approach. Maximum flexibility,
computational efficiency, and transportablility were
weighted heavily. Since Prolog was similar to the syntax
of the PC based tool, it was tried as the new
implementation language.

The effort to convert the prototype to Prolog took only
a couple of days and the results were impressive. The
performance was two orders of magnitude better, and it
was now running on a VAX. There was no problem
breaking up the knowledge base into separate chunks for
each standard and consulting them when needed.
Keeping certain consultation parameters around for more
than one consultation was also not a problem.

On the down side, it took a couple of months to replace
those nice user interface and consultation control features

112

provided by the expert system tool. However, this was
viewed as an opportunity to provide a custom look and
feel for the system which could be extended as needed.
User interface utilities were developed to provide such
features as auto completion for user inputs and automatic
menu generation from a list of items. Though still
lacking in sophistication, the new "shell" was functionally
adequate for continuing the project.

The next big challenge was only beginning to be fully
appreciated. The problem was that each knowledge base
had to be an intelligent agent, able to interpret
information being returned by other knowledge bases and
selectively accept, reject, or replace any piece of
information in the answer being returned. This required
some way of labeling each piece of the answer at the
proper granularity so that it could be easily reasoned
about at some higher level.

This process of filtering knowledge was helped by the
use of Prolog structures. For example, each text note can
be represented by a note slructure such as: note(’BAC
5162-9’, ’Strip insulation 11/16 inch and double back
conductor on itself before crimping’, [sa’ip, double_back],
bac5162_9fig8). This note structure identifies the text of
the note as having come from document BAC 5162-9 and
it labels the contents as discussing both the stripping and

doubling hack of the conductor before crimping. The

note also references a figure 8 which illustrates the
operation.

These structures are easily recognized and manip-lated
by the pattern matching capabilities within Prolog, which
facilitated the writing of rules to deal with them. For
instance, ff in a higher precedence spec the use of a filler
wire is specified instead of doubling the conductor back,
the note covering the "doubling back" is easily identified
in the instruction list and replaced with the "idler wire"
note along with another note to cover the stripping
requirements.

Compared to a typical database system, the fzeedom
and expressiveness of a symbolic language such as Prolog
was a welcome relief and most likely a critical factor in
the success of the project, connectors vary considerably,
and representing the knowledge about how they are
assembled requires a flexible and expressive knowledge
modelling language. Extensive use was made of the
built-in operations on lists and the very powerful pattern
matching capabilities of special data structures like the
note structures just mentioned.

As illustrated in Figure 1, the system architecture
features a "knowledge base network" concept. The bold
boxes and arrows represent the passing of information

User presentation I -<

knowledge base

t
User profile

knowledge base

Specification search control
knowledge base

User response
knowledge base

Program Program Program Program Connector
document document document document cross reference

KB KB KB KB KB

Seal
plugs

KB

Connector spec Connector spec Connector spec Sealing
KB KB KB rod

KS

Sealing Wire Wire

~.~ Wire materials [

rod selection materials materials cross reference
KB KB KB KB KB

Figure 1 - CASE Knowledge Base Network

113

from knowledge base to knowledge base until the answer
to the query is finally assembled and returned to the
Search Control knowledge base. Once all of the possible
assembly methods are collected, Search Control selects
the optimal choice or choices using various parameters
contained in the user’s proftle, and a report is printed on
the user’s local printer.

System Validation

An early prototype was installed in the shop in late 1985
and was well received as being responsive, friendly, and
very easy to learn to use. Over the period of the next year
a considerable amount of knowledge was captured in
knowledge bases and enthusiasm for its capabilities and
potential cost savings was widespread.

Despite this success, other obstacles had to be
overcome before this technology could be widely
deployed. When it was decided to have a formal
acceptance test in October of 1986, a test team selected
ten test cases and proceeded to do the research for each of
them. There was no advance notice given about those
tests, only that CASE had the required knowledge bases
to complete the consultations.

In six of the test cases, both CASE and the test team
came up with the same results. In two others CASE
contained typographical errors which were obvious to
those performing the test and would not have misled
users. In the last two cases the test team missed some
obscure Process Specification Departure (PSI))
indicated a tool and pr(~.edure which was not actually the
latest information according to the standards.

This satisfied manufacturing that CASE could be
trusted for building hardware, and this was the beginning
of its regular use. However, CASE was not considered to
be engineering authority and q, ality control would still
have to use the paper system for their final check that
everything was done correctly. All that could be claimed
was that a CASE report was probably more reliable than a
spec search by an experienced researcher.

Knowledge Acquisition

In order for CASE to have engineering authority, it would
be necessary for those engineering organizations currently
responsible for the process specs to actually produce and
maintain the knowledge bases. No amount of testing
would ever insure that the hand coded CASE knowledge

Spec writer

Assemble

~lnterpret iandwritten 1I "~

Shop expert I Shop
m

42 minutes, error prone

.....................
//~xpert interpretation

i~::~ ~i~:.!~ ~i::~ii!~ii::ii~ ~:~" ~’~!~i~ ::~::-~:~i:~i~;;e~ff~::::.~::~::~::~ ~

Spec writer AI programmer
, I I

Create

One time 4 minutes, error free

Assemble

:~ Printed i "~

Knowledge -- ~;ii:!~ !i!:~.~ ~:~:!i:ii~i!:-I
acquisition
workstation I Shop

4 minutes, error free

Other

1989 r~’

Spec writer

Figure 2 - Automation of Standards Usage

114

bases were absolutely correcL This gave rise to a
knowledge acquisition project started in 1987 which
would not only take care of the engineering authority
issue, but would provide a significant productivity
improvement for those engineers engaged in creating and
maintaining standards documents.

