
ReValuator—An
Expert System Approach
to Actuarial Valuations
S. Meltzer and D. Sriram

Expert system technology has now matured so that task-oriented busi-
ness programs can be rapidly prototyped, developed, coded, and de-
ployed on desktop and laptop personal computers. This rapid develop-
ment and deployment is especially true when the task is well defined,
and the target user has little knowledge in the specified domain. This
chapter sketches the successful implementation of an actuarial pro-
gram designed to assist a nonactuary in detailed actuarial analysis.

During the past few years, sophisticated microprocessors have been
placed in desktop and laptop computers. As a result, these computer
platforms can now accommodate expert systems that once ran only on
specialized computers or mainframes. The expertise captured in the
knowledge-based system can be distributed on these relatively inexpen-
sive computer platforms to locations where no expert is available for
consultation.

This chapter describes the development of an expert system called
the ReValuator and includes the following sections: (1) Problem Defi-
nition, (2) Description of the AI Technology Used, (3) Functional
Overview, (4) Architectural Overview, (5) Example of Model in Opera-

From: IAAI-90 Proceedings. Copyright © 1990, AAAI (www.aaai.org). All rights reserved.

tion, (6) Innovations, (7) Criteria for Successful Deployment, (8) Na-
ture and Estimate of Payoff, and (9) System Evolution.

Problem Definition
The U.S. Treasury/Internal Revenue Service (UST/IRS) and the De-
partment of Labor monitor compliance with the Employee Retirement
Income Security Act (Erisa) enacted by the U.S. Congress to protect
the pension rights of the rank-and-file employee. Every corporation or
company that is in business for profit—as opposed to an institution
that is nonprofit, such as a school or church—must comply with Erisa
if it wishes to maintain its tax-deductible pension eligibility. Erisa re-
quires that an actuarial certification, called a Schedule B, be submitted
annually to UST/IRS for each pension plan. Millions of these actuarial
certifications are submitted, and each one of these certifications is
signed by one of 5000 federally certified actuaries.

The few certified actuaries who work for UST/IRS do not routinely
review Schedule B submissions. This task is the responsibility of
UST/IRS field staff members who have little if any formal actuarial
training.

Like every discipline, the actuarial domain has mathematical formu-
las and nomenclature that are unique to the trade. The average actuar-
ial student spends five to seven years after college graduation before
achieving certification in an actuarial specialty. Therefore, field staff
members are at a tremendous disadvantage when conducting an actu-
arial audit of a pension plan. The need to keep staff members up to
date about additional legislative amendments to Erisa compounds this
difficulty. Needless to say, many private actuaries are aware of this in-
ability to monitor compliance and use their actuarial training to boost
pension tax deductions to more than is actuarially needed.

Because there are not enough federal pension actuaries to validate
the Schedule B submissions, the IRS deputy commissioner and the as-
sistant commissioner of employee plans decided a stand-alone system
that captures the knowledge of an expert pension actuary in an inex-
pensive computer would aid Erisa compliance.

Description of the AI Technology Used
If successful, the project had to prototype, develop, test, and deploy an
actuarial system within six months. The system developed (1) consults
with a nonactuary in choosing reasonable actuarial assumptions, (2) as-
sists a nonactuary in understanding the implication of the assumptions

40 MELTZER & SRIRAM

chosen, and (3) produces an actuarial evaluation based on the assump-
tions chosen.

The rapid prototype and development was accomplished by integrat-
ing expert system technology with C language interface calls and a
database. The expert system captures and reproduces the knowledge
of a pension actuary. The C language calls speed procedural process-
ing, specifically, the calculation of actuarial factors. The database stores
case data.

An expert system shell was used to rapidly prototype an application
and convince management that a system could be developed and test-
ed within a specified time frame. Rapid prototyping helped to sell
management on what the system could do and to establish continuing
management support for the project—a key element in the successful
development of any computer program. The ability to convince man-
agement cannot be understated. The decision to use an expert system
shell (Nexpert by Neuron Data) was not made by IRS management;
their concern was, understandably, rapid deployment. The choice was
made by the programmer (Seth Meltzer). (This point is made because
of the time required to learn a shell, time that is not used writing
source code in some native language.)

Some managers might not be concerned with how a project is ac-
complished or the time savings that can be earned in later projects as a
result of the time invested learning new tools; witness the relatively
slow acceptance of structured techniques and object-oriented program-
ming in the computer programming community. Therefore, the deci-
sion to use an underlying development shell can undermine the suc-
cess of a project if the startup time on a shell leaves little time to
construct a demonstrational system. An expert system shell was chosen
for two reasons:

First, in the initial development of the IRS prototype, the actuarial
experts were not certain what input-output was required. The shell en-
abled the programmer to rapidly code and demonstrate to the expert
any new idea proposed. For example, in the initial development, the
expert wanted the system to include questions concerning retirement
age. Although retirement age is not usually challenged by IRS, in some
occupations, the normal retirement age is significantly less then 65 (for
example, professional athletes). A low retirement age can significantly
increase the amount of taxable deduction. Therefore, a pension audi-
tor might need guidelines to decide when and how a low retirement
age should be challenged. Working with the shell, the programmer was
able to rapidly include a normal retirement consultation in the proto-
type system. This inclusion would take significantly more time and ef-
fort using a native language than an expert system environment. In ad-

REVALUATOR 41

dition, because the expert decided to exclude the retirement age
guidelines from the final system, needless programming was avoided.

