
Predicte—An Intelligent
System for Indicative
Construction Time Estimation
Geoff Stevens, Alan Stretton, Michael S. Register,
Steven M. Medoff, Mark W Swartwout, and Magnolia Fung

The project early design-stage indicative construction time estimate
(Predicte) system is an expert system that is designed to provide indica-
tive construction time estimates of concrete-framed, multistory build-
ing projects at the concept or early design stages when relatively little
project information is available. Given a preliminary design concept
for a multistory building, Predicte returns a listing of the major con-
struction activities required to build the building, the activity duration
times, and their start and end dates. In this chapter, we describe the
construction time-estimation process and our automation of this pro-
cess. We discuss the implementation of Predicte and how it was devel-
oped, tested, and deployed. We also discuss the maintenance of the sys-
tem and its business payoff.

The Predicte system was jointly developed by the Lend Lease Corpo-
ration of Sydney, Australia; the AI Applications Group of Digital Equip-
ment Corporation; and the Digital Sydney AI Centre. Initial contact be-
tween Lend Lease and Digital began in early 1985, and formal
development of Predicte occurred from July 1985 to October 1987.

From: IAAI-90 Proceedings. Copyright © 1990, AAAI (www.aaai.org). All rights reserved.

Today, Predicte is accessible from 12 different Lend Lease locations
throughout Australia.

Predicte is one of the first expert systems developed for the construc-
tion industry (see Feigenbaum, McCorduck, and Nii [1988] for a list of
expert system applications in the construction industry). It is also the
first expert system developed for construction time-estimation tasks.
Our work in developing Predicte helped us define a new class of expert
systems, which we call design-verification and design-evaluation sys-
tems. We begin this chapter by describing the time-estimation process
and why the application of expert system technology matches well with
the problem and with Lend Lease’s business needs.

Problem Description
Predicte was developed for Lend Lease’s construction subsidiary, Civil
and Civic. Customers frequently come to Civil and Civic with an initial
proposal for a building project and seek advice on the feasibility of the
project and an estimate of how long it will take to complete. This initial
estimation process is difficult; in fact, for the Australian construction
industry, the initial time estimate is off by 47 percent on the average
(estimators tend to be optimistic [Bromilow and Henderson 1977]).

To arrive at an accurate time estimate, the estimator must possess a
large amount of knowledge about the construction industry and con-
struction practice. The estimator needs to know how to translate an ini-
tial building concept into basic design information and then must be
able to apply this knowledge of construction methods, resources, and
planning to arrive at an accurate time estimate. Civil and Civic has such
a person, an expert with over 30 years of experience in the Australian
construction industry.

There are several advantages to applying expert system technology to
this problem. Because the expert is near retirement, Civil and Civic can
capture and document his knowledge before he leaves. By capturing
this knowledge, Civil and Civic can maintain this competitive advantage.
Civil and Civic can also distribute this knowledge to its offices through-
out Australia. Once the expert retires, other construction estimators
must be able to update the knowledge base as new information about
construction techniques, building materials, and so on, becomes avail-
able. Expert system technology allows for much easier maintenance of a
knowledge base than does conventional software technology. In addi-
tion, through automation, the estimation process is much faster than
the expert can be with a pad and pencil. Also, if changes to the prelimi-
nary design are made, a time estimate can be recalculated faster.

82 STEVENS, ET AL.

With an explanation facility (a feature easily implemented by using
an expert system approach), Civil and Civic can show its customers how
an estimate was calculated and what assumptions were made in deriv-
ing the estimate. Also, non-experts can learn about the estimation pro-
cess faster by using an expert system that contains an explanation facili-
ty.

The estimation process itself is one of design analysis. The first part
involves verifying that the proposed building design meets certain
structural and functional requirements. Some of these requirements
are simple, such as assuring that the total area of the building is not
greater than the site area on which it is being built. More complex
checking confirms that portions of the design are compatible or are
safely combined. If a requirement is not met, then changes must be
made to the design. The time estimator must be able to quickly identi-
fy which parts of the design need to be changed. The time estimator
then presents these data to the customer and provides some informa-
tion about why the data failed to meet a particular requirement and
some assistance in changing the data to meet the building require-
ments. The client makes a change to the design, and the verification
process continues until the design meets all the building requirements.

