
Intelligent Text Comparison
in Software Validation
Inge Jechart, Ray Paquette, and Stefan Schmitz

The intelligent comparison tool (ICT) was developed to perform intel-
ligent comparisons of text files. The purpose of the tool is to reduce
the differences found when comparing two text files to only the mean-
ingful or important ones. This tool contrasts with conventional differ-
encing tools that find all literal differences. This tool was developed to
help in the validation of software revisions where a large amount of
text output is compared to a benchmark output.

Problem Description
Manual and automated regression testing of major software systems
frequently results in the generation of large volumes of text output
files. These files, for the most part the same as the output from testing
previous versions of the software system, require extensive review to val-
idate the operation of the modified software. This review is tedious, re-
quiring a lot of attention by highly trained and usually overburdened
technical staff members.

The review task can be reduced through the use of standard Diff tools
that point out the differences between two versions of test output.
However, the report of the differences can and regularly does exceed

From: IAAI-90 Proceedings. Copyright © 1990, AAAI (www.aaai.org). All rights reserved. 



248 JECHART, ET AL.

File A File B

Standard
DIFF
Utility

Literal
Differences

Expert
System

Important
Differences

Figure 1. ICT Operation.



the size of the original test output files. Minor differences such as date
and time and other information extraneous to the test can overwhelm
the Diff process and detrimentally obscure the real and important dif-
ferences. Other differences, for example, numeric differences, might
be within some acceptable range and can be ignored.

Problem Statement
Develop a tool that identifies all important differences and minimizes
unimportant differences between the test output from a software sys-
tem and the expected output from this system.

ICT should significantly reduce the expense, time, and personnel
impact associated with the review of regression test output. At the same
time, the quality of the review process should be improved. The tool
can be used in any situation that produces periodic versions of results
that are intended to be nearly the same.

Operation
ICT takes two text files as input and produces output that consists of
meaningful differences between the two input files. In addition, log and
error files are produced. ICT works in two phases: the literal compari-
son phase and the intelligent difference elimination phase (figure 1).

Literal Comparison
In the first phase, the two input text files are literally compared. This
process is done with a standard Diff tool.

Intelligent Difference Elimination
In the second phase, the literal difference files are processed by an ex-
pert system. During the processing of a difference file (containing one
or more literal differences), as much text as possible is removed from
both parts of a particular difference. (A difference consists of two por-
tions, each listing text from one of the two input files.) This text reduc-
tion is directed by the rules. It stops either when both portions of a dif-
ference have been made identical (that is, the difference was
completely irrelevant) or when no further reductions can be achieved
(that is, an important difference [according to the rules] has been
found).

The output file with the remaining differences is written in the same
format as the input so that it can repeatedly be processed with differ-
ent sets of rules, perhaps with more stringent criteria or more sophisti-
cated rules.

INTELLIGENT TEXT COMPARISON 249



Technical Overview
ICT is a hybrid stand-alone tool with embedded knowledge-based and
procedural components. It achieves its intelligence with two major in-
gredients: string pattern matching and expert system technology.

Text String Pattern Matching
In text string pattern matching, generalized text strings, for example, a
pattern that matches all dates, are specified using extended regular ex-
pressions. Regular expressions are a standard and powerful way of defin-
ing text string patterns. An excellent description of the regular expres-
sion syntax employed in ICT can be found in Aho, Kernighan, and
Weinberger (1988).

Expert System 
The second ingredient in ICT is a production-rule expert system that
captures the test engineer’s knowledge and expertise. The rules specify
text string patterns that are to be matched on the input text. The rule
premises can combine any number of conditions, for example,
whether simultaneous matching of several text string patterns occurred
(context), whether a particular pattern did not match (exceptions), or
what the matched string actually contained. The rules can, for exam-
ple, dictate to ignore differences in dates or file version numbers only
in certain contexts. They can also direct to ignore differences between
numbers if the difference is below a certain percentage.

Stepwise Differencing
Another ingredient of ICT is an improvement in the conventional dif-
ferencing utility. It is a stepwise differencing tool. This tool looks for
suitable test step markers and titles that are inserted into the original
text files (usually automatically during capture of the output). These
markers break the text into sections or steps. When the text files are lit-
erally compared, only corresponding test steps that appear in both files
are compared with each other. In this way, test steps can be in a differ-
ent order in the two files or even absent in one of them. The table cre-
ated by this process is useful in managing the large amount of test in-
formation and can become part of the quality assurance document set.

