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The thallium diagnostic workstation (TDW) is an integrated workstation
for the learning and application of diagnostic rules for thallium heart
imagery. TDW learns diagnostic rules from training sets of images, using
a symbolic induction algorithm developed specifically for this applica-
tion. TDW uses machine vision to identify image features of diagnostic
significance (findings), which are described to the physician in a write-
up. The physician can perform automated diagnosis by applying a rule
set to the findings, selected from TDW’s catalog of learned rules. The
physician can also view imagery, record his(her) own findings, and
enter a diagnosis. TDW informs the physician of its concurrence or non-
concurrence with the physician’s diagnosis.

TDW is deployed at the United States Air Force School of Aerospace
Medicine (USAFSAM). Physicians at USAFSAM qualify fliers for
aeromedical fitness. Significant coronary artery disease, causing nar-
rowing of the arteries supplying blood to the heart muscle, is grounds
for disqualification. Because Air Force standards are strict, fliers can be
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disqualified even if there are no overt symptoms of coronary artery dis-
ease (such as angina pectoris). The Air Force can disqualify a flier for
the loss of 30 percent of the diameter of a coronary artery. However,
coronary artery disease often produces no severe symptoms until close
to 90 percent of the diameter is lost, making the diagnosis of aeromed-
ically significant coronary artery disease a harder proposition than di-
agnosing coronary artery disease in a conventional clinical setting.

USAFSAM uses thallium imagery to screen fliers suspected of having
coronary artery disease. A thallium scan is graded normal, borderline,
or abnormal. Patients with borderline or abnormal scans are subject to
angiography, the definitive technique for diagnosing the disease. In
angiography, puffs of radiopaque dye are released from a catheter that
is passed through the femoral artery to just above the coronary circula-
tion. A moving X-ray image is taken that shows the course of blood
through the coronary arteries. Angiography is invasive, requiring car-
diac catheterization and the use of a dye sometimes associated with al-
lergic reactions. Using thallium imagery lowers patient risk by reducing
unnecessary angiography.

Diagnosing asymptomatic coronary artery disease from thallium im-
agery is difficult and subjective. Physicians at USAFSAM show consider-
able variation in their thallium-reading skills (evaluated as the percent-
age of thallium-based diagnoses confirmed by angiography). The
physicians’ skill level correlates well with time on the job at USAFSAM
(Kay 1989). Physicians become skilled in the technique through on-
the-job experience, then leave after a three- to four-year rotation.

Benefits
TDW provides the following benefits to USAFSAM physicians: First, TDW

leverages expertise. It enables physicians to perform as well as the best
available diagnostician. TDW can also be trained on angiographic diag-
noses; in which case, it performs comparably with USAFSAM’s best di-
agnosticians. Second, TDW conserves expertise. USAFSAM physicians
become experts in thallium interpretation and then leave. TDW pre-
serves the expertise of physicians for use by their successors. Third,
TDW objectifies expertise. TDW’s learned rule sets enable experts to
compare and evaluate objective criteria for classifying thallium images.
Fourth, TDW provides consistent and reproducible diagnoses. Although
thallium interpretation is somewhat subjective, precise numbers under-
lie the image. TDW provides a diagnostic standard that is consistent and
reproducible across both doctors and patients. This approach benefits
longitudinal studies that involve multiple doctors and patients.
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These benefits are provided by traditional expert systems. TDW’s ma-
chine vision capability provides an additional benefit: It can train in-
coming physicians. TDW is not primarily intended as a tutoring system.
In general, expert systems do not perform well as tutors. However, TDW

is useful in honing incoming physicians’ expert vision, the ability to de-
tect features of diagnostic significance. Because TDW’s findings can be
displayed on a screen with imagery, the novice thallium reader can use
the findings as a guide.