The second part of the estimation process involves deriving a time
estimate. In this part, knowledge of construction techniques and pro-
cesses is used to estimate the time and resources required. The time es-
timator must make estimates on information outside the building de-
sign, such as weather trends and the availability of human resources, to
derive an estimate of the total time needed to construct the building.
The time estimator must also devise the most likely sequence of con-
struction events. This sequence of events greatly affects the total time
calculation because some construction activities can be carried out in
parallel.

The estimator calculates a time estimate by breaking the project
down into a set of major activities (for example, clearing of the site,
ground excavation, footings installation). The estimator then deter-
mines the likely sequence of activities and uses this sequence to deter-
mine how much time each of the individual activities adds to the total
project time. Each of the major activities has subtasks whose duration
must be evaluated, and these subtasks can, in turn, depend on the eval-
uation of their own subtasks. Eventually, a level of tasks is reached that
depends only on design input information for its evaluation. A task
might have several methods of calculation depending on the particular
design. For example, the height of the building, the number of base-
ment levels, and the ground material determine the type of footings
that are appropriate. Once this determination is made, the method for

PREDICTE 83

calculating footing time is selected and used. The final result of the es-
timation process is a listing of what the major activities are, how long
each takes, and when they start and finish.

Because this point is the beginning of the project development
stage, it is normal to explore multiple design alternatives before mak-
ing a final decision on whether to proceed with the project. An expert
estimator is able to recognize certain opportunities for time savings
and will suggest design alternatives.

Construction time estimation belongs to a class of problems that we
call design-verification and design-evaluation problems. The design-verifica-
tion and design-evaluation process begins with a design description as
input to the verification module. The verification module identifies those
portions of the design that need to be altered and interacts with the
user to produce a revised design that meets verification requirements.
The evaluation module analyzes the revised design. This analysis could
include an evaluation of various factors, such as functional perfor-
mance of the design; cost to build; or, in the case of our application,
time to build. The user (in our case, the customer) of such a process
then has the option of accepting the design and its evaluation or alter-
ing the design to improve the evaluation.

Predicte Architecture and Function
In this section, we discuss the major modules of Predicte and describe
most of their features. We start with the main control module . This mod-
ule is responsible for performing design verification and calculating a
time estimate. It takes design data from the user and the verification
and estimation knowledge base as input. The main control module re-
turns a list of the major activities required for building the given de-
sign, the activity start and end dates, and their durations. Figure 1 is a
sample activity report.

The verification and estimation knowledge base contains three main
types of knowledge. All the necessary design information and other re-
lated information are represented as questions that are asked of the
user. A large amount of auxiliary information can be associated with a
question; for example, graphic sketches can be attached to a question
or set of questions to highlight the piece of design information re-
quested. There are 223 input questions in Predicte. Of these, approxi-
mately 100 to 140 questions are asked of the user in a normal consulta-
tion session.

All the verification requirements in Predicte are represented as con-
straints between input and derived data. A verification constraint can

84 STEVENS, ET AL.

place a range restriction on an input or derived datum, or it can speci-
fy a relationship between data that must always hold. Verification con-
straints act like demons, ready to fire as soon as they are violated.
When a violated constraint fires, the main control module invokes the
constraint-resolution mechanism. There are 63 verification constraints
in Predicte.

Knowledge of how estimates are calculated from the input data is
represented in the form of estimation rules. The rules are grouped
into sets; each set is responsible for calculating a value for a particular
derived datum. The estimation rules are used by a goal-driven control
strategy. The main control module begins with a list of the major con-
struction activities. It then locates the rule sets that are used to calcu-
late these activity times. These rule sets will require more derived data
to calculate values, so the main control module finds the rule sets for
these derived data. This process continues until the level of input data

PREDICTE 85

Activity Start Duration Complete
Site Establishment Day 0 12 days Day 12
Bulk Excavation Day 12 68 days Day 80
Footings Day 80 27 days Day 107
Basement Outside Tow Day 107 203 days Day 310
Podium Structure Day 310 80 days Day 390
Podium Facade Day 425 34 days Day 459
Pod. Services, Finish Day 390 240 days Day 630
Core F.W. Lead Time Day 0 81 days Day 81
Tower Basement Struct Day 107 203 days Day 310
Lobby Structure Day 310 67 days Day 377
Tower Structure Day 377 287 days Day 664
Start in lift shaft Day 446
LMR Installation Day 664 121 days Day 785
Basement Plantrooms Day 377 92 days Day 469
Roof Plantroom Day 664 121 days Day 785
Facade Lead Time Day 0 115 days Day 115
Tower Facade Day 425 271 days Day 696
Services, Wet Trades Day 377 383 days Day 760
Ceilings, Finishes Day 521 335 days Day 856
Furnishing, Equipment Day 569 287 days Day 856
Paving, Landscaping Day 664 72 days Day 736

Indicative time to opening day = 38.0 months.

