
Generation of Electronic
Product Documentation
Gregory Laurence Smith

The product knowledge manager (PKM) is a multiphase knowledge
base system developed to aid in the life-cycle management of electron-
ic products at Boeing Aerospace and Electronics. Numerous pieces of
documentation (including source control drawings, fabrication draw-
ings, acceptance test procedures, qualification test procedures) are re-
quired for nearly every electronic product developed by Boeing. This
documentation is highly formatted and must comply with strict Boeing
drafting standards as well as customer and program requirements.
Phase 1 of PKM has been in production use since September 1987. It
provides an intelligent user interface and a documentation facility to
generate and manage drawings, documents, and their templates. The
system is written in KEE and Lisp. Approximately 60 KEE knowledge
bases provide information on products, programs, authorization, draft-
ing standards, and documentation structure. Over 600 Lisp functions
operate on the knowledge bases to perform user-requested operations.

Background
In 1985, magnetics was one of the top problem areas within Boeing. It
was determined that the majority of the problems originated from a

From: IAAI-90 Proceedings. Copyright © 1990, AAAI (www.aaai.org). All rights reserved.

lack of communications between the organizations within the product
arena and deficient product documentation. As a result, products were
often built to certain specifications and tested to others. Additionally,
documentation generation required in-depth knowledge of the Boeing
drafting standards as well as documentation requirements levied by the
program or the customer. Only a few specialized engineers and techni-
cians had the breadth and depth of knowledge to correctly generate
this documentation.

In an effort to resolve the problems identified in the magnetics area,
Boeing attacked the problem in two ways. First, a team approach was
implemented to address the communication issues. Second, funding
was provided for analysis of the overall product development process;
PKM funding was authorized based on this analysis.

An initial attempt to address problems in the magnetics area dealt
with magnetics device core selection. This software was written in M.1
on IBM personal computers. Although the system fulfilled the cus-
tomers’ initial requirements, it failed to solve what management be-
lieved to be the real problem, that of device design.

A second attempt to address device design was initiated and outgrew
the capabilities of M.1. The system was moved to S.1 on a 11/780 Vax.
This version performed magnetics device design using active equa-
tions. It was converted to KEE to provide a mouse-driven graphic inter-
face. However, as with the previous attempt, this solution failed to ad-
dress management’s revised view of the problem, that of the entire
product life cycle and its associated documentation.

Finally, the third attempt (written in KEE on a Xerox 1186) began to
address product life-cycle issues. This system was moved to the Apollo
platform (still written in KEE) to use machines that were available to
the user.

In retrospect, many of the miscommunications between developers,
managers, and users stemmed from a lack of understanding about
what could be done with knowledge base systems and what the real
problem was. End users and managers did not know the strengths or
capabilities of knowledge base systems; hence, they could not request
specific capabilities (as shown by the length of time between produc-
tion availability and deployment). Through incremental development
methods, users and managers gained background in knowledge base
systems, and the developers gained a deeper understanding of the ap-
plication.

Although not deployed until October 1989, the system has been in
production use since September 1987. Over this two-year period, the
users worked with development personnel to tune the system, com-
ment on its capabilities, and refine the user interface.

190 SMITH

Problem Definition
After nearly two years of prototypes and interim solutions, the overall
problem was redefined and is summarized as follows:

First, existing documentation generation methods were not respon-
sive to the rigorous format and structure requirements. Each program
and customer imposes constraints on the documentation and the data.
The data must be consistent across the documentation. No facility en-
sures that these requirements are followed and incorporated into the
documentation. The documentation must be formatted to Boeing
drafting standards for book form drawings. No other tool (besides cut
and paste) provides this capability. Configuration control and revision
control are required.

Second, no defined flow or control of data exists. In the past, designs
were sometimes created to a particular set of requirements and tested
by another. No system provides product tracking to determine how it
performed and whether it should be used again. No documentation of
problem processes is available or maintained. No facility to compare
new requirements to past designs exists to accommodate reuse. No sin-
gle database exists to hold the product knowledge attributes and allow
for intelligent queries.

Third, no single system is available to perform all the functions re-
quired by the user. An integrated environment using an intelligent
front end is required. Numerous application software tools are needed
for design support, analysis, and simulation. These tools run on differ-
ent platforms, require unique data formats, and have different user in-
terfaces. The users are engineers, technicians, and documentation per-
sonnel, not computer scientists; they might not understand how or
when to execute the tools or be familiar with the hardware each tool
runs on. No process or procedural sequence exists for running design-
verification programs. Tools might not be used because the users are
unaware of their existence.