TDW’s machine-learning capability provides the following benefits:
First, it reconstructs expertise. A longitudinal study of coronary artery
disease might include patients diagnosed by physicians who left the
study years ago. TDW can reconstruct the physicians’ diagnostic criteria
from examples. The reconstructed criteria can be used to evaluate puz-
zling diagnostic calls. The call can be consistent with TDW’s learned cri-
teria for this physician, justifying the call. If the call is inconsistent with
the learned criteria, the call can be treated as an anomaly. Second, TDW

supports studies. USAFSAM physicians are concerned with diagnosing
low-grade coronary artery disease. What is the least degree of this dis-
ease that can reliably be distinguished from normality? Training TDW

on specially selected image sets can help answer this question. Third,
TDW is a self-maintaining knowledge base in the sense that users can
update the diagnostic rules by training TDW on new cases.

Innovative Application of Machine Vision & Machine Learning
Medical imagery is potentially a high-payoff domain for expert systems.
For chest films, Garland (1950) showed that radiologists routinely miss
about 30 percent of all abnormalities. However, building an expert sys-
tem to classify images poses challenges beyond those normally associat-
ed with expert systems.

An expert system for medical imagery must incorporate machine vi-
sion. Human diagnostic reasoning proceeds from high-level image fea-
tures rather than pixel intensities. A nuclear medicine specialist learns
to see features of diagnostic significance in an image—an expert vision
based on pattern recognition rather than deductive reasoning.

TDW emulates the physician’s expert vision. Previous automated
thallium diagnostic systems used statistical profiles to classify images
(Burow et al. 1979; Garcia et al. 1981; Watson et al. 1981). TDW’s AI

approach is an improvement because it reasons from features that
physicians can see in the imagery and presents its findings in terms
used by physicians.  This  approach helps build physicians’
confidence in the correctness of TDW’s conclusions.
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Knowledge acquisition for image classification presents another chal-
lenge. Knowledge acquisition is difficult enough when the expert rea-
sons from facts and assumptions that are objectively true or false. How-
ever, physicians classify thallium imagery using subjectively defined
image features that are construed differently by different physicians or
even by the same physician over time. Further, in becoming an expert,
the physician fuses feature extraction and diagnostic reasoning into a
single process called judgment that the physician cannot explain.
Knowledge elicitation produces textbook explanations that bear little
relationship to how the physician actually interprets images.

TDW uses machine-learning techniques to automate knowledge acqui-
sition. It deals with the problem of inconsistency by seeking rules that
replicate the physician’s judgments in as many cases as possible. Because
TDW learns from examples rather than explanations, it is not confused by
a physician’s misunderstanding of his(her) own decision processes.

System Architecture and Function
TDW is implemented on a Science Applications International Corpora-
tion SIGMA-1 microcomputer incorporating a 25-megahertz 80386 pro-
cessor, an 80387 numeric coprocessor, a floating-point coprocessor
rated at 22 MFlops, and a VGA monitor. Microsoft WINDOWS provides a
windowed user interface. Much work went into the interface design. As
a result, TDW has only two menu bars (one for viewing images and one
for all other functions) and no submenus. Although TDW has separate
programs for learning and diagnosis, this separation is transparent to
the user because WINDOWS provides a seamless interface. The Nexpert
Object expert system shell maintains information about cases, image
features, diagnoses, and diagnostic rules. Nexpert Object was selected
because it offers a class-object–oriented frame system and flexible agen-
da control during inferencing, and it can be embedded under WINDOWS.

TDW performs two main functions: learning diagnostic rules from
sets of diagnosed images and applying rules to produce diagnoses. TDW

has a subsystem for each function. The subsystems are constellated
around a central knowledge base. The learning subsystem inserts rule
sets into the knowledge base and the application subsystem runs them.

Processing begins when TDW receives an image file from USAFSAM’s
medical imaging system over an ethernet. The image file contains the
patient’s name, the physician’s name, and other identifying informa-
tion as well as raw pixel intensities. TDW enters the patient information
into the knowledge base and performs image processing to improve
the quality of the raw data. TDW’s feature extractor identifies features of
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diagnostic significance in the image. These features are entered into
the knowledge base and associated with the patient data.

