
Putting Knowledge-
Based Concepts to
Work for Generic
Programmable Logic
Controller Programming
Ian C. Campbell and Izrail Bukshteyn

This chapter is a case history of the computer-aided logic expert system
(CALES), a quality and productivity tool for programmable controller
software engineering now being used in an engineer-to-order manufac-
turing company. Strategic goals for CALES included the removal of a
corporate bottleneck in the electrical engineering department and the
development of a foundation for knowledge-based engineering in
other parts of the company. Our ultimate knowledge-based engineer-
ing goals are to make our corporation more responsive to customer
needs and to offer greater customer values with less effort, thereby en-
suring a more profitable corporation.

CALES helped remove the electric corporate bottleneck and provided
a foundation for other knowledge-based engineering tools. As a result
of our experiences, we developed the following generalizations: First,
we want to develop only those knowledge-based applications that will

From: IAAI-90 Proceedings. Copyright © 1990, AAAI (www.aaai.org). All rights reserved.

assist the most strategically important of our company’s tasks. Second,
human education and commitment are necessary ingredients in the
creation of our knowledge-based solutions. Third, the development of
a strategic knowledge-based application will be guaranteed a success
only if it is conducted from within an operating department and is not
delegated to a third-party environment. Development must be under
the direct control of a line operating manager. Fourth, cultural and
conceptual contributions of the AI community are much more impor-
tant than using the most advanced AI technologies.

The Original Problem Defined
Control engineers at the Lamb group of companies design hardware
and software to control large electromechanical systems handling thou-
sands of rolls of paper each day in a pulp-and-paper assembly line.
These control engineers learn to design over 50 different machine
types and to customize these designs (if required) to move, weigh,
wrap, label, and package rolls of paper or bales of pulp. At the same
time, the engineers protect the company’s reputation as a supplier of
high-quality, unique finishing systems currently handling over 80 per-
cent of the world’s newsprint.

These unique systems are complex, expensive and constantly chang-
ing. Some systems cost over $10 million, and if they do not operate reli-
ably, a billion dollar paper plant feels the financial consequences. Sys-
tems often consist of over 200 individual machines and are configured
to meet the customer’s constantly changing needs as s/he (or the con-
sulting engineer) thinks more about his(her) problem.

Our company sales strategy, despite difficulties faced by Lamb engi-
neers, remains “the customer is king,” thereby invalidating the obvious
option of freezing a design early in the design cycle. Compounding
their problem, engineers implement these unique systems on one of
approximately 12 different programmable logic controllers (PLCs).

PLC can be defined as a solid-state device—a member of the comput-
er family capable of storing instructions to implement control functions
such as sequencing, timing, counting, arithmetic, data manipulation,
and communication—to control industrial machines and processes.
PLC can be considered as an industrial computer that has a specially de-
signed architecture in both its central processing unit (CPU) and its in-
terfacing circuitry to field devices (input-output connections to the real
world). These field devices can be limit switches, pressure transducers,
push buttons, motor starters, solenoids, and so on. The input-output in-
terfaces provide the connection between the CPU and the information
providers (input) and the controllable devices (output).

236 CAMPBELL & BUKSHTEYN

The first PLCs were more or less just relay replacers. Their primary
function was to perform the sequential operations that were previously
implemented with relays. PLC has been improved over the years when
it comes to speed of operation, types of interfaces, and data processing
capabilities; however, its design requirements still hold to the original
intention: It is simple to use and maintain.

PLC programming has a standard: the ladder-logic format. Ladder-
logic diagrams have been the traditional way of representing electric se-
quences of operations. These diagrams are used to represent the inter-
connections of field devices in such a way that the activation, or
turning on of one device, would turn on another according to a prede-
termined sequence of events. The original ladder diagrams were estab-
lished to represent hard-wired logic circuits used for the control of a
machine or equipment. Because of wide industry use, it became a stan-
dard way of providing control information from the designers to the
equipment users. As PLCs were being introduced, this type of circuit
representation was also desirable; not only was it easy to use and inter-
pret, but it was also widely accepted in the industry.