The solution was a workstation which would include a
model of a connector assembly specification and would
engage the engineer in a dialog to "fill in the blanks" (see
Figure 2). A Symbolics workstation running Knowledge
Craft and Lisp was used for this prototype knowledge
acquisition system, and after a considerable development
effort during 1988, a more advanced prototype was
demonstrated which solicits the necessary information
from the engineer by asking for various tables to be filled
in, graphics to be scanned in, and assembly instructions to
be entered into various forms which capture their
underlying meaning.

The information collected by the knowledge acquisition
system is stored as a network of related objects. From
this set of objects, which is called the neutral format, the
system can produce a CASE knowledge base in Prolog or
a human-read_~ble document ready for publication in the
paper system (see Figure 3). In order to achieve the
document generation capability, Concordia, a Symbolics
product which provides desktop publishing functionality,
was integrated with the Knowledge Craft knowledge
representation capabilities. Without this upcoming
knowledge acquisition workstation, the CASE staff would
be forever in the business of maintaining standards
knowledge bases and CASE would forever be restricted
to use only as a "shop aid."

Knowledge Accessibility

The most recent development project is to provide CASE
knowledge directly to other software systems. Since the
CASE knowledge bases can be queried much like a
database, a special interface was constructed late in 1988
which provided assembly data to an IMS database
application program running on an IBM mainframe.
Although this is as yet only a proof of concept, work is
proceeding on a "knowledge gateway" with a general
purpose query language which can be used for knowledge
base queries as well as database queries (see figure 4).

The primary difference in querying a knowledge base is
that the system initiating the query must be able to answer
questions from the knowledge base being queried. The
reason for this is simply to satisfy the knowledge base’s
need for data as it seeks to find a solution for the stated
goal. If the calling application does not happen to know
the value of the attribute being asked, it can ask the
knowledge base how to ask the user for the information.
In this case the knowledge base returns the correct prompt
string, the type of question (yes or no, single value,
multiple value, etc.), a list of possible values, and a help
message describing why the question is being asked and
the consequences of choosing a particular answer.

It is hoped that this approach to putting knowledge "on-
line" will help to solve the expert knowledge access
problem and even allow applications to reason across
several expert knowledge sources.

#"

.Engineering
workstation

for
engineer/author

Knowledge -I~ ~ Conversion to Spec
acquisition corporate -. paper
system shell standard copyformat

t \
Knowledge Conversion to [...~ ~about CASE logicconnector formatspecs

Figure 3 - Standards Knowledge Acquisition System

115

Standards
Knowledge
Acquisition

System I ~ ~ Other
Corporate

types Engineering

4 Spec ~ofspecs

Standards
Organization

Knowledge [

Bases
Databases

Mainframe

I Hosts

I

Shop

Connector
Assembly

Specifications
Expert System

Engineering
Standards
Delivery
System

Wiring
Information

Release System

!-
I
I
I
I
I
L.

---I
I
IOthers I
I
I

,.I

Boeing
Divisions

Figure 4 - Future Standards System Concept

Conclusions

CASE currently is running on a MicroVAX II; it is
written entirely in Quintus Prolog and has more than
25,000 rules contained in over 300 knowledge base t-des.
It has its own expert system shell which maintains the
context of the consultation and deduces answers to
questions issued by the knowledge bases from previously
entered information or from the user’s profile whenever
possible. The shell is now being used for other expert
system projects and is constantly being expanded in
capabinty.

CASE represents more than six person years of effort
over a four year period. It reduces the specification
search time to as little as two or three minutes and
reduces the report size to as little as one page. But most
important, CASE greatly reduces the dependence on
"shop experts" and provides information which is of the
highest possible q~mlity.

References

M. L. Brodie, J. Mylopoulos, On Knowledge Base
Management Systems, Springer-Verlag, 1986.

B. Chandrasekaran, "Generic Tasks in Knowledge-Based
Reasoning: High-Level Building Blocks for Expert
System Design", IEEE Expert, Fall 1988.

L. Kerschberg (editor), Expert Database Systems, Proc.
1st International Conference on Expert Database Systems,
1986.

S. Marcus (editor), Automating Knowledge Acquisition
for Expert Systems, Kluwer Academic Publishers, 1988.

W. J. McClay, P. J. MacVicar-Whelan, "AI Based
Connector Assembly", Applications of AI IH, SPIE,
1986.

W. J. McClay, P. J. MacVicar-Whelan, "A Knowledge
Base Network for Connector Assembly Specifications",
rr~l~.E Computer Society Conference on Robotics and
Automation, 1988.

J. D. Ullman, Principles of Database and Knowledge-
Base Systems, Computer Science Press, 1988.

116