Implementation
In this first implementation, the literal stepwise differencing was per-
formed on a Vax. The expert system was run on a personal computer.

250 JECHART, ET AL.



Fortran, DCL on the VAX

The stepwise differencing tool is written in Fortran and DCL and runs
on the VAX under VAX/VMS. It uses the VAX difference utility for the
literal comparisons.

Personal Consultant on the IBM/PC/AT
The expert system shell chosen for ICT is the Texas Instruments
(1987) PC+. It runs on the IBM/PC/AT under DOS. PC+ is written in
Scheme Lisp and allows for calls of Lisp routines, which, in turn, can
call routines written in procedural languages such as C or Pascal.

The expert system is run from DOS in batch mode. A batch com-
mand file invokes the expert system shell as often as desired, each time
using a different input file and specifying the knowledge base to be
used. During such a session, a single input file containing one or more
sets of literal text differences is processed by the expert system.

The rules typically attempt to match a text pattern on the two parts
of the difference, removing or blanking out text depending on various
conditions. As the last premise of most rules, the now altered parts of
the difference are compared. If they have been made identical, the
rule succeeds (fires), indicating that this particular difference has been
eliminated. If the difference cannot be reduced to two identical parts,
a catchall rule with the lowest priority fires, thus satisfying the sub-
frame’s goal yet indicating that an important difference was found,
which is written to the output file.

Generation of Rules
Using a listing of the literal differences, a test engineer establishes a list
of the most common unimportant differences. The tool closely mimics
the language of the engineer. A typical statement such as “this differ-
ence is unimportant because both output differ only in the date . . . “
naturally translates into a rule.

For example, a useful rule compares numbers that are found to be
different but might be within an acceptable range for the testing pur-
pose. The rule uses a regular expression to search for floating-point
numbers, one from each part of the difference, and computes the dis-
crepancy. Varying percentage differences are allowed depending on
the magnitude of the original numbers. If the difference is small
enough, the two input numbers are replaced by blanks, and the search
continues for the next pair of floating-point numbers. In general, it
turned out that writing several simpler rules, each tailored to a similar
yet slightly different situation, improved execution time over using just
one rather complex rule that dealt with all these situations at once.

INTELLIGENT TEXT COMPARISON 251



Lisp Routines
The rules of the expert system directly call Lisp routines. These Lisp
routines perform the bulk of the logistic functions, such as reading
and writing files. The use of recursion, lists, and mixed data types pro-
vides a convenient and powerful way of specifying regular expressions,
which could otherwise easily result in long, cumbersome text strings.
In ICT, regular expressions can be represented by text strings, variables
representing a regular expression, or (mixed and nested) lists of both.
In this way, even long regular expressions can be specified by a list of
small, meaningful subexpressions.

C Routines
The Lisp code calls C routines written in Microsoft C. Both Lisp and C
perform input-output on the same files but also communicate through
variables. All the text pattern matching is performed by C code. It al-
lows for matching a regular expression on a literal difference text to
determine whether a match occurred, to retrieve the actual matched
string, to replace it with blanks, or to delete it. In addition, the match
can be restricted to a substring of the literal difference text. This sub-
string is also specified by a regular expression. C routines that imple-
ment text string pattern matching with extended regular expressions
were developed at the University of Toronto (Spencer 1986). ICT uses
this software with a modification to improve error handling.

Matching is not restricted to single lines as it is in many commonly
used text-searching or pattern-matching tools. Rather, the whole text of
a literal difference can be matched at once. One can, of course, restrict
the match to one line at a time with the proper use of regular expres-
sions.

Frame Structure and Rules
PC+ is organized into frames. A frame is a template that contains a
collection of goals, premises, rules, facts, and so on. During each ses-
sion, exactly one instance of the root frame is instantiated. The root
frame for ICT is as follows.