Second, all available actuarial computer source code was in a native
language (for example, Fortran, Basic, Cobol) written without the use
of structured techniques. The code was judged not usable.

Functional Overview
The user requests an actuarial valuation consultation by inputting a
pension plan name. ReValuator makes an external call that loads the
pension plan records from a database. After the database file is read,
the records concerning the pension plan are loaded into ReValuator.
Objects are made by instantiating appropriate classes.

For example, an object is made for each type of pension plan trust
fund asset read in from the database. A type of asset is, for example,
cash, bank account, bond, or stock. The asset objects are instantiated
from the class “asset,” which has the following slots: amount, invest-
ment income, percentage return, and confidence factor of percentage
return.

The system consults with the user about the reasonableness of each
actuarial assumption (Fikes 1985). The user chooses to accept the pri-
vate actuary’s assumptions (that have been read in from the database)
or decides to suggest a new actuarial assumption or assumptions. Actu-
arial factors based on the new actuarial assumptions are computed by
external C language routines, and the actuarial valuation is computed.
The program allows the user to make what-if changes to the assump-
tions. If the assumptions are changed, the system recalculates the actu-
arial valuation and again allows the user to change assumptions. If
there are no changes, the session is done.

Architectural Overview
The current model, depicted in figure 1, underwent several major
structural reorganizations. The knowledge base in the current model is
divided into three layers (Nii and Feigenbaum 1982). The first two lay-
ers, strategy control and activator control, manage the flow of the con-
sultation. The last layer, specialist control, supervises the resolution of
the consultation subgoals, for example, the determination of an ex-
pected fund earnings rate.

The strategy control module (SCM) is a single rule set that calls the
activator control module (ACM). SCM is always resident in memory.
ACMs call the specialist control modules (SpCMs). ACM determines

42 MELTZER & SRIRAM

SpCMs to load and the priority in which SpCMs are executed. Only
one ACM is resident in memory at any instant in time. SCM unloads
the current ACM before loading another ACM. SpCMs bind user vari-
ables, such as expected fund earnings rate or life expectations. More
than one SpCM can be in memory at any instant in time. ACM unloads
all current memory-resident SpCMs before returning control to SCM.

For example, suppose a consultation is requested to determine an
acceptable expected fund earnings rate for the pension fund. SCM
loads the interest rate ACM. The interest rate ACM chooses from asset
split, employee salary scale, number of years till last current employee
retires, and so on. The expected fund earnings rate is computed as a
result of binding each applicable subgoal.

Adding an additional permanent or testing subgoal is now accom-
plished by adding a separate SpCM. The additional SpCM rule set can,
if necessary, hide any effects from other rule sets. If a new major struc-
ture is needed, the programmer can add another ACM.

Example of Model in Operation
The following abridged example illustrates how flow control is trans-
ferred from rule set to rule set and within rule sets. The example as-
sumes (1) the user is consulting with the system about the applicability
of the assumed retirement age submitted by the private actuary, (2) the
slot value ST.current (strategy level) is set to App_Ara (approval as-
sumed retirement age), and (3) there are no current goal-driven
searches.

Because there are no more goals to resolve, the system looks for any
changes in slot values located in rule antecedents. It finds new slot-
value changes in ST.current, and the forward chainer is triggered. The
current activator level rule set is unloaded, and extraneous rules are re-

REVALUATOR 43

Strategy Control

Activator Control Level

Specialist Control Level

Figure 1. Architectural Overview.

moved from memory. The next activator rule set is loaded. Note the
following example:

If ST.current =
ApprovalAssumedRetAge
Then ACT.H_app_ara Is TRUE
and Unload knowledge base
ActAssumptionAsset.kb Load knowledge base
ActApprovalAssumRetAge.kb

A context-switching mechanism is used to create a goal-driven search
for the slot ACT.H_app_ara_done in the activator rule set.

To resolve ACT.H_app_ara_done, the user is asked to select one of
three choices: (1) accept the actuarial assumed retirement age (ara)
read in from the database, (2) input a new ara and override the as-
sumption read in from the database, or (3) consult the system for a de-
cision before selecting choices 1 or 2.

Choices 1 and 2 immediately resolve the goal (ACT.H_app_ara_
done) without loading a specialist level rule set.

Choice 3 loads a specialist level rule set and establishes an additional
goal (HAra.ara_done). To resolve HAra.ara_done, the specialist level
rule set asks additional questions about the validity of ara.