Figure 1. Predicte Activity Report.

is reached. There are 1275 estimation rules in Predicte.
When a verification constraint is violated, the constraint-resolution

mechanism is invoked. The constraint-resolution mechanism takes the data
involved in the constraint and traces back to the input data that caused
the violation. The constraint-resolution mechanism then presents the
contradictory input data to the user and provides some advice on how
to resolve the constraint or why the constraint is necessary (this advice
is declared with the constraint in the knowledge base). The user is
then forced to change the values for the conflicting data. An example
of this behavior is shown in figure 2. Once the user has changed the
conflicting input values, control is returned to the main control mod-
ule, and an estimate is calculated.

Once the main control module returns a list of activity times to the
user, the user has the option of running the analysis and opportunities
module on the estimation results. The analysis and opportunities mod-
ule is essentially a redesign component that looks at the estimation re-
sults, identifies areas in which unusual amounts of time are being
spent, and suggests changes to the building design to eliminate the un-
usual amounts of time. The user has the option of accepting one or
any combination of the suggested changes. The analysis and opportu-
nities module then reinvokes the main control module to recalculate
an estimate based on the altered design. The analysis and opportuni-
ties module uses an analysis and opportunities knowledge base com-
posed of redesign rules. Each rule has a left-hand side that identifies a
potential time problem and a right-hand side that suggests a design

86 STEVENS, ET AL.

Buildings with a free-standing height to width
ratio exceeding 6:1 are feasible, but they
incur a high structural cost penalty.

The following data may be causing the problem:
(Q17) Overall width of tower plan = 6 m
(Q18) Overall depth of tower plan = 35 m
(Q52) Lobby structure height = 6 m
(Q78) Typical floor height = 3 m
(Q96) Total number of tower levels above
the lobby structure = 15

Please review this information and enter the
question number you wish to change>_
Available options: Pause, Guide, Help.

Figure 2. Constraint-Resolution Behavior.

change to correct the problem.
A user can ask how an activity time was calculated, and Predicte’s ex-

planation module will respond with the rule that was used to calculate
the time. To make the explanation more readable, some screening of
the left- and right-hand sides of the rule is done. Figure 3 shows a sam-
ple explanation for the major activity “Bulk Excavation.” Left-hand side
conditions are listed in the “when” section, the right-hand side formula
used to compute a value for the activity is shown in the “then” section,
and explanations of what the variables represent are given in the
“where” section.

On the left-hand side of the rule being explained, there are several
conditions that could have been satisfied in various ways. For example,
the general arrangement of the tower could have been one of four dif-
ferent tower arrangements, and the rule would still fire. However, in
the explanation, the user is only told about the tower arrangement that
was selected and not about the three other tower arrangements that

PREDICTE 87

Explaining Bulk Excavation Time
When:

* Excavation perimeters below adjacent foundations
(Q 191) is > 0

* Likely ground material is medium strength (Q 206)
* Average depth of excavation (AVG-DEPTH) is > 0
* The arrangement is a Tower with basement and

podium, the tower accessible from the street (Q 14)
Then:

Bulk Excavation time (ET = 68.3 days) is
(MAXIMUM E4 (SHORING + (E5 + E7))) days

Where:
E4 = time needed for underpinning = 54 days

(calculated)
SHORING = Elapsed time for shoring = 7 days

(Predicte estimate)
E5 = time to excavate volume accessible by ramp

= 47 days (calculated)
E7 = time to remove excavation ramp = 14.3 days

(calculated)
Explain>_
Available options: Guide, Activitylist, More,

Previous, Set, Quit, Why.

Figure 3. Explanation Example.

would have yielded the same result. The rationale behind this ap-
proach is that the user only wants to see the relationship between the
proposed building design and the estimate Predicte calculated. This ra-
tionale is even more pronounced when Predicte explains a rule that
contains a left-hand–side condition that tests for the absence of a cer-
tain design feature. In this case, the entire condition is eliminated
from the explanation.

