
AudES—An Expert System
for Security Auditing
Gene Tsudik and Rita Summers

Computer security auditing constitutes an important part of any orga-
nization’s security procedures. Because of the many inadequacies of
the currently used manual methods, thorough and timely auditing is
often difficult to attain. The recent literature suggests that expert sys-
tem techniques can offer significant benefits when applied to security
procedures such as risk analysis, security auditing, and intrusion detec-
tion. This chapter presents an example of a novel expert system appli-
cation, an expert system for security auditing (AudES). Issues in the
development and use of the expert system that are unique to the appli-
cation domain are discussed.

The importance of effective computer security measures has become
increasingly evident with the advent of recently publicized intrusion at-
tempts and virus attacks. Any organization implementing computer se-
curity policies is faced with a wide range of potential threats. Although
some types of threats can be effectively countered using real-time
methods (Anderson 1980; Denning 1987; Lunt and Jagannathan
1988), detection of others remains too time or resource intensive to
address in real time. After-the-fact security auditing is frequently used
to detect anomalous events that fall out of the scope of real-time securi-
ty measures. A landmark study by Anderson (1980) suggests that exter-

From: IAAI-90 Proceedings. Copyright © 1990, AAAI (www.aaai.org). All rights reserved.

nal intrusion attempts can be detected by auditing log-in records and
that some internal intruders can be detected by analyzing resource ac-
cess attempts.

Some recent literature indicates that AI techniques (expert system
methods in particular) might have much to offer computer security
practitioners (Summers and Kurzban 1988; Lunt 1988). The AudES ex-
pert system is an experiment in investigating potential expert system
applications in the area of computer security auditing. It is designed to
automate manual security auditing procedures and alleviate the bur-
den on human auditors. AudES is interposed between a human
auditor and the resource access control facility (RACF) (IBM Corpora-
tion 1990), a popular security mechanism for IBM mainframe systems.

Motivation
Currently, most RACF security auditing procedures are performed
manually by scrutinizing system logs and identifying potential security
violations. This arrangement is hardly surprising because security au-
diting has always been considered a sensitive task that inherently re-
quires human expertise. Although manual auditing methods are some-
times adequate, when the volume of the audit data is high, and the
data itself are diverse in nature, consistency and timeliness are fre-
quently sacrificed. Therefore, effective security auditing is often be-
yond the limits of available auditor time. Moreover, it sometimes de-
mands too much from human memory and problem-solving abilities.

RACF provides a report-generation facility, Report Writer, which is
used to obtain listings of users’ activity records. Because RACF records
each potentially suspicious event and performs no filtering of violation
patterns, huge volumes of audit data can be generated. An average
mainframe system produces on the order of several thousand records
every day. As was observed at one site with a dozen systems, the entire
auditing process (generating reports, printing them, auditing and fol-
lowing up) consumed about eight hours each day for a team of two au-
ditors.

Another problem plaguing manual auditing is the amount of paper
generated. In addition to violation forms that are filled out (by hand)
for each suspected violation, RACF reports are kept in printed form for
extended periods of time to maintain audit trails. Altogether, the
amount of paper generated can be enormous.

There is also a more subtle incentive for automation that is rooted in
the social aspects of security auditing, namely, its relatively low prestige.
In addition to being repetitive and rather unexciting, security auditing

222 TSUDIK & SUMMERS

is frequently viewed as a low-level job function. For this reason, despite
widespread awareness of the need for routine security audits, the job is
frequently assigned to employees on a part-time or temporary basis.
The result is a contradictory situation where a sensitive task is being
performed by insufficiently trained or motivated personnel. One of the
consequences is a high turnover rate among security auditors, which,
in turn, results in a lack of experts. (Even though most organizations
have personnel who are knowledgeable in auditing and security issues,
when it comes to fine details, experts are scarce.)

Existing automated tools built with conventional automation meth-
ods handle only part of the task. Because conventional programming
does not afford flexibility, these tools tend to be difficult to transfer
among sites and difficult to modify. Because of the inadequacies of the
existing approaches (both manual and automated), security auditing
has become a prime candidate for an expert system application.

Design Issues
In assessing the scope of the applicability of an expert system, it is help-
ful to examine the intended application domain and identify the activi-
ties that can potentially be incorporated into the system. Because the
primary goal of a human auditor is to identify security violations, secu-
rity auditing can be viewed as centered around the sequence of events
that represent the violation life cycle: (1) occurrence, (2) detection,
(3) follow-up, and (4) archiving. Items 2 and 3 are of particular inter-
est and are discussed in the following subsections.