Root Frame:
===========
Goals: DONE
Offspring: DIFFSET
Rules: (RULE001)
Shown here are some of the characteristics of the root frame. Its in-

stantiation puts the goal DONE on the agenda. Through backward

252 JECHART, ET AL.



chaining, RULE001 is considered:
RULE001:
========
IF

(INIT&TRUE)
THEN

CONSIDERFRAME DIFFSET AND DONE
INIT&TRUE is a Lisp routine. It initializes various variables and

helps with the overall system logistics. It always returns true, so that the
premise of RULE001 always succeeds. The conclusion causes the frame
DIFFSET to be considered (instantiated), and when all instantiations
of frame type DIFFSET have been processed, the goal DONE is to be
set to true, which ends the session.

All real work is performed by the DIFFSET subframe. In PC+, plus
frames can be designed to be instantiated as often as possible, that is,
as often as the premise allows.

Frame DIFFSET:
============== 
Goal: SET-STATUS
Premise: (LOADNEXT COUNT)
Rules: (RULE002 RULE003 . . .)
When PC+ determines whether this frame should be instantiated for

the first (or a repeated) time, the Lisp function LOADNEXT (with a
bookkeeping argument) is executed. This function helps with initial-
ization and logistic tasks but, most importantly, loads the next set of lit-
eral differences from the input file. Each part of the difference is writ-
ten to a DOS virtual disk file.

If, however, no more sets of literal differences can be found, LOAD-
NEXT returns false, so that no further DIFFSET frame is instantiated,
and the session comes to a conclusion. Otherwise, a new instance of
this frame is created. Therefore, a new (and distinct from all previous)
goal SET-STATUS is put on the agenda. The backward-chaining rules
(RULE002, RULE003, . . .) now come into play. They determine the
goal SET-STATUS and, in the process, perform the desired effect of
discarding, reducing, or keeping the current set of literal differences. 

Here are some rule examples:
RULE002:
========
IF

(MATCH 1 RE-DATE)
AND 

(MATCH 2 RE-DATE)
AND

INTELLIGENT TEXT COMPARISON 253



(REMOVE&TRUE 12 RE-DATE)
AND 

(COMPARE?)
THEN

SET-STATUS = “The subsets are equivalent”
The first premise calls the Lisp routine MATCH with two arguments,

1 and RE-DATE. RE-DATE is simply a variable representing a regular
expression denoting dates, for example:

[0-2]?[0-9]-[A-Z][A-Z][A-Z]-19[0-9][0-9]  .
This regular expression matches dates of the form 8-AUG-1990 or 01-
JAN-1991. The other argument, 1, indicates that the regular expression
is to be matched on the first of the two parts of the literal difference. 

The function MATCH returns true if the match succeeded; other-
wise, it returns false. Therefore, the first two premises of rule RULE002
succeed only if both parts of the literal difference contained a date.

The third premise consists of the Lisp routine REMOVE&TRUE. It is
only executed when the first two premises succeed. This routine re-
moves (blanks out) the text matched by the regular expression repre-
sented by the second argument. This removal is applied to both sub-
sets, as indicated by the first argument, 12.

The fourth premise is a Lisp routine that compares the (now al-
tered) parts of the literal difference and returns true if the two are
identical; otherwise, it returns false. Case sensitivity, the handling of
multiple white spaces, and tabs are controlled by flags that are read
from an ASCII file.

If the rule fails at this point, the dates have already been removed,
even though another difference remains. However, if the COMPARE?
premise succeeds, this set of literal differences does not represent an
important difference and is totally eliminated. The current DIFFSET
frame’s goal (SET-STATUS) is established, the frame processing is con-
cluded, and PC+ goes on to the next set of literal differences.

RULE002 can be paraphrased as “remove dates (of a certain form)
from both parts of any literal difference but only if both parts contain a
date of that form.”

The next rule example performs this task: “Remove times from both
parts of the literal difference if both contain times of a given form in a
certain context and if the times are within 2 minutes of each other”:

RULE003:
========
IF

(MATCH_INRANGE? 1 RE-TIME (LIST “Start: “
RE_TIME “ on node VENUS”))

AND

254 JECHART, ET AL.



(MATCH_INRANGE? 2 RE-TIME (LIST “Start: “
RE_TIME “ on node VENUS”))

AND
(DIFFTIME) < 2

AND 
(REMOVE&TRUE 12 (LIST “Start: “ RE_TIME “ on

node VENUS”))
AND

(COMPARE?)
THEN

SET-STATUS = “The subsets are equivalent”
Although essentially similar to the previous rule example, this rule

exemplifies the power and conciseness of the ICT rules. The context
for the time (of a form specified by a regular expression stored in vari-
able RE-TIME) is itself a rather long regular expression. It is given as a
LIST argument, which will be turned into a string by Lisp code
through substitution and string concatenation.