In the example on the right-hand side of the rule being explained,
the original formula that was used is

(MAXIMUM E4 (SHORING + (E5 + (E6 + E7)))) .
In this formula, the variable E6 represents “the time to excavate vol-

ume inaccessible by ramp.” However, in the explanation, E6 is not
mentioned in the formula because in this case, E6 is equal to zero. Be-
cause E6 does not add anything to the total time, it is excluded from
the explanation. The user does not want to see an activity that adds
nothing to the total time; it is the same as saying that this activity will
not take place in constructing this building.

From the explanation prompt, the user can also see a domain-de-
pendent, first principles justification of why this rule was applicable for
the given design. This justification can include graphic sketches to
demonstrate the principles behind the rule.

Because Predicte is dealing with incomplete and preliminary infor-
mation, Predicte has to make some intermediate estimates, such as the
available human resources at a given work location. It would be prefer-
able if the user knew this information, but the user generally does not.
In those cases in which the user does know, the user is allowed to over-
ride these estimates with a more accurate figure. Only selected derived
data can be overridden (otherwise the user could override everything
and corrupt the final estimate). These data are flagged in the explana-
tions Predicte generates as a “ Predicte estimate.” In the explanation
module, the user can override a Predicte estimate with a different
value, and Predicte will invoke the main control module to recalculate
the results based on the altered value.

Because exploring design alternatives is a large part of the initial
project evaluation process, Predicte provides a facility for easily modify-
ing the design input data and recalculating an estimate based on these
data. Predicte also provides a case-comparison facility that allows the
user to compare the estimates of two separate cases. This case-compari-
son facility allows the user to obtain a quick overview of the major dif-
ferences between two possible alternatives (in terms of time to build).

Predicte provides a variety of reporting mechanisms. In addition
to seeing the time estimates in table format, a user can get a bar-
chart time-line of the project displayed graphically on a terminal or

88 STEVENS, ET AL.

printed on a hard-copy plotter.
Predicte also provides a facility for excluding weather delay estimates

in the total estimate. Each major activity has an associated weather
delay based on the construction site location and the time of year in
which the activity is projected to take place. The user can override spe-
cific individual delays or can eliminate all weather delays entirely.

An Example Case
To further illustrate some of Predicte’s function, we present a hypo-
thetical case using Predicte. Because of client confidentiality, we can-
not present an actual case, but this hypothetical case was designed to
be close to a real building project.

The building design that is being evaluated is a high-rise hotel. Ini-
tial building sketches for the hotel are presented in figure 4. This in-
formation is typically all the input that a time estimator has from which
to derive an estimate. The first part of the user’s interaction with Pre-
dicte is the question-asking phase. In this case, 108 of Predicte’s 223

PREDICTE 89

Figure 4. Building Sketches for Initial Hotel Design.

questions are asked because these answers are the only input needed
to derive an estimate for this particular project. The questions are
grouped into general categories called subheadings. These subheadings
are useful to the user when the user wants to explore alternative de-
signs and needs to quickly locate the input information that needs to
be altered. Some of the subheadings include general project informa-
tion (for example, building location, building function), general ar-
rangement of building, tower floor plan, basement plan, lobby struc-
ture, tower levels, tower plantrooms, nontypical tower floors, podium,
facade, site dimensions, existing services (for example, utilities, rail
tunnels), and ground conditions. One of the questions asked in this
case is shown in figure 5.

During the question-asking phase, Predicte is continuously verifying
that the input information satisfies its verification constraints. As soon
as a violated constraint is identified, question asking is interrupted, and
the constraint-resolution mechanism takes over; the user is then ex-
pected to resolve the violated constraint before question asking can re-
sume. In this case, we assume that no constraint is violated.

Once question asking is finished, Predicte starts to calculate a time
estimate using its knowledge base of estimation rules. The ultimate
goal is to calculate times for the major construction activities for this
project, but along the way, Predicte needs to calculate some intermedi-
ate estimates. The two most important intermediate items that Predicte
needs to derive are the availability of human resources and the most
likely sequence of construction activities. The availability of human re-
sources depends mostly on where (in Australia) the building is being

90 STEVENS, ET AL.

Figure 5. Sample Predicte Question.

built. In this case, the hotel is planned to be built in Townsville,
Queensland, one of Australia’s smaller cities. Because of Townsville’s
size, Predicte will estimate a lower figure for a key group of human re-
sources (25 people). This figure can be changed later, as we see.