Detection
The detection of security violations entails isolating sequences of events
that match certain patterns and identifying appropriate follow-up pro-
cedures. When performed manually, it can be an extremely time-con-
suming and tedious task because violations tend to make up only a
small fraction of the audit data that a human auditor has to examine.

The biggest challenge in automating detection is the proper and ro-
bust representation of the violation patterns, that is, the sequences of
events that constitute violations. Violation patterns can be determined
by a number of variables: For example, depending on the violation
type, thresholds and follow-up actions tend to differ. Another variable
is the user type. Different classes of users are treated differently; for ex-
ample, violation criteria for external users can be harsher than for in-
ternal users. The location of the user at the time of perpetration can
also have bearing on the auditor’s decisions. The time of day (for ex-

AUDES 223

ample, business hours, after hours) and the date (workday, weekend,
holiday, and so on) can be important in pinpointing suspicious events.
Finally, each distinct combination of these variables typically deter-
mines a threshold (maximum number of attempts), exceeding which
triggers a violation.

Another issue of concern is the large volume of data in the audit
logs. At first glance, this concern seems to have little bearing on the sys-
tem design, but in reality, the size of the audit logs is one of the most
important characteristics that distinguish security auditing as an appli-
cation domain.

Most available expert system packages target applications that use
traditional expert system methodology, that is, a single consultation at
a time. An example of a traditional system is a medical diagnostic sys-
tem or a wine selection adviser. One common factor in all such systems
is the two-step consultation process that begins with the expert system
asking the user for some initial consultation data and then making a di-
agnosis or a recommendation.

In contrast, the violation detection process consists of a large num-
ber of iterations:

1. While there are more records,
a. Acquire all records for a single user.
b. Analyze records for all violations types.

2. Go to step 1.
3. Compute report statistics.
The iterative nature of the auditing process that, as previously men-

tioned, plagues human auditors does not lend itself to most expert sys-
tem tools. The main reason is the amount of internal bookkeeping
necessary to support multiple instances. In particular, the maintenance
of long lists and records and complex memory management (efficient
memory management is not a strong point of most expert system
tools) because of iteration are just two of the factors contributing to
the performance degradation. To combat this problem, AudES was
made as lean as possible by implementing routine (not rule-based)
tasks outside the knowledge base.

Follow-Up
Follow-up is the sequence of events immediately following detection. It
requires timeliness and consistency. However, unlike detection, follow-
up requires an active approach. In other words, an auditor might have
to contact a suspected violator, contact a violator’s manager, notify a re-
source owner(s), alert security, and so on. In summary, follow-up in-
volves much communication and paperwork on the part of the audi-

224 TSUDIK & SUMMERS

tor—time that can be saved if the process is automated.
Although most organizations have guidelines for security auditing,

they are rarely all encompassing and often leave some aspects of detec-
tion to the individual auditor’s judgment. At times, even when a se-
quence of events meets a specific violation criterion, the auditor has to
decide whether an investigation is warranted. For this reason, it might
be beneficial to not completely automate follow-up procedures. In-
stead, an advisory approach can be taken, so that suspicious events
meeting violation criteria are displayed or recorded, but the final deci-
sion and the appropriate actions are left to the human auditor.

Archiving and Verification
The verification of security audit procedures is frequently conducted
by the management. The main purpose is to verify that prescribed au-
diting procedures are being performed, and corporate security guide-
lines are being followed. This process used to be a lengthy and manual
one that involved a lot of paper shuffling. RACF reports were reviewed
at random, and selected violations were traced to determine if appro-
priate actions had been taken. For this purpose, old RACF reports, in-
dividual violation reports, follow-up traces, and numerous other forms
of paperwork had to be maintained.

With the detection process automated by the expert system, verifica-
tion can easily be accomplished by validating the rules procedures im-
plemented by the system. Accountability can be maintained by generat-
ing consultation traces that reflect the actions on the part of both the
auditor and the expert system. Also, the amount of paperwork can
greatly be reduced if instead of entire RACF reports, only suspected vi-
olation records detected by the expert system are archived.