Initial Capability
Version 1.00 was released for full production use in October 1989. This
version represented a mature documentation generation, manipula-
tion, and status facility.

PKM views documentation production in terms of the overall prod-
uct life cycle. It provides the user an integrated interface to execute
analysis and design tools and captures the product attributes in the ap-
propriate knowledge base. As a side effect of running these applica-
tions, required documentation attributes are captured and documenta-

ELECTRONIC PRODUCT DOCUMENTATION 191

tion can semiautomatically be generated. Figure 1 shows the PKM user
interface.

Documentation Generation
Central to the design of PKM is the concept of a part or product (here-
after referred to as a part), which is to be engineered under contract
and must be documented. Design information about the part is cap-
tured as well as documentation requirements from the associated pro-
gram. Documentation expressed as a book form drawing is generated
by merging this information with Boeing drafting standards criteria.
Figure 2 illustrates this documentation production process.

The process begins with the definition of a part whose attributes are
defined, manipulated, and stored by the data management utilities. As
previously stated, application software can be accessed to run design,
analysis, and graphics programs. The organization of the documenta-
tion is then defined by creating and editing the documentation struc-
ture. Finally, during documentation production, all components are
merged with criteria from the Boeing drafting standards to automati-
cally format the text and generate a documentation definition file. The
documentation definition file information is stored in a form similar to
SGML (standard generalized markup language). User print requests
convert this form to Postscript for output to appropriate printers. Be-

192 SMITH

Figure 1. Product Knowledge Manager System Control Panel.

SSSSEEEETTTT CCCCUUUURRRRRRRREEEENNNNTTTT DDDDOOOOCCCCUUUUMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN TTTTYYYYPPPPEEEE

SOURCE CONTROL DRAWING

SSSSEEEETTTT CCCCUUUURRRRRRRREEEENNNNTTTT DDDDOOOOCCCCUUUUMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN

SCD 900-70091 A

Created: 3-8-89 9: 34: 13
Creator: A. D. SALMON

Status: RELEASED
SRAM II SCD

SCD PART # 900-70091-10001
FD PART # 900-13073-4

INPUT
BALUN

Project: SRAM II

Created: 9-16-88 10: 57: 27
Creator: A. D. SALMON

Modified 9-6-89 8: 08: 17
Modifier: A. D. SALMON

SSSSEEEETTTT CCCCUUUURRRRRRRREEEENNNNTTTT PPPPAAAARRRRTTTT

SSSSEEEETTTT CCCCUUUURRRRRRRREEEENNNNTTTT UUUUSSSSEEEERRRR

A. D. SALMON

SSSSEEEETTTT PPPPRRRRIIIINNNNTTTT SSSSEEEERRRRVVVVEEEERRRR SSSSTTTTAAAATTTTUUUUSSSS

 RUNNING

 SSyysstteemm CCoommmmaanndd PPaanneell

APPLICATION SOFTWARE

DATA MANAGEMENT

DESIGN COMPARISON

DOCUMENTATION MANAGEMENT

KNOWLEDGE DEFINITION

LIBRARY/CATALOG

STATUS AND TRACKING

SSyysstteemm CCoonnttrrooll PPaanneell

ACCESS CONTROL

SYSTEM COMMANDS

USER COMMANDS

 SSyysstteemm SSttaattuuss PPaanneell

SSSSEEEETTTT CCCCUUUURRRRRRRREEEENNNNTTTT PPPPAAAARRRRTTTT UUUUSSSSAAAAGGGGEEEE

SCD Part Number

SSSSEEEETTTT CCCCUUUURRRRRRRREEEENNNNTTTT GGGGRRRRAAAAPPPPHHHHIIIICCCC TTTTYYYYPPPPEEEE

SCHEMATIC DIAGRAM

SYSTEM INFORMATION

Product Knowledge Manager (PKM) for MAGNETICS: Version 2.10

If you experience any system problems please contact Greg Smith at 657-8431.

