From: IAAI-90 Proceedings. Copyright © 1990, AAAI (www.aaai.org). All rights reserved.

INcCA—AN INnnovative
Approach to Constructing
Large-Scale, Real-Time
Expert Systems

R. Phelps, F. Ristori, D. Mukherjee, L. Thomae, and J. Steinier

This chapter describes the intelligent network controller assistant
(Inca), an innovative system that shows that large-scale, real-time ex-
pert systems can be developed as a matter of course, on schedule, and
with the same degree of reliability expected of conventional data pro-
cessing systems.

In developing this system, several more detailed innovative aspects
were introduced. First, real-time performance is necessary for network
control, which was achieved using standard (rather than specifically
real-time adapted) hardware and operating systems. Second, the fault
tolerance of the system is essential for such real-time control; so, INCA
incorporates an online backup.

Finally and perhaps most importantly, INCA is a new expert system ap-
plication for a company’s core business, with all the risks and visibility
that this responsibility exposes INcaA to. Therefore, reliability, efficiency,
and usability were mandatory; this project could not hide behind de-
scriptions such as “prototype” or “demonstration of principle.” Other

4 PHELPS, ET AL.

expert systems for network control have been developed (Goyal and
Worrest 1988), but none of them directly confronts the core business
issue where failure can be catastrophic.

The application of Al and, in particular, expert system techniques in
real applications is now relatively widespread (for example, as shown at
the third conference on Al sponsored by the Institute of Electrical and
Electronic Engineers). However, most developments have characteris-
tics that set them apart from more conventional data processing devel-
opments and that can give the impression that Al remains a specialist
niche only capable of producing small-scale gains in isolated areas of a
company’s activities.

In particular, it is still unusual for Al systems to be truly integrated
into an organization’s existing computing infrastructure; although in-
terfaces from expert system shells to some databases have become com-
mon, real-time interfacing is still a rarity, as is the networking of Al ap-
plications into distributed systems. Furthermore, applications are
rarely developed in critical areas of a company’s business; understand-
ably, they tend to be used where a fallback to existing or manual meth-
ods is possible without serious disruption to the business.

INca tackled this problem by developing this large-scale Al applica-
tion in a way similar to non-Al system development. A software devel-
opment methodology was developed and followed to ensure tight qual-
ity control (reflecting the sensitive area into which the software would
be introduced and a tight schedule) and, at the same time, allow the
flexibility needed for an Al development where the incremental extrac-
tion of knowledge from the experts means that rigid linear develop-
ment is not possible. In addition, the methodology had to allow for the
controlled introduction of the software into the live environment to
minimize the chance of a serious failure.

Of necessity, the traditional waterfall approach to software engineer-
ing, where the development proceeds in consecutive order from speci-
fication to code, could not be applied. Because the functions to be per-
formed by the system were implicitly specified by the reactions made by
experienced operators to (initially unspecified) event streams, it would
have been necessary to first obtain a complete knowledge dump from
the operators of all significant event patterns and all reactions before
proceeding with system construction. This approach was impossible
both because of time constraints and, perhaps more importantly, be-
cause experience in knowledge elicitation indicates that a recursive
prompting of experts by reaction to prototype rule implementations is
necessary for the full extraction of available knowledge. This latter
point was found to be true, and it even surprised the experts.

The standard alternative promoted within Al is the prototype-and-re-

INcA 5

fine cycle. In its basic form, this approach was also unsuitable for the
introduction of software into a critical aspect of company operation.
Full testing of the software is time consuming, and final evaluation can
only be done within the live network environment, with its rich possi-
bilities for interacting events and situations. However, it was imperative
that disruption to our network be avoided: The introduction of Inca
onto the network was possible only once; no interactive introduction as
part of successive refine cycles could be contemplated. Therefore, a
modular prototyping approach was developed to overcome these prob-
lems (Phelps, Ristori, and Steinier 1989).

Schedules were drawn up before the approval and start of the pro-
ject (drawing on the experience of a quick prototyping phase) and ad-
hered to. Although the hardware and software used were Al Lisp work-
stations and expert system shells, they were typical products in their
field and did not require specialist real-time skills. The client group
was involved throughout the project and was responsible for signing
off the system modules as they passed their quality control testing and
for approving live installation. Training plans for users were drawn up
and implemented in parallel with system development. User proce-
dures were documented, and fault tolerance was built in.

All these points helped to ensure that system development proceed-
ed on time and that its quality was in accordance with the stringent re-
quirements of the clients. The implementation of INca replaces net-
work operators. The potential for a network control system to cause
network downtime should it malfunction is clearly very great; in our
network environment, downtime of even a few minutes has a severe im-
pact on financial transactions worldwide. Therefore, building the sys-
tem to the highest possible standards was mandatory. We believe that
INcA has shown that expert system technology is now mature enough
for large-scale projects to be introduced on a routine basis even in criti-
cal software environments.