The physician can view imagery using the TDW image viewer. The
viewer can display six images belonging to a case (three anatomical
views taken at two intervals after thallium injection) either simultane-
ously or separately for higher resolution. Grey-scale, full-color, and a
quantized color-scale views are available. Both raw and processed im-
ages can be displayed. A mouse-driven pixel meter enables the physi-
cian to evaluate individual pixel intensities. The physician can view
TDW’s findings by opening a window that displays the feature descrip-
tions in narrative English.

TDW presents the physician with a list of current cases. The patient’s
name and number, the physician’s name, the image date, angiographic
results (if available) and diagnoses from thallium reading by physi-
cians, angiography data, and TDW’s rules are displayed for each case.
The physician can view imagery, record findings and diagnoses, view
TDW’s findings, and apply rule sets to perform automated diagnosis.
TDW lists the available rule sets and displays English translations of the
rules. When system capacity is reached, cases are automatically
archived to disk.

TDW learns diagnostic rules from training sets of diagnosed images. It
enables physicians to construct training sets by grouping cases that
meet user-specified screening criteria. The criteria enable the physi-
cian to include diagnoses based on the source—specific physicians or
angiography. Cases can also be selected based on image data range,
concurrence or nonconcurrence of the angiographic result with the
thallium scan, or the presence or absence of key words that physicians
can associate with cases. A physician can edit the training set to enter
or remove individual cases.

The learning subsystem uses a symbolic induction technique called
METARULE, which was developed specifically for TDW. As learning pro-
ceeds, the current best rule is displayed in English translation on the
screen. TDW requires approximately 10 minutes to learn rules covering
a training set of 100 cases. When learning is complete, the rule set is
translated into Nexpert syntax and compiled into the knowledge base.
The English translation is also stored for review by the physician.

How the Thallium Diagnostic Workstation Works
I now take a closer look at how thallium imagery is produced and inter-
preted by physicians, how TDW extracts features of diagnostic
significance from digitized imagery, and how learning is done.
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Thallium Image Interpretation
In the thallium technique, patients are run on a treadmill until the elec-
trocardiogram shows physiologic stress. At this point, the heart muscle is
low in potassium ions. Depletion occurs most prominently in the left
ventricle, which is the main pumping engine of the heart. The patient is
injected with thallous-201 chloride as a bolus through an intravenous
line. The thallium ion chemically resembles potassium, so it is absorbed
by the heart muscle where the muscle is perfused with blood. If perfu-
sion is normal, thallium is rapidly absorbed, then gradually washes out,
typically attaining the halfway point in 84 minutes (Gerson 1987).

The patient is imaged under a gamma camera, providing an array of
128 x 128 pixels, within 6 minutes of injection. Three views are taken:
the anterior, the 45-degree left anterior oblique, and the 70-degree left
anterior oblique. The images are repeated after 4 hours of rest. The
two sets of images are called the stress images and the rest images, respec-
tively.

I studied how physicians grade images by asking the clinical staff
members to describe their interpretation techniques. I also obtained
talking protocols in which physicians described how they evaluate im-
ages while the evaluations are being performed.

The physicians stated that thallium imagery indirectly reveals the
presence of coronary artery disease by depicting the perfusion of
blood into the left ventricular myocardium. Arterial narrowing (stenosis)
can delay the uptake and the washout of thallium. An image region
that washes out too slowly is a washout abnormality. More severe stenosis
can delay uptake so that the rest images show thallium is washing in
rather than out. An image region showing washin is called a reperfusion
defect. A reperfusion defect, combined with a washout abnormality, is
called a matched defect. A still greater degree of stenosis can produce a
region with little uptake on either set of images, which is called a perfu-
sion defect. A perfusion defect can indicate scar tissue in the myocardi-
um from a prior infarct. According to the clinical staff members,
washout abnormalities have the weakest evidentiary strength for coro-
nary artery disease, followed by reperfusion defects, matched defects,
and perfusion defects.