CCCCllll iiiicccckkkk LLLLeeeeffff tttt ttttoooo AAAAcccctttt iiiivvvvaaaatttteeee

QUIT

CCCCllll iiiicccckkkk LLLLeeeeffff tttt ttttoooo AAAAcccctttt iiiivvvvaaaatttteeee

SYSTEM RESET

CCCCllll iiiicccckkkk LLLLeeeeffff tttt ttttoooo AAAAcccctttt iiiivvvvaaaatttteeee

SELECT PANEL

CCCCllll iiiicccckkkk LLLLeeeeffff tttt ttttoooo AAAAcccctttt iiiivvvvaaaatttteeee

HELP

(COMMAND HISTORY)

cause the documentation definition file is separately stored, changes to
parts and structures will not migrate to previously created documenta-
tion (unless of course requested by user command).

Documentation Structure
Word processing and documentation generation systems abound with-
in industry. What makes the documentation generation facility of PKM
different is how the documentation structure is stored and manipulat-
ed. PKM separates the structure of documentation and stores it in an
ordered knowledge base; that is, the order of text and graphic sections is
fixed unless altered by the user.

Typical documentation consists of a title page, a revisions page, an ac-
tive sheet record page, a table of contents page, text pages, and associ-
ated graphics pages. By linking a single parent to each of these compo-
nents, a structure is formed. In this structure, the components become
major sections.

Each major section in a structure has a Boeing drafting standards
form associated with it. These forms contain formatting constraints dic-

ELECTRONIC PRODUCT DOCUMENTATION 193

Figure 2. Product Knowledge Manager Documentation Production Process.

BOEING

Define/Edit Part Define/Edit Structure

StructurePart

Application
 Software

Create/Update
Drawing

ProgramBoeing
Drafting

 Standards

Graphics

Define/Edit Program

Transformer -
Flyback

Drawing

tated by the Boeing drafting standards about where, what, and how to
place text on them. A major section represents zero or more pages of
text automatically placed on a specified Boeing drafting standards
form. The number of pages generated by any major section is deter-
mined by the number of text lines contained in the section hierarchy
and the number of text lines for each page allowed on the associated
Boeing drafting standards form. Major section text is represented by a
hierarchy of sections associated with the major section. Each section
can contain zero or more paragraphs of text.

When producing documentation from a structure, situations arise
where the specific boilerplate text supplied in a structure does not fit
the requirements of the user. To handle those situations where alterna-
tive text is needed, departure sections are used (that is, the text can de-
part from the original text). Departure section text is used in lieu of
section text whenever documentation for the specific part or part type
is generated. Figure 3 shows the components of the documentation
structure.

In addition to departure sections, a second facility is available to
make boilerplate text specific for one type of documentation or part.
Part-attribute references can be placed in section text. When documenta-
tion is generated, the attribute reference (for the current part being
documented) is replaced with the value of the part attribute. This ca-
pability allows a single structure to generate unique documentation for
every part.

194 SMITH

Figure 3. Documentation Structure Components.

Root

Major Sections Sections/Sub-Sections Departures

SRAM II SCD

Title

Revisions

Table of Contents

Active Sheet Record

Body

Figure 1. Schematic

Table 1. Electrical Requirements

Sources of Supply

Title Text

TOC Header

Notes

1.0 Introduction

2.0 Scope

3.0 Requirements

4.0 Quality Assurance Provisions

Schematic Text

Electrical requirements Text

5.0 Approved Sources of Supply

6.0 Suppliers Number

Notes Text
900-70064-1001

900-70074-1001

Inductor

Transformer

▼ ▼ ▼

▼

The Structure Editor
A complete structure editor is provided within PKM. The user inter-
face consists of a graph of the structure and a command control panel.
The panel allows the user to control the detail of the structure graph.
Each structure object on the graph can be selected with the mouse, en-
abling a context-sensitive menu. Capability is provided to manipulate
text sections, major sections, and departure sections as well as specific
text within sections. Additionally, graphics from application software
can be associated with major sections. Figure 4 shows the structure edi-
tor interface.

There are numerous advantages in storing the documentation struc-
ture in a knowledge base. The ability to visually display the layout of
the structure allows the user to work on the documentation from a
table of contents viewpoint. Because each section and subsection of
text are represented as objects, and subsections are members of a sec-
tion object, moving a section moves all subsections attached to it.
Therefore, any amount of text can be moved anywhere in the structure
simply by moving the parent object. Copying text from one section to
another simply involves copying one object to another.