Our customers demand a choice of PLC based on their private analy-
sis, which is often limited to the consideration of maintenance skills
and corporate buying opportunities. Each PLC has its own language,
requiring its own hardware and software expertise. New types of PLCs
are demanded by our customers at the rate of one every second year;
old PLCs seem to wither every fourth year.

The withering of PLC also means the death of whatever software
standards evolved during its lifetime. The arrival of a new PLC means
creating new standards at the same time the new PLC is being learned.
In this environment, it is impossible for practical software standards to
evolve. For example, the validation of standard software for one PLC
could not imply validation for any other PLC. Because of this situation,
system designs used to be costly, sometimes incomplete, and often
error prone. Startup costs were unpredictable because the Field Ser-
vice Department often made substantial software changes in the field,
some that were unnecessary and many that went unreported to the de-
sign engineers. By the spring of 1985, the corporate bottleneck created
by all these factors was obvious.

Although by mid-1986, our chief executive officer (CEO) had identi-
fied the electrical engineering department as our most serious prob-
lem, we continued accepting orders as Lamb flourished in history’s
greatest capital equipment spending cycle, experiencing a threefold in-
crease in business activity. However, our capacity to do PLC software
was floundering; this situation could have led to unthinkable conse-
quences if not handled successfully.

GENERIC PLC PROGRAMMING 237

Description of AI Technology Use in the Application
A fundamental relationship exists between the expertise of control en-
gineers and their ability to meet the needs of a specified system with
quality and on schedule. Lamb could realize a fantastic competitive ad-
vantage by capturing the skill of the world’s best experts in our specific
business arena, then automatically applying these design skills as need-
ed. This possibility became more attractive as concern grew about the
difficulty of training many new control experts in the current, fast-
paced business cycle.

The automation of control engineering design would not only solve
an immediate problem, it would also follow some of Lamb’s individual
strategic pathways. These pathways required experimenting with the
automation of engineering design and hopefully gaining strategic busi-
ness advantages at the front end of the corporation. The solution of a
strategic problem using expert system technology could open the en-
tire corporation to legitimate exploitation using similar concepts.

We rejected the possibility that major PLC manufacturers could
somehow work together to solve the problem of multiple dialects and
hardware. We believed that each PLC manufacturer needs to differen-
tiate its product as superior and, therefore would be hostile to any tool
that seemed to reduce PLC products to commodities. We could find no
commercially available design tool that would meet Lamb’s needs and,
in fact, still cannot. We had to begin work on our own and did so at an
affiliate location, the Lamb-Cargate Engineering Department in
Vancouver, B.C., Canada. This department had been losing money but
had the skill, energy, and enthusiasm to undertake a new challenge.

The first task was to find a method of representing the knowledge car-
ried in the heads of expert control engineers. Because experienced con-
trol engineers could talk to each other and verbally explain important
generic concepts, the first attempt at capturing their conceptual and
generic knowledge was based on a stylized form of English, for example:

(on this-machine “start-motor”
(if (previous-machine “seal-in-
contact” on) and

(next-machine “safety-interlock”
off)))

This statement explains that if the previous machine’s (pm) seal-in
coil was energized, and the next machine’s (nm) safety interlock coil
was not energized, then we want this machine’s (tm) start-motor coil to
be energized. This representation of knowledge was entirely indepen-
dent of PLC to be used; the project itself; and the identification of ac-
tual machines involved, either current, upstream, or downstream.