Development Environment
Choosing the most appropriate tool for development is an issue of
great importance in building an expert system. Ease of use, user inter-
face, editing and run-time facilities, and speed of execution are just a
few of the many attributes that must be considered in identifying the
right tool. Not surprisingly, an optimal trade-off among all the desired
properties is extremely difficult to find. Many expert system tools that
target programmers emphasize speed but compromise user interface
and run-time facilities, and other tools, those that target the end user,
provide rich interfaces and easy syntax but sacrifice speed. In the case
of AudES, the latter approach was seen as the preferred (though not
the optimal) one. This choice might seem contrary to the goal of

AUDES 225

speeding the auditing process, but the compensating factors (ease of
use and modification, flexibility, and extensive user interface) out-
weighed the performance consideration at least for the initial imple-
mentation.

The expert system environment (ESE) (IBM Corporation 1989) was
the tool adopted for AudES development. It is a commercially available
product that has been successfully applied in a number of tasks, includ-
ing prediction, diagnosis, planning, and decision making, in a variety
of application domains.

ESE rules and commands use a simple English-like syntax that is easi-
ly understood by nonprogrammers (see examples later in the chapter).
Automatic error checking and compilation are provided at edit time.
Furthermore, ESE provides an extensive interface to external proce-
dures, which is especially important for AudES, where some of the
more routine tasks are implemented outside the knowledge base. An
important run-time feature is the explanation facility, which allows the
user to ask questions about the system’s actions. Consultation traces are
automatically stored, so prerecorded consultations can easily be re-
viewed or rerun.

However, as frequently happens in environments that facilitate AI
methods, the emphasis on generality and ease of use greatly affects the
performance. Because of ESE’s performance limitations and the typi-
cal volume of audit data, much tuning was necessary to meet the per-
formance criteria. Whenever possible and appropriate, routine tasks
not requiring rule-based techniques were implemented in Pascal sub-
routines.

Knowledge Acquisition
As an inherently sensitive task, security auditing is relatively well speci-
fied, unlike most other application domains. In most organizations, se-
curity auditing procedures are scrupulously documented. Further-
more, every attempt is made to cover all possible scenarios to leave as
little as possible to the auditor’s judgment. All this documentation
should make the process of knowledge acquisition rather uncomplicat-
ed. Experience with AudES, however, has shown that it is not always so.

For the most part, the guidelines and other documentation used by
security auditors are written by nonprogrammers, which is neither sur-
prising nor unusual. People responsible for writing this documentation
are, in general, skilled security professionals who are well qualified for
this kind of work. However, written documents are not as conducive to
covering all possible aspects of the task as is programming (even in a

226 TSUDIK & SUMMERS

high-level expert system shell). This difference leads to a curious phe-
nomenon where violation conditions previously ignored or missed are
recognized as such at the knowledge-acquisition stage.

An example of this phenomenon is the so-called partial log-in viola-
tion. A mainstream log-in violation is defined as a sequence of M or more
failed log-in attempts for the same user identification (ID) (M is also
known as the log-in violation threshold). A typical sequence of failed
log-in attempts consists of the following steps: (1) Three attempts are
made to log in, which constitutes a grace period. (2) The fourth failed
attempt causes the user ID to be revoked. (3) Subsequent log-in at-
tempts are recorded but ignored; that is, the user is not logged in even
if the correct password is entered.

Human auditors are instructed to spot sequences of M or greater
log-in attempts. If an auditor sees, say, M-3 attempts, he/she ignores
them. However, if these M-3 attempts begin with a revoke record, then
at least three attempts (grace period) must have previously occurred.
Thus, even though M-3 attempts are recorded, M must have taken
place. This situation (and other similar ones) occurs when a sequence
of records is split between two RACF reports (for example, when at-
tempts are made on two consecutive days). Of course, events of this
kind are not frequent and, thus, are not generally considered by those
who write the security auditing guidelines.

Another discovery made during the knowledge-acquisition stage is
the multisystem violation. Many users at the experimental site have ac-
counts on several systems under the site’s administrative control. As de-
scribed in Motivation, RACF reports are individually produced and au-
dited for each system. Because no correlation between systems’ activity
is performed, potential violators can slip through by distributing their
attempts among several systems. Although this type of violation is very
difficult to identify with manual methods, an expert system makes the
task feasible.

Current Version
In its present state, the AudES system incorporates all the functions
pertaining to violation detection. All RACF auditing rules and proce-
dures have been fully represented in the knowledge base.