Network Control

The Society for Worldwide Interbank Financial Telecommunication
(S.W.1.LF.T.) network provides automated international message-pro-
cessing and message transmission services between financial institu-
tions. The S.W.I.E.T. network covers all continents, with banks in more
than 60 countries, totaling more than 3000 users (mostly banks). The
S.W.LLF.T. network now handles more than 1 million messages a day
and has become an indispensable financial tool worldwide.

Figure 1 provides an architectural overview of the S.W.L.LF.T. network.

6 PHELPS, ET AL.

(US) (NL)

Swi SW5

Sw2 SW6

SW3 SW7

72\
N4

Sw4 Sw8

%I

Figure 1. S.W.I.F.T. Network.

It consists of three layers: the control layer, the relay layer, and the user
layer. The control layer refers to the two operating (control) centers, lo-
cated in The Netherlands and the United States, that are the hub of
the network. They house eight mainframes called switches, or active sys-
tems, that supervise the S.W.I.F.T. network operations, such as system
monitoring, message archiving, and reporting. The relay layer consists
of several regional processors (RGPs), typically, one per connected
country. RGPs are the computers serving as relays from banks to the
operating centers. Finally, the user layer refers to the banks’ computer-
based terminals (CBTs). In terms of the physical structure, all bank
CBTs are connected through dedicated links or telephone lines to
RGPs, which are then connected to the active systems. Several RGPs
might be interconnected. communications between active systems are
accomplished either through direct physical connection or through
satellites, such as for transatlantic communications.

Day-to-day control of the network is currently provided by teams of op-
erators working around the clock at each of the eight active systems.
Each active system has a printer (LSP) attached to show network events
received and a monitor (VDU) to enter system commands. It is the job
of the operators to detect event patterns indicating network malfunction
and to issue appropriate commands. This setup is shown in figure 2.

INCcA 7

Active Active
System System
1 2

VDU
LSP LSP
VDU LSP
LSP
Active Active
System System
3 4

Figure 2. Operating Center.

Automated Event Handling
Figure 3 gives an example of events arising from an active system. From
the time stamp, it can be seen that a great many events can occur to-
gether, which is typical if a network problem occurs, with the basic fault
triggering further error reports as its effects arrive at other network
points. INca performs two functions: First, it filters these incoming
events, diagnosing which combinations indicate problems and which
do not. Second, it displays problems requiring attention as “tickets” in
a window. The windowing interface is shown schematically in figure 4.
Other windows on the operator’s display give additional back-
ground information about the problem, and another window gives a
choice of possible actions that the operator might want to take. If the
operator chooses to perform an action, it is automatically checked
for validity against built-in S.W.I.F.T. procedures. Many problems are,
in fact, automatically responded to by the system without the opera-
tor needing to act at all. In this case, the system allows the operator

8 PHELPS, ET AL.

Time EVENTS

}

]

]

]

]

|
4:29 NODE 02 LINK 2C CKT 00 DOWN i
4:29 NODE 40 ISOLATED LINK 2CCKT 00 FAILED |
4:29 CIRCTL/OPEN/CIRCUIT/OA/4E i
4:29 NODE 02 LINK 28 CKT 00 OUT OF SERVICE i
4:29 NODE 02 LINK 28 CKT 00 OUT OF SERVICE !
]

}

Figure 3. Active System Events.

to see the full stream of incoming events, if so required.

The LSP window is not strictly necessary but allows the operator to
gain confidence in INcA. As an example, consider the following se-
guence of actions typifying the way events are handled by INca, when
an event is received stating that the data communications processor
(DCP) buffer saturation is greater than 50 percent. This buffer holds
messages to be sent from the associated active system. INCA initiates an
interrogation process to check the saturation level once a minute. If it
drops below 50 percent, the problem is solved. However, if it rises
above 75 percent, then commands are sent to temporarily prevent
banks from sending messages to the active system, and the operators
are advised to disable any other internal network links that are unsta-
ble. A time-out is set for 10 minutes so that if buffer saturation remains
above 75 percent through the 10 minutes, then another DCP is reload-
ed (that is, processing is swapped to another, standby DCP). If an oper-
ations time-out is received within the 10 minutes, which indicates total
saturation, then another DCP is immediately reloaded.

To reload another DCP, Inca first checks if one is on standby. If not,
it will either be on standby for a different active system or be unavail-
able. In the first case INca reallocates this DCP to stand by for this ac-
tive system; in the second case, the operator is asked through a screen
display if it can be used. After reloading, the buffered messages are re-
sent by the active system. If another DCP is not available, the original
one is reloaded. The reloading produces a system dump that will be
looked at by the system support group and can solve a DCP problem if
it is not simply the weight of traffic causing the saturation. For reload-
ing, the operator is requested to physically switch the connections to
the new DCP using a t-bar switch.