The Lisp function DIFFTIME accesses the actual matched strings of
the last two matches.   From these strings (which represent times), a
time difference in minutes is calculated and returned.

The last rule example is the catchall rule of frame DIFFSET. It is nec-
essary if none of the rules could make the two parts of the literal differ-
ence identical to each other. In this case, the following rule brings the
current frame’s processing to a close:

RULE004:
========
IF

SET-STATUS IS NOTKNOWN
THEN

SET-STATUS = “The subsets have an important difference”
AND

(WRITE-DIFFSET-TO-FILE)
PRIORITY: -90
NOTKNOWN is a PC+ keyword that applies to knowledge facts that

have not been established. The low priority of this rule assures that it is
the last rule to be tried. As part of its conclusion, this rule writes the
possibly reduced remaining parts of the literal difference to the output
file.

In summary, each set of literal differences in the input causes a new
instantiation of the subframe DIFFSET. The resulting new goal brings
rules into play that reduce the parts of the literal differences according
to reasoning with matches of text string patterns. Should the two parts
of the current literal difference become identical because of this re-

INTELLIGENT TEXT COMPARISON 255



ported reduction, it is immediately discarded, and ICT goes on to the
next literal difference. If the two parts of a literal difference cannot be
made identical after all rules have been brought to bear on it, then the
remaining parts are considered to contain an important difference and
are written to the output file.

Thus, the common problem to combine the declarative and proce-
dural worlds is achieved by creating a procedural framework in the
declarative expert system shell that allows for the sequential processing
of each set of differences and the application of all appropriate rules.
Now that the framework is established, it is easy and fast to add new
knowledge and expertise.  

The current shallow reasoning achieved remarkable results in the
first use of ICT. However, knowledge can also be structured in sub-
frames and rules that achieve high degrees of reasoning complexity as
appropriate for the software-validation task at hand.

Experience
ICT was used in the spring of 1989 to aid in the software-validation pro-
cess for a customer. The software to be tested consisted of a large real-
time application of about 50,000 lines of Fortran code used to monitor
the fuel performance of a nuclear reactor. Proper validation of this sys-
tem was an important part of the development cycle.

ICT system was applied to the large volumes of output generated by
an integration test run. Specifically, the output of a current test run
had to be compared to a benchmark case. The size of each of these
files was typically around 2.5 megabytes (MB).

The literal comparison produced files whose combined size was also
around 2.5 MB. These files were substantially reduced by the ICT sys-
tem. A surprisingly small number of rules resulted in a dramatic reduc-
tion of output. With only 28 rules, the literal differences were reduced
to 18 percent of their original size (counting all nonblank characters).

Included in this reduction were many differences that typically start-
ed with about 100 floating-point numbers in each set and that ended
mostly blank, with a few out-of-range numbers easily visible. Compare
figure 2 with figure 3.

By eliminating most of the differences that are not important to a
test engineer, ICT was able to focus the engineer’s attention on the es-
sential differences between the test run and the benchmark case. ICT
achieved large savings in time and replaced spot checking of the past
with exhaustive checks.

In addition, the fact that ICT divides the large, unwieldy test file into

256 JECHART, ET AL.



small, logical parts (test steps) and generates a table of contents for
these test steps was helpful in managing the amount of data involved.

During the original experience with the ICT system, all work was
performed by the ICT development team. As a result, it is believed that
greater efficiency in operation was experienced than had less highly
trained personnel been used. It is expected that the next application of
the system will use personnel who are not aware of the details of the

INTELLIGENT TEXT COMPARISON 257

Figure 2. Literal Differences.

Figure 3. Important Differences.