Twenty-five events are monitored and recorded by RACF. They range
from log-in records to modifications to RACF itself. In addition, each
event type has several (three to eight) possible return codes or quali-
fiers. Each [event, qualifier] combination forms a distinct exception
type. There are a total of 89 exception types, which AudES groups into

AUDES 227

four categories: (1) log-in—failed log-in attempts, for example, invalid
password supplied.; (2) resource—unauthorized attempts to manipu-
late resources, for example, access, rename, delete; (3) command—at-
tempts to execute restricted-privileged commands, for example, vari-
ous RACF commands; and (4) mixed—the previous violations not
detected but the combined probability of all violation types exceeding
a specified threshold.

RACF divides users into four classes: unprivileged, special, opera-
tions, and auditor. Unprivileged users constitute the majority. Special users
are the ones with the highest security clearance, such as the site securi-
ty administrators; they are virtually given carte blanche. Operations users
are typically the system programmers who are given some limited au-
thority to manipulate RACF. Finally, auditors are users who are permit-
ted to access activity reports and use the RACF Report Writer.

AudES supports all RACF-supported user classes. Furthermore, it
subdivides unprivileged users into internal and external (or outside)
users. The internal users are (in our case) IBM employees, whereas ex-
ternal users are customers, vendors, contractors, and various other
non-IBM system users.

AudES treats each combination of user class, exception type as a dis-
tinct violation type. Each violation type has a corresponding (config-
ured) threshold, that is, a minimum number of records that cause
AudES to suspect a violation. In addition, each violation type is associ-
ated with a prescribed sequence of follow-up actions that are presented
to the auditor on violation discovery.

Figure 1 shows an example ESE rule that AudES uses to identify sus-
pected violations. The particular example is concerned with identifying
anomalous resource access attempts:

Consultation
A typical AudES consultation proceeds as follows: First, the auditor

228 TSUDIK & SUMMERS

Figure 1. AudES Rule Example.

IF (resource-violation-counter > resource-threshold)
AND (user-type IS CUSTOMER)

AND (resource-type IS INTERNAL) THEN
recommended-action = “Contact the resource owner and

report incident to Customer Assistance”

runs a filter program on all raw RACF reports to produce AudES-read-
able input records. Next, ESE is used to load AudES. The auditor can
preselect a number of reports to audit by entering their names in a
profile or can select them interactively at run time. The consultation
can be conducted either in the interactive or the unattended mode.

In the interactive mode, AudES displays suspected violations as they are
discovered and waits for the auditor to pronounce judgment (that is,
initiate or ignore). All suspected violations are tagged as processed
when in this mode, and the auditor’s decisions are duly recorded. In
unattended (or batch) mode, the auditor runs a consultation in the back-
ground without requiring any input from the auditor. In this mode,
suspected violations are recorded but tagged as suspended. This mode
is particularly convenient when auditing must be done at odd hours of
the day, or available auditor time is limited. Regardless of the mode, all
suspected violations are recorded to disk to serve as the proof of audit.
Suspected violations are recorded and displayed (interactive mode
only) along with all the necessary user data as well as the information
on commands; resources; affiliations; and, most importantly, appropri-
ate actions that an auditor must take according to the local security au-
diting guidelines. When the consultation is completed, the auditor can
obtain a hard copy of the recorded violations. In addition to consulta-
tion reports, the entire consultation (at the keystroke level) is recorded
in a separate file that can subsequently be used to replay the entire
consultation. This feature can be used for verifying past audits.

Portability
AudES can easily be adjusted to an individual site’s requirements. The
configuration is done by creating several consultation profiles for
AudES execution. These profiles are created by the site security admin-
istrator (usually, the user with the RACF special attribute) with the help
of a separate knowledge base, AudINIT. AudINIT takes the user
through the configuration process step by step and checks the configu-
ration parameters for possible anomalies and inconsistencies. The pro-
files and their contents are described in the following paragraphs:

The site profile contains site-specific information, such as the systems
under the site’s control, the users authorized to use AudES (auditors),
the privileged users (special and operations), and the frequency of
RACF report generation. The event selection profile determines how
AudES detects suspected violations. Each violation type can be turned
either on or off (monitored or ignored) and associated with a thresh-
old. Follow-up actions for each violation type are also entered in this
profile. The site and event selection profiles are usually modified infre-

AUDES 3

quently. Finally, the run-time profile sets various AudES execution param-
eters. It specifies (among other things) the execution mode (interac-
tive or unattended) and a list of reports to audit as well as whether to
print the suspected violations. This profile can be modified as often as
needed by the auditors to afford more flexibility.