Predicte has 11 stored construction sequences. Each sequence deter-
mines which activities will occur, what the order of activities is, which
activities can proceed in parallel, and what the allocation of human re-
sources is for parallel activities. Predicte uses information such as the
amount of human resources available and the type of building (that is,
does it have a basement or a podium, does the basement or podium
extend outside the tower area) to determine the most appropriate se-
quence of activities for the particular project.

Once a sequence of activities is determined, Predicte calculates the
times for the major construction activities. Figure 1 shows the activity
times for the hotel design we are evaluating. These times can also be
graphically displayed in a bar-chart format (Figure 6). In this form, it is
easier to see how long the activities are taking in relation to each other
and which activities seem to be taking an unusually long time.

At this point, the user has a variety of options for exploring design
alternatives in the hopes of decreasing the time estimate. The user can
get explanations of how the times were calculated specifically for those
activities that seem to be taking too long. These explanations will help

PREDICTE 91

Figure 6. Bar-Chart Display of Activity Times Listed in Figure 1.

the user understand how the design can be modified to decrease the
time estimate. Also, the explanations will identify any intermediate Pre-
dicte estimates that can be overridden if the user wishes. This option is
described in some detail in the previous section.

Another simpler option is to use Predicte’s analysis and opportuni-
ties module. This module automatically identifies problems with the
design and suggests changes that will decrease the time estimate. Fig-
ure 7 shows three changes that this module has suggested for this par-
ticular case. The first change is not a design change, but it does suggest
an option to the user for decreasing the time estimate. By bringing in a
second crew to the work site from another area of the country (remem-
ber, because of the building location we could only obtain a limited
number of workers locally), the total time for building the hotel de-
creases from 38 to 30 months. However, as Predicte indicates, this re-
duction can result in a higher overall labor cost, so the client needs to
decide whether keeping the labor cost down or keeping the time to
build down is more important.

The second and third changes do propose a design revision. The
user will typically go back to the original building sketches and see if a
change can be made that will accommodate the change Predicte is
proposing. In this case, by turning the tower 90 deg, we can eliminate
the need for transfer beams over the hotel ballroom and the need for
projecting tower floors at the same time. The revised building sketch is
shown in figure 8. By making this design change and importing the
second work crew, we decrease the time estimate to 26 months. The
final activity report for the revised design is shown in figure 9. Notice
that this activity report also reports that the resource estimate Predicte

92 STEVENS, ET AL.

Figure 7. Predicte’s Suggested Changes to Hotel Project.

1. Structural progress may be limited by the local availability of re-
sources. It may be possible to import a larger crew from interstate and
reduce the construction time, although the subcontract labor cost may
then be increased. Would you like to rerun using an imported struc-
tural crew?

2. Additional time will be needed for transfer beams to bridge over a
column free function room within the tower area. Would you like to
rerun without a wide column free room within the tower lobby area to
avoid this problem?

3. The addition of projecting floors has added to the time needed
for the tower structure. Would you like to rerun using a different ar-
rangement for the projecting floors?

made was overridden. Thus, in this case, the analysis and opportunities
module has identified a simple design change and a simple project re-
source change that saves a considerable amount of time over the esti-
mate for the original building design.

Implementation
Predicte is a stand-alone system that runs on any VAX/VMS system. For
implementing Predicte and the general class of design-verification and
design-evaluation expert systems, a language called Candle was devel-
oped. Candle provides a knowledge engineer with an easy-to-use syntax
for specifying input questions, verification constraints, evaluation rules,
and redesign rules. Candle is built on a constraint-propagation net-
work language called CNL. CNL is a modified version of the con-
straint-propagation language described by Steele (1980). Both Candle
and CNL are written in Vax Lisp, Digital Equipment Corporation’s im-

PREDICTE 93

Figure 8. Building Sketches for Revised Hotel Design.

plementation of Common Lisp (Steele 1984).
Constraint-propagation networks were used as the foundation for

the representation scheme for two main reasons. First, constraint net-
works provided dependency structures that allowed for dependency-di-
rected backtracking algorithms to be used for the efficient retraction
of input data. Because of the frequency of design changes, the repre-
sentation system needed to be able to retract data and recalculate re-
sults in an efficient manner.