After reloading, the network status must be checked. Inca does this

THE OPERATOR INTERFACE WINDOW

1
: i
1 1
1 1
1 1
1 1
1 1
: 1
1
1
I DANTES Operating |
i on SWIETI System Status Info !
. i
1 1
: 1
1 Description : i
i Windows LSP Window :
. i
: 1
1
i Command Items Available Response Window]
1
| :
1
! Arguments Window 1
: Ticket Items 1
i Available :
: VDU Window 1
. i
1 1
1 1
| :

Figure 4. Inca Operator Interface.

checking by reconciling (interrogating) its connected regional proces-
sors and lines for their statuses; INca knows that if any RGP has been
isolated for more than 20 minutes because of the DCP problem, it also
must be reloaded. This decision to reload an isolated RGP then causes
other INnca RGP reload procedures to come into action.

In addition, INca keeps a counter history for DCP; should the prob-
lem recur in less than an hour, it displays a ticket to the operator advis-
ing an immediate reload, shortcutting the previous procedures.

The expert system is built using the Dantes tool, which was specifical-
ly developed for network applications (Mathonet et al. 1987). It uses
an object-oriented paradigm supporting rules. It is functions similarly
to the many other expert system tools of this sort now available. A dia-
gram of part of an Inca rule is shown in figure 5.

The rules were obtained from experienced S.W.I.F.T. senior opera-
tors who acted as the project’s experts and formed part of the project
team. The system performs pattern matching on the antecedents of
these rules to fire the consequents that typically consist of sequences of

10 PHELPS, ET AL.

ISC LINK FAILURE

ISC CKTxx O pf., Event Indicating Loss
L p| of One ISC Circuit
No 2nd Circuit Yes
r Already 0.0.5.? —’?
Wait

SWOVER Process
on Progess?

Max. 3 Min.
1 No \
Yes
"ISC Link Down"
or Back-up Procedure Down!
"No Status From Secondary Proc." Both ISC's Down
Received? l

| !

Consider When

Display @ SWOVER is Attempted
Problem
END END

Figure 5. Part of an Inca Rule.

gathering additional information from the network and sending net-
work commands (for example, disconnecting and reconnecting a link
or putting displays on the screen).

The Dantes rules are defined for specific classes of objects and com-
prise three parts. The trigger specifies the network events or system ac-
tions that can cause the rule to fire. The trigger focuses the control of
the inference procedure and avoids unnecessary search. The state is the
value that an object must have for the rule to be fired. The body of the
rule contains Lisp forms and is generally an If condition-Then action
form (Mathonet et al. 1987). Temporal information plays a large part
in the evaluation of events and in the rules.

The filtering and the automated responses, coupled with a simple
mouse and menu user interface, reduce the amount of human atten-
tion needed for the incoming events. Thus, in place of one team of op-
erators for each active system, one INcA team controls four active sys-
tems. Examples of the network problems that Inca can handle are

Inca 11

Active Active Active Active
System System System System
1 2 3 4
EXPLORER

INCA

Figure 6. Inca in the Operating Center.

regional processor reloads, regional processor swaps, regional processor
isolation procedures, link instabilities, and user line problems.

In addition to dealing with incoming events, INca also has a dynamic
network model builder that enables it to automatically update its
model of the SSW.I.F.T. network by interrogating the system compo-
nents. The dynamic network model builder allows it to automatically
adjust to changes in the network configuration that regularly occur.
Also, reporting facilities were written to allow the selection of previous
events received and to keep backup copies of the event stream.

Embedding in the Network

INcA runs on two Explorer 1l Lx workstations, one in each SW.I.E.T.
operating center, each controlling half of the network. This division
into halves both allows for phased changes from current operations
and cuts the risk from Inca failure in half. The one multiwindowing
Explorer is directly connected to four active systems, as shown in figure
6; thus, the original eight display and command devices have been re-
placed by just one terminal. To ensure continuity of operation, each

12 PHELPS, ET AL.

THE EXPLORER LXII PROCESSORS TO SECOND EXPLORER

LISP UNIX CCB PIT
TTY

LSP
LINE

CCB
POL/SEL VDU
LINE

CONNECTIVITY

Figure 7. The Explorer Connectivity.

Explorer is connected to a backup Explorer that can immediately take
over control in the event of a failure in the active machine. Connection
to the active systems is through communications boards and pro-
grammable interface translator boxes to deal with the different proto-
cols understood by the two types of machine and to enable signal split-
ting for the backup Explorer (figure 7).

The hardware is a Texas Instruments Explorer 11 LX machine run-
ning Unix. Although these workstations use Lisp, they do not involve
the use of proprietary real-time operating systems or special real-time
memory management but ordinary, nonreal-time processes such as
garbage collection. In keeping with Al development, we used the
Dantes shell as the programming environment. Dantes is an object-ori-
ented environment using rules and is based on Lisp.