238 CAMPBELL & BUKSHTEYN

The first CALES prototype experimented with our ability to represent
large, generic chunks of control knowledge with a stylized English lan-
guage. It experimented with the possibility of linking many chunks of
generic knowledge into a specific system made of many examples of
the generic knowledge. It also continued to enforce the separation of
generic knowledge from the design engine so that normal control en-
gineers could capture their knowledge and make subsequent designs
without any skill in Lisp. The results of this initial work were encourag-
ing. The work was conducted in the first few months of 1985 by the
chief engineer who was emotionally committed to creating a substan-
tially better method of doing business and was a self-taught Lisp enthu-
siast. His commitment to Lisp beat the AI insertion barrier that many
organizations experience. Further responsibilities for CALES develop-
ment were transferred in July 1985 from the chief engineer to the chief
electrical engineer. He continued to code in Lisp. As line managers
who are measured on their performance in creating industrial engi-
neering designs and who are not required or expected to do anything
with AI, we both found it impossible to explain new creations, visions,
needs, and solutions to other people and, sometimes, even to each
other. It was just much easier to code the novel or normal engineering
solutions than to find some way of communicating with another
human being. During the six-year development of CALES, we had to
rely on faith, stubbornness, endurance, and a little luck for our success.

We started to use this tool in August 1985 and completed our first
project within three months, for an Allen-Bradley Series 2 PLC. We
named this new creation CALES. It soon became evident that although
the stylized English form was perfectly adequate for the computer, it
was too difficult for a human operator to use. The ladder-logic lan-
guage was accurate for relays but could not handle the generalization
or generic content needed for current-day PLCs. Many modern-day
control engineers still prefer this ladder language and totally reject the
idea of using any other new language. Because of this preference, we
next wrote an intelligent editor to guide our detail-oriented engineers
in capturing their generic knowledge in a manner almost identical to
simple ladder logic (figure 1).

What we actually captured was enough information to translate their
input into our stylized English. We considered this development some-
how perverse because the computer was using English to direct its be-
havior, but English-speaking humans were rejecting this language in
favor of their own specialized, ladder-logic language. We now realized
we were dealing with a problem that needed multiple translation tasks,
both in parallel and in series. We became more formal in specifying
the emerging CALES language, which we required to be generic and

GENERIC PLC PROGRAMMING 239

still use the ladder-logic format. We now were glad we were using Lisp
as our coding language. We would probably have abandoned our ef-
forts at this stage of translation had we not already been fluent in Lisp
and had confidence in it.

The Lisp we were so dependent on is called Waltz Lisp. It was in-
spired by Franz Lisp, cost $169 in 1982, and runs in a DOS environ-
ment on an IBM PC with 640 kilobyte (KB) and a hard disk. Languages
used by Lamb for expert system tasks include Golden Common Lisp,
Ibuki Common Lisp, GoldWorks, Genesis (a neural network tool),
Turbo Pascal, and Powerhouse (a 4GL). Our most recent language is
Top Level Common Lisp and Common Lisp Object system (CLOS), a
parallel Lisp and object system that runs on a Sequent Symetry S27, the
same parallel hardware that supports our corporate information system
based on relational database management systems. We expect to inte-
grate future expert system work with our conventional information sys-
tem by implementing SQL calls from inside CLOS.

By January 1986, we had to confront the problem of handling PLCs
other than the Allen-Bradley Series 2. This problem was handled by
translating from the generic CALES language into the target PLC lan-
guage before continuing with system integration and design. Our next
PLC target was the Modicon 984.

By March 1986, we were no longer self-conscious that we weren’t
knowledge engineering our developments or performing system analy-
sis. The development and use of CALES was in the hands of one organi-
zation and was subject to daily change as real production work pro-
ceeded. With respect to CALES, our best expert and our Lisp expert
were one and the same person. He did not need to do knowledge engi-
neering and came to believe his achievements would have been impos-
sible had he needed to deal with any other person for system analysis or
knowledge engineering. Furthermore, it seemed counterproductive to
separate the CALES development from its regular daily productive work.

The year 1986 was devoted to using CALES in production and develop-
ing other translators for CALES so that our growing list of generic mod-

240 CAMPBELL & BUKSHTEYN

pm
Seal-in

Contact

nm
Safety

Interlock

tm
Start

Motor

Figure 1. An Intelligent Editor Captured the Engineer’s Knowledge in a
Manner Similar to Ladder Logic.