File ABC_01.DAT: lines 1733 - 1739
0.727 0.685 0.668 -1.36
0.726 0.683 0.665 -1.37
0.720 0.682 0.651 -1.38
0.719 0.664 0.648 -1.39
0.717 0.662 0.646 -1.46
0.715 0.660 0.644 -1.41
*****
File ABC_02.DAT: lines 1842 - 1847
0.727 0.686 0.668 -1.36
0.726 0.683 0.669 -1.37
0.729 0.682 0.651 -1.39
0.719 0.664 0.648 -1.39
0.717 0.662 0.646 -1.46
0.715 0.660 0.643 -1.46

File ABC_01.DAT: lines 1733 - 1739

-1.41
*****
File ABC_02.DAT: lines 1842 - 1847

1.46



operation of the system, thus giving a more realistic picture of the sav-
ings that might result from long-term operation of ICT.

Payoffs
Customer savings were established by the test engineer who has re-
viewed the tested system for the past three years. He estimated that ICT
reduced the time required for a complete review from 200 to 4 re-
source hours. Operation of ICT adds 2 resource hours.

Although the time savings were important to the customer, more im-
portant was the improved quality of the review process. Most important
to the test engineer was that spot checking and error-prone reviews
were replaced by reviews that are exhaustive, repeatable, and less re-
liant on expert personnel. Also much appreciated was the reduction in
tedium.

For minor software revisions, in the past, only the portions of the test
output that were thought to be relevant were reviewed, usually requir-
ing about 20 resource hours. Now a complete review is performed each
time.

The use of ICT revealed several software problems that had re-
mained undetected in previous regression tests. Resolution of these
problems at this point in the development cycle certainly reduced over-
all system costs. The customer response has been enthusiastic.

Development Schedule and Costs
The development time for a prototype was about four resource months
(two part-time persons for several months). It included the procedural
framework (Lisp code, C code, Lisp-C interface) and a few rules.

The necessary hardware and software consisted of a PC/AT with a
hard disk and extended memory, PC+, Microsoft C, and some utility
programs. The total expenditure for these items was $4200.

The transfer to actual field use was done in three stages. First, the
rules specific to the software-validation task at hand were developed to-
gether with some enhancements of the ICT framework. This system pro-
cessed output from a Prime computer’s Diff utility but did not yet use
the stepwise differencing. In the second stage, the system was adapted to
process output from a VAX Diff utility. Third, the stepwise differencing
capability was added. During these three stages, two software revisions
were processed by ICT. The total time effort was five resource months.

The established framework allows for easy and fast adaption to the val-
idation of different software systems; only the knowledge base rules have

258 JECHART, ET AL.



to be replaced. Because a small number of rules achieved remarkable re-
sults, it is estimated that this process would take only a few weeks.

As ongoing work for the customer, it is planned to port ICT to a dif-
ferent platform, refine the current knowledge base framework, and
create several new rule bases for validation of other software systems.
The new platform will be Nexpert Object from Neuron Data running
on a VAX computer under VAX/VMS.

Conclusions
The following conclusions were derived from our experience in devel-
oping and using ICT: First, expert system technology merged with text
pattern matching is successful in partially automating the review of re-
gression test output. Second, the tool increases the quality of the re-
view process. The review focuses on the relevant test differences. Spot
checking can be replaced by exhaustive review. The acceptance criteria
for the automated review are unambiguously documented. The review
process is more accurate and repeatable. Third, ICT minimized review
tedium and maximized review engineer effectiveness. The morale of
the review engineer was greatly improved. Fourth, the established
framework allows for the quick and straightforward creation of knowl-
edge bases for use in new software validation tasks. The knowledge
base creation process is well adapted to the way test engineers express
their expertise. The overall experience with ICT has been extremely
positive, as attested to by an enthusiastic customer response.

Acknowledgments
This project would not have been started or successfully completed

without the wise insights of Harold Brown, who is currently at the
Hewlett Packard Laboratory, Palo Alto, California.

Portions of this work were funded by GE Consulting Services, San
Jose, California, which also provided a nurturing environment in which
to pursue the effort. 

References
Aho, A. V.; Kernighan, B. W.; and Weinberger, P. J. 1988. The AWK Pro-
gramming Language. Reading, Mass.: Addison-Wesley.

Spencer, H. 1986. Extended Regular Expression Software, University of
Toronto.

Texas Instruments. 1987. Personal Consultant Plus (PC+), version 3.0,
and PC Scheme, version 3.0.

INTELLIGENT TEXT COMPARISON 259