Two goals are now in the search space: ACT.H_app_ara_done and
HAra.ara_done. The former goal drives the activator level rule set; no
rules in the specialist level rule set mention it. The latter goal drives
the specialist rule set. The last rule to fire in the specialist rule set re-
solves the goal and passes control back to the activator rule set. The ac-
tivator rule set unloads the specialist rule set from memory and passes
control back to the strategy rule set. The strategy level rule set unloads
the current activator rule set and continues the inference process.

Innovations
The system made it possible for UST/IRS to enforce tax laws that were
previously unenforceable (hopefully, none of the readers were affect-
ed). Additionally, the enforcement is uniform across the nation; agents
in Washington use same program as agents in Florida. Because of rapid
prototyping, the programmer could quickly respond to comments and
rapidly enhance the additional program-installing features requested
by the actuarial expert or the end users. The payoff from this effort has
been enormous; the specifics are discussed in the following sections.

Criteria for Successful Deployment
The first version of the system was deployed in January 1989. To train
as many field agents as quickly as possible, UST/IRS national office ac-

44 MELTZER & SRIRAM

tuaries held classes around the country several times a month from Jan-
uary through March 1989. By their use or nonuse of the program, the
UST/IRS agents determined if the application was successfully de-
ployed.

The typical agent has computer phobia; so the first thing the pro-
grammer advised the instructors to say is, “It’s the programmer’s fault
if the program crashes the machine or if the program is not fully un-
derstandable.” The goal was for a tightly controlled, user-friendly sys-
tem. To date, the program has been deployed in every UST/IRS key
district and is being used by almost 1000 UST/IRS pension agents. In-
struction to other UST/IRS personnel is ongoing.

Once trained, the agents put their new tool to the test, and they have
been pleased with the results. They feel it is their program because
their suggestions for improving the user interface and the program in
general are quickly integrated into revised versions. Since January
1989, the program has undergone several extensive revisions, includ-
ing one complete rewrite with another rewrite currently being
planned. Senior UST/IRS managers have given their support to con-
tinuing development and have gone into the field to encourage pro-
gram use.

Nature and Estimate of Payoff
The program is expected to generate at least $100,000,000 in previous-
ly uncollectible revenue. Some optimistic estimates are much greater
than $1,000,000,000. The estimate is based on a statistical sample of
pension tax forms filed for the years 1985 to 1988 in which the tax-de-
ductible disallowance on a single-person pension plan ranged from
tens of thousands of dollars to hundreds of thousands of dollars. There
are thousands of these pension plans. An additional payoff of the pro-
gram is that the public will become aware that these tax laws are now
enforceable and will be encouraged to voluntarily comply with existing
and new pension plan tax code.

System Evolution
As previously mentioned, the first prototype was developed using an
expert system shell. The prototype was refined over three months
using the standard expert system methodology (Minsky 1975): (1) con-
sult with an actuarial expert, (2) extract the expert knowledge, (3) en-
gineer the knowledge, and (4) create a prototype reflecting the ex-
pert’s knowledge and repeat steps 1–4. This process continued until

REVALUATOR 45

the actuarial expert was satisfied that the prototype captured the proce-
dures used in valuing a pension plan.

The expert system shell operates under Microsoft (MS) Windows.
MS Windows is a time-slicing, multiple-process operating environment
treating each window process as a virtual machine. This approach per-
mits multiple windows to be simultaneously displayed on the screen
and is useful in prototyping and development. For example, during
program execution, a rule-firing audit transcript file and other useful
debugging windows can simultaneously be on the screen.

Because the system was deployed on a laptop computer without a
hard disk and limited random-access memory, the executable program,
compiled with the expert system shell run under MS Windows (version
2) was judged too large and too slow for a final deployed system. The
final deployed program was rewritten in C and assembly language. This
approach cut the executable code size in half and improved the re-
sponse time. For example, the development environment used multi-
ple data segments that required each data variable to specify its address
as a segment and offset. The rewritten program contained the data in a
single data segment, which also improved response time because there
are fewer address bus machine clocks. Some shells (including Nexpert)
offer an MS-DOS run-time module, but time constraints did not permit
this module to be tested.

Acknowledgments
The initial research for this project was done for a Master’s thesis
under the brutal but always exactly appropriate guidance of Sri Ram at
the Massachusetts Institute of Technology (MIT) during the summer of
1988.

The IRS management team consisted of Deputy Commissioner John
Wedick, Assistant Commissioner Robert Brauer, and AI Lab Director
Ted Rogers; the IRS actuarial expert is Ken Black. Paul Brown and
Shaoul Ezekiel of the Center of Advanced Engineering Studies at MIT
deserve the author’s gratitude and thanks.

References
Fikes, R., and Kehler, T. 1985. The Role of Frame-Based Representa-
tion in Reasoning. Communications of the ACM 28(9): 904–920.

Minsky, M. 1975. A Framework for Representing Knowledge. In The
Psychology of Computer Vision, ed. P. Winston, 211–277. New York: Mc-
Graw-Hill.

Nii, H. P., and Feigenbaum, E. A. 1982. Signal-to-Signal Transforma-
tion: HASP/SIAP Case Study. AI Magazine 3(1): 23–35.

46 MELTZER & SRIRAM