GENERIC PLC PROGRAMMING 241

ules could be used on other projects. Allen-Bradley Series 3 and Gener-
al Electric Series 6 translators were added in 1987 and 1988. We were
now confident that we could add multiple translators in the future and,
through this technique, use ancient control knowledge (translated to
CALES language) on future PLCs (see figure 2 for the CALES flowchart).

The year 1987 was devoted to training more individuals in the use of
CALES and in promoting this home-grown system at other affiliate loca-
tions in the corporation. CALES met with initial opposition because of
conceptual strangeness, its inability to handle large systems, and trans-
lation skills that were not as good as a skilled human (perhaps only 70
percent as good).

We were now forced to set a goal of designing big systems with sever-
al thousand coils while working within 640-KB random-access memory.
We were again tempted to abandon our efforts at this stage until we
modified our programming style by limiting the number of Lisp sym-
bols used, externally storing most of the intermediate data, and split-
ting Lisp translation and system integration programs into tens of rela-
tively small Lisp programs executed by a management program written
in Pascal.

The year 1988 was devoted to accelerated project work; the develop-
ment of other translators and the refining of those we had in opera-
tion; and the continued selling of the concept of knowledge-based en-
gineering to conservative, skeptical, or hostile control engineers.
However, “the best expert’s expertise” requirement now became a
major stumbling block. A huge overload of normal work (perhaps
combined with a touch of human politics) started to slow the diffusion
of this technology within our company. This slowing sometimes took
the form of vetoes and foot dragging on the official version of our
best expert knowledge. Now, there were differences over who was the
best expert or what combination of experts could formulate consensus-
best expertise. While this friction continued, the original developers
and users of CALES continued to create and deploy their own expertise
in the absence of an official version by building on the previous work
of the company’s best experts. Most PLC experts outside Lamb would
not believe that efficient translation from generic ladder logic to spe-
cific PLC languages could be done by a computer.

The year 1989 was devoted to further refinements of our generic
CALES language, including nested branches and conditional logic
rungs. By early 1989, CALES could translate 90 percent of the PLC in-
structions, including math, block, and other advanced functions. In
terms of the required PLC memory and efficiency, the CALES transla-
tion was now about 90 percent as good as a best expert. All these re-
finements reduced user opposition. CALES was deployed within the

company and was gradually accepted as a valuable tool by all experi-
enced control engineers in the company. Corporate best experts now
promised to establish machine control standards (that is, knowledge)
for CALES. The original developers and users of CALES created their
own references by translating old, proven software into CALES language
using the company’s best and proven past project references.

The original developers and users of CALES then started getting feed-

242 CAMPBELL & BUKSHTEYN

Generic
Modules

SPECIFIES
KNOWLEDGE
IN MODULES

KNOWLEDGE
BASE

USER

SPECIFIES:
1.Programmable Controller
2. System Configuration
3. Start Addresses

Purchases
New

Translation
Module

If Required

Programmable Controller

"A" "B" "C"

Logic File For
Programmable

Controller

Ladder Logic
System Design

in the Format
of Specified

Programmable
Controller

CALES
PROGRAMMABLE CONTROLLER

TRANSLATION GROUP

Optional Translation
Modules Available As the

Market Requires

Target
Programmable

Controller

TRANSLATION
ENGINE

Figure 2. Examples of the Cales Translation from Generic Ladder Logic to
Modicon 984 and Allen Bradley Programmable Logic Controllers.

back from projects that had started up and began to systematically refine
their CALES knowledge base. Also, the field service group was now regu-
larly seeing the CALES designs in the field. Field-service comments were
initially negative, and a number of unrelated happenings were blamed
on CALES. It took several projects to develop some understanding about
what CALES could and should be blamed for. By year end, some field-ser-
vice engineers were reporting to their superintendent that “this CALES-
supplied software is the best software the company has ever provided.”