Industry standard documentation aids such as Interleaf, PageMaker,
or Context are capable of providing most, if not all, of the capabilities
in the structure editor. However, a great deal of time is spent describ-

ELECTRONIC PRODUCT DOCUMENTATION 195

Lisp_Screen

EEddiitt SSttrruuccttuurree PPaanneell

SSTTRRUUCCTTUURREE SSEECCTTIIOONN IINN WWOORRKK

EDIT STRUCTURE COMPLETE CHANGE GRAPH DETAIL GRAPH ENTIRE STRUCTURE GRAPH PARENTGRAPH NEXT

IIIIII ((OOuuttppuutt)) CClliicckk LLEEFFTT ffoorr sseeccttiioonn ccoommmmaanndd mmeennuu CClliicckk MMIIDDDDLLEE ffoorr sseeccttiioonn ggrraapphh CClliicckk RRIIGGHHTT ttoo rreeppeeaatt llaasstt ccoommmmaanndd

I S

AUTO COMMAND REPEAT - OFF
AUTO STRUCTURE REGRAPH - ON
AUTO SECTION RECALC - ON

CCHHAANNGGEE SSTTRRUUCCTTUURREE OOPPTTIIOONNSS

SCD: 2.0 Scope

2.0 Scope

3.0 Requirements

4.0 Quality Assurance Provisions

Sources of Supply

Table 1. Electrical Requirements

Body

Revisions

SCD

Active Sheet Record

1.0 Introduction

5.0 Approved Sources of Supply

6.0 Suppliers Number

Title Text

 Notes

Title

TOC Header

Schematic TextFigure 1. Schematic

Table of Contents

Electrical Requirements Text

900-70054-1001

900-70074-1001

Notes Text

Inductor

Transformer

Figure 4. The Structure Editor Interface.

ing to the system how the page should look (changing margins, setting
fonts, positioning graphics). Typically, the end product is cut and past-
ed on forms, or a form is inserted in the printer before the documenta-
tion is printed.

However, the structure editor provides a controlled environment for
the engineer to create special-purpose documentation. It controls
where text is to be placed, what approved form the text should be
printed on, what fonts should be used, how paragraph numbering
should be handled as well as many other formatting and layout tasks
that the user would much rather leave for someone else to do. Addi-
tionally, expert users of the industry standard documentation pro-
grams became expert users by virtue of continued use. In this engi-
neering environment, users typically do not perform documentation
activities for weeks. Whe it is time to create the documentation, users
have no time to relearn command syntax of the documentation facility.
Because the structure editor in PKM controls the fit, form, and func-
tion of the documentation, the user is left with the task he/she is most
comfortable with, that of entering the text and creating the graphics.

Product Knowledge Manager Knowledge Bases
PKM’s documentation facility differs from other knowledge base sys-
tem implementations; it uses information received from the user, as
well as information contained in its knowledge bases, to control the
generation of documentation. No rules are used.

In addition to the knowledge bases required for the documentation
structures, numerous other knowledge bases exist within PKM. These
knowledge bases store knowledge relating to command security, user
authorization, application software interface requirements, part and
documentation categorization, and system commands. By initiating sys-
tem commands from the system control panel, users can store, collect,
and retrieve knowledge from PKM knowledge bases.

Beyond Object Orientation
As previously stated, this system does not use rules. All functions are
initiated by the user when a command is executed. The structure edi-
tor fully uses the object orientation of the structure knowledge base.
Beyond the object orientation used by the structure editor (structure
kb) and the user interface (system command kb), PKM exploits the
use of inheritance and demons in various knowledge bases. Demons in
the structure knowledge bases are fired whenever text in an object is al-

196 SMITH

ELECTRONIC PRODUCT DOCUMENTATION 197

Figure 5. Typical Documentation Pages Generated by PKM

tered. Any text that is modified is immediately examined to determine
if it contains references to part attributes, section numbers, or format-
ting codes; appropriate action is taken in each of these cases. Addition-
ally, single and multiple inheritance is used in the part knowledge
bases where program, form, documentation, and authorization knowl-
edge can each provide values for part attributes.

System Maintenance
Surprisingly, PKM has required a minimum of maintenance. The ma-
jority of knowledge in each of the knowledge bases can directly be
modified (depending on security requirements) by the user. Interac-
tion with the system is controlled by the level of the user. The system
maintains three levels of users: normal end users, system administra-
tors, and system developers.