Size
AudES is a relatively small system. Its two major components are the
ESE knowledge base and the system interface. The rules and proce-
dures are embodied within the ESE knowledge base. There are on the
order of 80 rules and 15 focus control blocks (FCBs) that are used to
group rules, parameters, and external actions. The system interface
consists of 10 Pascal subroutines used for external actions, for exam-
ple, fetching user records from RACF reports, identifying the user, and
composing violation records. All the interface services are directly ac-
cessible from the knowledge base. In addition, there are two stand-
alone utility programs: AudSTRIP and AudINIT. AudSTRIP is used to
reformat (strip) the raw RACF reports before running AudES, and Au-
dINIT is an ESE knowledge base that is used to customize AudES.

Deployment
Before replacing manual auditing procedures, AudES had to be thor-
oughly field tested to assure its correctness and to validate its rules. For
eight months, it was used in parallel with manual auditing. This inter-
im period proved to be extremely valuable largely because of the audi-
tors’ feedback regarding the user interface, performance aspects, and
violation reporting. The reactions to AudES on the part of the auditors
were extremely favorable. The ease of use, the savings in time and pa-
perwork, and the ubiquity of unattended interactive consultation
modes were the features most appreciated by the users.

At the time of this writing, AudES is in full deployment at one exper-
imental site, having completely replaced the previous auditing proce-
dures. It is being used on a daily basis for analysis of RACF reports gen-
erated on some 20 to 25 mainframes. The initial readjustment period
turned out to be short (less than 1 week). The auditors find AudES
easy to use and customize. In summary, the task that used to consume
an entire day for a team of two and, sometimes, three, auditors now re-
quires about 1.5 hours each day for a single auditor. Of this time, only
one-third is spent in preparing input for and running AudES. The bal-
ance is taken up by printing and filing of AudES-generated violation
reports.

Also at this time, AudES is being field tested at two other sites with

230 TSUDIK & SUMMERS

radically different user populations and business needs. Both sites are
large (about 80 mainframe systems at each). The size presents a num-
ber of new challenges to AudES, of which performance consideration
is the most immediate.

In conclusion, the benefits from the use of AudES, as opposed to
manual RACF security auditing procedures, are (1) greatly reduced
routine work for auditors, (2) greater consistency of audit, (3) timelier
violation detection and follow-up, (4) the ability to conduct more fre-
quent audits, (5) cost savings from reduced paperwork, (6) clear verifi-
cation of auditing rules and procedures used, (7) easy customization to
meet individual site requirements, and (8) reduced training time for
auditors and a tool for training. The last three items also represent the
benefits of an expert system approach as opposed to more convention-
al non-AI techniques.

Summary
AudES demonstrates the feasibility and the benefits of applying expert
system methodology to computer security auditing. As the system
evolves, it can acquire more knowledge and gradually take over some
additional, more judgmental tasks. The working system is a start toward
a longer-range goal of expert systems for security audit and administra-
tion. It is but one component of security maximization, and its integri-
ty depends on the soundness and completeness of the auditing proce-
dures that it implements. At the same time, AudES serves as an
example of the application of expert system technology in a field that
to date has largely been untouched. It demonstrates the feasibility and
scope of the potential automation of security auditing procedures and
exhibits the underlying issues, limitations, and concerns.

Acknowledgments
The authors would like to thank Stan Kurzban, Ray Martin and the
anonymous reviewers for their insightful suggestions and comments on
the draft of this chapter.

References
Anderson, J. P. 1980. Computer Security Threat Monitoring and Surveillance.
Fort Washington, Pa.: James P. Anderson.

Denning, D. E. 1987. An Intrusion-Detection Model IEEE Transactions
on Software Engineering 13(2): 222–232.

IBM Corporation. 1990. Resource Access Control Facility, general in-

AUDES 231

formation manual, GC28-0722- 10.

IBM Corporation. 1989. Expert System Environment, general informa-
tion manual, GH20-9597.

Summers, R. C., and Kurzban, S. A. 1988. Potential Application of
Knowledge-Based Methods to Computer Security. Computers & Security
Journal 7(1): 373–385.

Lunt, T. F. 1988. Automated Audit Trail Analysis and Intrusion Detec-
tion: A Survey. Presented at the Eleventh National Computer Security
Conference, October.

Lunt, T. F., and Jagannathan, R. 1988. A Prototype Real-Time Intrusion
Detection Expert System. In Proceedings of the 1988 Symposium on
Security and Privacy, 166–188. Los Alamitos, Calif.: IEEE Computer So-
ciety Press.

232 TSUDIK & SUMMERS