By the end of 1989, the CALES engineers had developed and validated
their own generic modules and had documented some successful start
ups. These CALES engineers then announced that in the interest of high
quality and on-time scheduling, they would refuse to use any generic mod-
ule other than that which they had created, refined, and validated. Lamb’s
best experts then accepted CALES as an efficiency tool and agreed to use
the developed generic modules as the temporary company standards.

In 1990 an Allen-Bradley Series 5 translator was added to CALES. The
improvement in speed and user interface was achieved when the CALES

intelligent editor was rewritten in Turbo Pascal. By the end of 1990, more
than 150 CALES generic modules had been created by Lamb experts, and
were being used, as company standards, by Lamb Control Engineers.

One of the first Lamb high-speed roll finishing systems designed
with the CALES software was started mid-1990 at Canadian Pacific Forest
Product newsprint mill in Gold River, B.C., Canada. This system con-
sists of all main Lamb machines, including wrapper dispenser, header,
crimper, headmaster, label applicators, band dispenser, kickers, and
slat and belt conveyors. The system was started up successfully and pro-
vides a 20-second roll machine cycle time. CALES has now been used in
20 Lamb roll and bale finishing systems.

Lamb Engineering Department finances have dramatically improved,
and CALES is credited with being a major contributor. The department
improved from a loss of over 10 percent of sales to a sales profit of 17
percent (sales had grown by over 200 percent [$ = pretax profit]); these
figures are even more amazing when you consider CALES was developed
as a “skunk works” project with little overt funding and substantial devel-
opment and standards costs buried in the financial figures. (We think of
a skunk works project as one that is allowed freedom from the normal
checks and balances of bureaucratic organizations. It is a project driven
by a fanaticism condoned by strategic policy makers because of the hope
of making radical improvements in important, difficult, and intractable
problems.) Therefore, it’s only fair to conclude that the true financial
benefits of this technology are substantial but not yet fully quantified.

The human problems surrounding CALES continue into 1990. Not
surprisingly, the greatest problems in implementing knowledge-based

GENERIC PLC PROGRAMMING 243

engineering systems have been and will continue to be those dealing
with people and the management of their work.

Innovations Brought by the Application
Many of the innovations created in developing CALES were related to
concepts, with unconventional system design, implementation, and
Lisp programming, and did not require sophisticated the use of AI
technology. The most important AI contribution was the belief (false?)
that we could handle any knowledge-based problem by coding in Lisp
if we thought the problem important enough and spent enough time
on it. Our development group did not have access to expensive AI
hardware or software but never felt limited in creating the CALES lan-
guage or translation packages, although our software did suffer from
the infamous 640-KB DOS barrier.

Looking back, we merely created a language and a compiler, an
achievement that might not seem particularly innovative. However, we
did feel innovative and felt we were relied on fundamental concepts
while we developed and deployed CALES. We believe the work would not
have been completed without the combination of (1) using the Lisp lan-
guage and having a rapid prototype mentality, (2) working on develop-
ment and production at the same time with the same group of people,
and (3) having a knowledge engineer and real engineer in one person.

Criteria for a Successful Application
This section elaborates on the strategic goals for CALES that were de-
scribed at the beginning of this chapter. The first thing that happened
on the way to lower cost and good schedules was an improvement in
quality. Only after realizing almost perfect quality was it possible to au-
tomate the design for cost and schedule.

Another unexpected benefit was a management attitude change. Ev-
eryone concerned with the management of the electrical engineering
function at Lamb believes that this expert system has given the company
a competitive advantage in cost, quality, and rapid response time. Every-
one recognizes the genuine technical and human risks and problems
and our inability to maintain exact project control with these problems.