94 STEVENS, ET AL.

Activity Start Duration Complete
Site Establishment Day 0 12 days Day 12
Bulk Excavation Day 12 54 days Day 66
Footings Day 66 27 days Day 93
Basement Outside Tow Day 93 123 days Day 216
Podium Structure Day 216 80 days Day 296
Podium Facade Day 295 50 days Day 345
Pod. Services, Finish Day 295 190 days Day 485
Core F.W. Lead Time Day 0 81 days Day 81
Tower Basement Struct Day 93 123 days Day 216
Lobby Structure Day 216 33 days Day 249
Tower Structure Day 249 190 days Day 439
Start in lift shaft Day 295
LMR Installation Day 439 121 days Day 560
Basement Plantrooms Day 249 92 days Day 341
Roof Plantroom Day 439 121 days Day 560
Facade Lead Time Day 0 115 days Day 115
Tower Facade Day 295 166 days Day 461
Services, Wet Trades Day 249 262 days Day 511
Ceilings, Finishes Day 357 226 days Day 583
Furnishing, Equipment Day 393 190 days Day 583
Paving, Landscaping Day 439 72 days Day 511

Indicative time to opening day = 26.0 months.

The following Predicte estimates have been overridden:

Maximum formwork resources likely to be available locally:
User overridden = 50 people
Predicte estimate = 25 people

Figure 9. Predicte Activity Report for Revised Design.

Having dependency structures also allowed for easy tracing back to
the input data when a verification constraint was violated. Many verifi-
cation constraints involved derived data; when they were violated, the
dependency structures were used to trace back to the input that caused
the violation. For more information on Candle and CNL, the reader is
referred to Register (1986) and Medoff, Register, and Swartwout
(1989).

Development of Predicte
Knowledge acquisition for Predicte was easier than with the typical ex-
pert system. The expert was able to write down on paper the entire esti-
mation process. The knowledge engineers’ task was one of knowledge
debugging rather than knowledge acquisition.

Because of the vast geographic distance separating the expert from
the developers, some communication processes needed to be put in
place. There were two main means of communication. More formal
communications occurred at the project management meetings that
were held quarterly. For day-to-day informal communications, an elec-
tronic mail link was established between Australia and the United
States. This approach worked fine for a while, but toward the end of
the project, the cultural and professional differences between the
building industry in Australia and the computer industry in the United
States proved too great. More face-to-face meetings were required for
accurate understanding.

The development of Predicte followed an iterative cycle similar to
the cycle discussed in Buchanan et al. (1983). The first six months of
the project were spent investigating potential knowledge representa-
tion schemes (by the knowledge engineers) and developing the knowl-
edge base (by the expert). After this period, the system was developed
and tested in stages, called base levels. There were four base levels in all,
each with expanded knowledge and increased function over the pre-
ceding level. Testing occurred throughout the process; the expert had
a library of prior cases that were used to periodically validate the
knowledge base. The total cost of developing Predicte (which includes
developers’ and expert’s time) was 12 person-years.

Testing, Deployment, and Maintenance
Once development ended in October 1987, five months of testing the
complete system began. Two main types of testing were performed.
The first type involved testing the behavior of the system. The expert

PREDICTE 95

generated approximately 2500 hypothetical building project cases to
ensure that the knowledge base was behaving as it was intended.

The second type of testing involved comparing Predicte-generated
results to the actual results for 10 recently constructed projects. The
testing included a detailed analysis and comparison of the actual and
predicted activity times, and the reasoning behind the results was com-
pared to make sure that Predicte’s reasoning and justifications were
sound. Daily construction site diaries were used to make these compar-
isons.

A successful deployment effort began in April 1988. Three main
goals were used to judge whether the deployment of Predicte was suc-
cessful. The first goal was that Predicte be used on all potential con-
crete-framed multistory building projects. This goal was achieved in
April 1988. The second deployment goal was that Predicte be made
available to all Civil and Civic’s offices throughout Australia. This goal
was accomplished in April 1988 by installing a tested and debugged
version of Predicte on a single machine at a central location and allow-
ing other offices remote access to the system. The last goal was the
identification and training of an initial set of users. A group of users
from several different Civil and Civic offices throughout Australia was
identified and trained on Predicte. Several training sessions were
given, the last one in May 1989.