End users have the ability to manipulate knowledge in part, structure,
and documentation knowledge bases (provided they have authority).
System administrators have the added ability to manipulate forms, securi-
ty, authorization, program, topology, and part-type knowledge bases; all
password protection is invisible to them. System developers have control
over the system command and user interface knowledge bases. They
also have the only access to system function code and developer facili-
ties (compiling, loading, and changing Lisp code).

As previously stated, the system consists of over 600 Lisp functions. It
is estimated that 25 percent of the code is for documentation genera-
tion, 25 percent for structure manipulation, 25 percent for system and
application interfaces, and 25 percent for the control of the user inter-
face. The code for the operating system interface, the user interface,
and the system maintenance could conceivably be reused with a mini-
mum of modification.

System Savings
It is difficult to accurately estimate the savings attributable to this sys-
tem. However, in the magnetics area alone (our target environment),
over 200 devices are created and modified each year. Each of these de-
vices requires over a half dozen different types of documentation. It
has been estimated that using conventional word processing tech-
niques, one document or drawing can take as many as 40 hours to gen-
erate. PKM has generated documentation in 3 hours on the average
and, in many cases, has reduced this time to one-half hour. Additional
savings attributable to the integrated user environment and improved

198 SMITH

quality, completeness, and standardization of documentation is sub-
stantial but difficult to quantify.

Current Activities
Now that the initial system has been released and is in production use,
marketing the system to other areas within Boeing has begun. We are
currently coordinating with other part development groups and the
Application-Specific Integrated Circuits Development Organization.
Version 2.00 was released for production use in July 1990. This version
incorporated numerous user-requested enhancements. The system is
currently being used by two new programs. Each program is compar-
ing PKM to their conventional documentation processes (Mac- and PC-
based tools). The strengths and weaknesses of both systems will be
identified, and the system that best fits the program requirements will
be retained.

Future Directions
It is envisioned the PKM could become the user interface to the Boe-
ing Electronics Part Database. All knowledge of Boeing parts would
eventually reside in this database. Expert system gateways would pro-
vide access to, and allow for, intelligent queries of the database. PKM
would facilitate the downloading of parts that fit the users’ require-
ments. Documentation could be generated as required.

Development Costs
Since the fall of 1985, PKM development has required one-person level
of effort. An additional one-person level of budget was provided to
document the effort and critique system capabilities and the user inter-
face. A third budget was provided to fund the magnetics expert’s time
(at a one-quarter-person level of effort).

Deployment Challenges
Another factor contributing to the long period between system avail-
ability and deployment stems from the use of KEE as a delivery plat-
form. KEE on the Apollo provides an extremely strong development en-
vironment. However, IntelliCorp does not currently address a delivery
system on this platform. To this end, numerous Lisp functions had to
be generated to make KEE operations transparent to the users.

ELECTRONIC PRODUCT DOCUMENTATION 199

The current version of KEE requires the use of high-end Apollo work-
stations (model 4000 or 4500 with 32 megabytes of memory and large
disk drives). Unfortunately, only a few of these computers are available
within Boeing. Obviously, the number of available computers limits the
number of PKM users. This requirement for high-end computer plat-
forms will halt the expansion of PKM into other areas within Boeing
until the problem is rectified. (IntelliCorp recently [August 1990] made
available a beta copy of KEE 3.1 for the Apollo. This version uses the lat-
est release of Lucid Lisp and includes a function reorganizer. This reor-
ganizer facilitates the movement of frequently used Lisp functions to
the front of a disk image and infrequently used functions to the rear.
This version of KEE will reduce the memory requirements for KEE and,
hence, allow it to run on lower-performance Apollos. It is expected that
this version of KEE will allow PKM to efficiently run on Apollo 3000 class
workstations, which are readily available within Boeing.)

Summary
PKM is currently running on Apollo workstations; it consists of over 60
KEE knowledge bases. Six hundred Lisp functions interact between the
knowledge bases to perform user-requested commands. Phase 1 of
PKM provides a mature documentation manipulation and generation
facility as well as an integrated, intelligent user interface. Phase 2 of
PKM will expand the current capabilities and provide additional inter-
faces to application software and part-attribute editors.

Acknowledgments
For their contributions, the author would like to thank Carl Mahnken,
Dale Snell, George Malwitz, Andy Clark, Jim Hatley, Pete Baird, Dennis
Hoorn, Al Salmon, Howard Smith, Pam Pincha-Wagener, and Donna
Smith.

200 SMITH