The fact that we’re still unable to schedule or estimate the costs of
future phases of the development, does not greatly concern us. The
quotations that follow are from two experienced individuals: Warren
MacFarland in the 1989 video Competitive Advantage through Information
Technology said, “If you as a senior manager cannot handle great volatili-
ty, uncertainties, and overruns in project costs or schedules, just do not

244 CAMPBELL & BUKSHTEYN

start projects that are very unstructured and that use technology which
is very advanced for your project team.” George Rusznak of the Index
Group, Los Angeles, said “We don’t think of strategic moves as being
primarily cost justified.”

The same CEO who originally worried about the electrical engineer-
ing department now says it is no longer on his list of critical corporate
problems and is allowing expert system development in other areas
having corporate strategic benefit potential. These efforts are Caces
(started in 1986 for schematic and wiring diagrams), Cames (started in
1987 for mechanical configuration and drawing preparation in Auto-
cad), and Capes (started in 1989 for proposal costing, pricing, and
writing). Our company might begin the implementation of a five-year
plan to restructure the entire front end of the company so it will get
maximum leverage from the evolving Capes-Cames-CALES capabilities.
Many of these changes were never part of our goals for CALES but are
indications that CALES is influencing the structure of our company.

Nature and Estimate of Payoff to Our Organization
We have not been able to quantify the benefits of CALES, but here are
some preliminary data: Intelligent standards reduced software design
costs by 50 percent and design software errors by 80 percent. Customer
satisfaction with software improved by 50 percent. The peaceful
dreams of the Lamb chief electrical engineer were improved in quanti-
ty and quality by 100 percent because he is much less concerned about
litigation. The Lamb chief electrical engineer reports he would need
CALES even if it didn’t save money and improve response time; he
needs it most for its quality work. He also says that he doesn’t know
how our company could do the required work if CALES were suddenly

GENERIC PLC PROGRAMMING 245

Hours%
100

80

60

40

Actual

Forecast

TARGET

1988 1989 1990 1991

Figure 3. PLC Software Engineering Hours

taken away. However, he says CALES is still in its early days; as it diffuses
further into the departments and gradually takes on more and more
work, it will continue to change the essence of his business.

Information technology is beginning to be seen as more than a com-
puter program; it can be a new way of doing business by using knowl-
edge in the form of intelligent standards. Perhaps the greatest payoff is
that the phrases engineering standard and business standard are not
automatically considered inflexible or bad because intelligent stan-
dards can be made as flexible as the business or engineering condi-
tions require. If a human expert needs to intervene because CALES can-
not handle certain details, s/he only has to intervene in small portions
of a large task because the work is of a high and predictable quality.

Although proof is not available, CALES might have allowed the com-
pany to take 20-percent more work for at least two years by removing a
corporate bottleneck. If so, the contribution to overhead and profit
will be measured in the millions of dollars and will clearly be a strategic
benefit for a company of our size. If our cyclical market suddenly be-
comes soft, we’ll be well positioned to compete on price if we choose,
another clear strategic gain. Our original goal was to reduce person-
hours by 80 percent of the budget. We’ve only reduced it by 50 percent
but haven’t abandoned our original goal.

Deployment Times, Costs, and
Technology Transfer Problems
CALES development started in 1985 and continues. We don’t know our
development costs because CALES development became so intimately
tied to Lamb’s production work that normal cost accounting was not
possible. We no longer think of CALES as in development and, therefore,
fund further work either from the jobs or as an overhead charge because
“it’s just our way of doing normal department business.” It’s also a way of
continuing our skunk works mentality, which we believe is valuable.

Technology transfer was no problem for the first location because the
developing group was also active in using the tool; therefore, if some-
thing wasn’t right, the group fixed it or worked around it until it could
correct the problem. Technology transfer problems were more impor-
tant with other engineering groups within the company, but the bene-
fits of quality and productivity have gradually been selling themselves.

Acknowledgments
We would like to thank the AI community for its contributions to our
company’s work in strategic planning and implementation.

246 CAMPBELL & BUKSHTEYN