Since October 1987, maintenance of the knowledge base has been
exclusively performed by the expert with no assistance (save some ini-
tial training). We believe this is a positive reflection on the design of
Candle. The types of modifications the expert has made to the knowl-
edge base are bug fixes, the tuning of building constants used in rules
to refine and improve estimation results, and the incorporation of new
knowledge about new construction methods. Over the course of the
last two years, 98 rules were added, deleted, or modified (approximate-
ly 7.7 percent of the knowledge base).

Most of the maintenance to Candle has involved fixing bugs and
some cosmetic changes to the user interface. Maintenance of Candle
has been performed at the Digital Sydney AI Centre; the engineers
there have written a maintenance guide for assisting an engineer who
knows little about Candle.

Business Payoff and Conclusion
It is difficult to precisely quantify the business payback of Predicte to
Civil and Civic. Although Predicte can help modify building projects to
save time and money, there are too many people and criteria involved

96 STEVENS, ET AL.

in the decision-making process to claim that Predicte is directly respon-
sible for such savings. Predicte also significantly cuts down on the time
to prepare an estimate; however, the amount of time saved is small
compared to the magnitude of the projects Predicte is used to evalu-
ate. Predicte’s major benefit to Civil and Civic is reliability and unifor-
mity of time estimation throughout its organization. This benefit leads
directly to improved customer satisfaction (that is, no surprises when
work starts), and it is the customer satisfaction that is extremely diffi-
cult to quantify and is important in the construction business.

Predicte is used to evaluate potential projects of a large magnitude.
In a nine-month period, Predicte evaluated building proposals ranging
in value from 10 to 220 million Australian dollars. From the size of
these proposals, it is easy to see that the task Predicte performs is criti-
cal to Civil and Civic’s business.

Predicte also provides some advantages over the way Civil and Civic
was previously performing time estimates. With Predicte, all Civil and
Civic’s time estimators distributed throughout Australia can perform at
or near the expert level. With Predicte, Civil and Civic captured and
preserved the knowledge of a key expert before he left the company.
With Predicte, alternative building schemes can be explored much
faster and with greater depth than they could have been by manually
recalculating an estimate.

One of the biggest benefits of having Predicte is that all the reason-
ing and justifications for calculating an estimate are easily available to
the user. This ability actually goes beyond even most experts in this
field. Typically, software systems are seen as black boxes that cannot jus-
tify their recommendations. However, in this case, it is the human ex-
pert who is the black box, and the software system is seen as transpar-
ent, with the ability to justify its conclusions.

Predicte represents a major breakthrough in the construction indus-
try because of its use of expert system technology to perform indicative
time estimation. The development of Predicte has also led to the defi-
nition of a class of expert systems, called design-verification and design-
evaluation systems, and the invention of a knowledge representation
system designed to address this class of systems.

References
Bromilow, F., and Henderson J. 1977. Procedures for Reckoning and Valu-
ing the Performance of Building Contracts . Melbourne, Australia: CSIRO
Division of Building Research.

Buchanan, B.; Barstow, D.; Bechtal, R.; Bennett, J.; Clancey, W.; Ku-
likowski, C.; Mitchell, T.; and Waterman, D. 1983. Constructing an Ex-

PREDICTE 97

pert System. In Building Expert Systems, 127–167. Reading, Mass.: Addi-
son-Wesley.

Feigenbaum, E.; McCorduck, P.; and Nii, P. 1988. The Rise of the Expert
Company . New York: Times.

Medoff, S.; Register, M.; and Swartwout, M. 1989. A Framework for De-
sign Verification and Evaluation Systems. Artificial Intelligence for Engi-
neering Design, Analysis, and Manufacturing 3(2): 71–84.

Register, M. 1986. Candle: A Representation Language Combining
Rules, Constraints, and Dependencies. Presented at the First Australian
Artificial Intelligence Congress, Melbourne, Australia.

Steele, G. 1984. Common Lisp: The Language. Burlington, Mass.: Digital.

Steele, G. 1980. The Definition and Implementation of a Computer Pro-
gramming Language Based on Constraints, Technical Report, AI-TR-
595, Artificial Intelligence Lab., Massachusetts Institute of Technology.

98 STEVENS, ET AL.