The backup is designed so that in backup mode, the Explorer re-
ceives all the events from the network that the active Explorer does, but
it does not send commands to the network in response. Thus, the back-
up machine is kept fully updated on network events and can function
immediately when switched into live mode. This backup design raises
the issue of protection against software errors as well as hardware fail-
ures. It would be possible to have either a different software release on
the backup machine or an activation of the backup with a slightly
changed internal state by only allowing the backup to make deductions
from a limited time window before becoming live. In either case, the
idea is to avoid a software error that causes both machines to go down
simultaneously. This possibility is the subject of continuing research.

Inca 13

Schedules and Implementation

A brief prototyping exercise was carried out during the first quarter of
1989. The INca project officially started in April 1989. INca has been
working in one control center since October 1989; its processing func-
tions were introduced in phases to minimize risks. INcA became com-
pletely operational at S.W.I.F.T.’s Netherlands Operating Center net-
work control in February 1990 and at the U.S. center in May 1990.
Experience to date has shown it is working well and is well accepted by
the operations staff.

At the time of this writing (July 1990), the system has stabilized in
use after we fixed a number of bugs that escaped the rigorous testing
procedures. None of these bugs was serious enough to cause signifi-
cant problems, and INca was never withdrawn from operational use.
On-call maintenance was provided for this initial period by SW.I.F.T.
knowledge engineers from the development group and the operations
experts from the group. Maintenance will be turned over in stages to
S.W.LET.’s internal system support group, which is receiving training
to deal with this new technology.

Reaction from users has been good: The operators have learned that
INcA can be relied on to deal with the vast majority of network events.
In fact, 97 percent of all events are automatically handled by INca; of
those remaining, the majority require manual actions, for example,
changing a disk pack. Regular review meetings are held with the opera-
tors to ensure their views are understood. Various minor amendments
have been made, for example, reducing the number of mouse clicks
needed to send some commands, but no serious changes have been re-
quested or needed.

In one respect, the reaction has been too good. The quick, on-sched-
ule development of this complex system prompted a series of requests
for additional features and functions to deal with other network as-
pects besides problem troubleshooting. After evaluating resource re-
quirements and cost effectiveness, a number of these enhancements
were successfully implemented. Procedures to discuss and control the
growth of wish lists have had to be introduced. It is already clear that
the project goal of substantial staff member saving can and will be
achieved.

The development team consisted of a core of five people, three from
S.W.L.LE.T.’s corporate research group and two from operations. In addi-
tion, two knowledge engineers from Texas Instruments were attached
for the first half of the development process. The total expenditure of
time was six person-years. The system was phased into operation over
the period from October 1989 to February 1990.

14 PHELPS, ET AL.

The criteria for successful implementation were that Inca should
achieve staff savings, should be accepted by the client group for the
functions it performs and its quality, and should improve response
times and limit network downtime compared with the old system. Pay-
off to SW.I.LE.T. will be in the form of reduced network operator labor
needs, estimated by the clients to be a reduction of 50 staff members.

Conclusion

We showed that a professional and structured approach to designing
and implementing large-scale expert systems can lead to these systems
being produced on time and within budget and being successfully ac-
cepted even in a most critical environment. We hope that this experi-
ence will help to remove some of the mystique surrounding expert sys-
tem development and show that they can now be treated as one more
element in the software engineer’s tool Kkit.

It is possible to apply the techniques used in this project to areas
other than network management. For example in financial dealing
room systems, a similar environment exists: Many financial events are
being reported, and the benefits of intelligent filtering and an automat-
ed response to common situations such as arbitrage opportunities are
evident. The techniques we applied in INca could also be applied here.

Research and development in many aspects of expert systems are still
needed. However, the basic rules and object paradigm should now be
accepted in the same way that, for example, the development of large
databases is accepted as part of commercial information technology.

References

Goyal, S. K., and Worrest, R. W. 1988. Expert System Applications to
Network Management. In Expert System Applications to Telecommunica-
tions, ed. J. Liebowitz, 3-44. New York: Wiley.

Phelps, R.; Ristori, F.; and Steinier, J. 1990. Managing Al System Devel-
opment in Critical Large-Scale Applications. In Proceedings of the
Sixth Conference on Artificial Intelligence Applications. Washington,
D.C.: IEEE Computer Society.

Mathonet, R.; Van Cotthem, H.; and Vanryckghen, L. 1987. Dantes: An
Expert System for Real-Time Network Troubleshooting. In Proceedings
of the Eleventh International Joint Conference on Artificial Intelli-
gence, 527-530. Menlo Park, Calif.: International Joint Conferences on
Artificial Intelligence