The talking protocols revealed additional feature types. When large
regions of an image show washin, but the intensity is never sufficient to
warrant being called a reperfusion defect, physicians call the defect
low-grade pervasive reperfusion. A reversing horseshoe is a pattern in which
the valve plane is hotter than the apex on the stress image but colder
on the rest image. This pattern, more formally known as reversing apical
hypoperfusion, is viewed as highly diagnostic for coronary artery disease.
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In general, physicians grade an image with sufficiently intense perfu-
sion defects, horseshoes, or matched defects as abnormal. Reperfusion
defects can result in a grade of abnormal or borderline. Washout abnor-
malities or low-grade pervasive reperfusion warrant a grade of borderline.
An image without defects or with low-intensity defects is graded normal.

Feature Extraction
Thallium image features have their visual basis in regions that appear
hot or cold relative to the rest of the image and their evolution over
time. To automatically extract features, we must quantify the terms by
which physicians describe features, for example, hotness, coldness, size,
intensity, and location. We must decide how hot, big, intense, and so on,
an image region must be to qualify as a feature. We must also decide how
to quantify the time evolution of a feature. The beating of the heart
makes it impossible to subtract the rest image from the stress image by
superposition. The two sets of images do not coincide in shape.

Image Preprocessing. Thallium imagery based on raw pixel intensities is
coarse and noisy. Automated and human interpretation alike are greatly
facilitated by preprocessing to smooth the image and reduce noise.

TDW applies Watson’s (1981) method of bilinear subtraction and
Laplacian filtering to reduce noise from background radiation, tissue
cross-talk, and absorption of thallium by organs other than the heart.
Then, TDW identifies the boundaries of the myocardium. Because the
edges are not sharp, I use thresholding rather than gradients or relat-
ed methods. Pixels that make up the myocardial image are normalized
to lie in the range from 0 to 55. The image is smoothed with a Gaus-
sian convolution. The image centroid and cardiac apex are located,
and the image is partitioned among the heart muscle walls.

Feature Extraction. The feature extractor uses template-based methods
to identify image features. The image is divided into 12 radial segments
about the centroid. Because the image was normalized, regions that are
hot or cold relative to the image as a whole can be identified through
thresholding. The appropriate values were found through experimenta-
tion. I also found that a region must occupy at least 10 percent of the
area of the myocardium to be considered a candidate feature.

When physicians assess the magnitude of a defect, they consider its
size and intensity and the change in size and intensity over time. A can-
didate feature is confirmed if the magnitude is sufficiently large. About
two dozen measures of magnitude were explored, derived from the de-
fect’s maximum pixel intensity, the average intensity and size, and the
absolute and percentage changes in these values. For reperfusion de-
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fects, I found that two measures of magnitude predicted the physi-
cians’ assessments: (1) the average pixel intensity of the region on the
stress image times the absolute change in area and (2) the difference
in the region’s average intensity between the stress and rest images
times the difference in area divided by the area of the region on the
stress image. Other measures proved useful for the other feature types.

Learning
Learning rules from examples is not part of expert system technology
but machine learning. Machine learning is still a research area. Several
commercial expert system shells claim to learn rules from examples,
but none perform adequately on any but simple problems (Thompson
and Thompson 1986). This situation is in part because learning is a
difficult problem and in part because different types of learning are ap-
propriate to different domains, making it hard to build a general-pur-
pose program. In addition, efficient learning often requires some do-
main knowledge beyond the examples themselves. I now turn to the
requirements imposed by the thallium image domain.

Requirements for Learning Diagnostic Rules for Thallium Imagery. A
machine-learning system for thallium imagery must deal with both cate-
gorical and numeric data. The type and anatomical location of a defect
is categorical; the intensity is numeric. The learning system must be able
to generalize about ranges of values. For example, a defect might war-
rant a grading of abnormal if it is sufficiently large in area or magnitude.

The learning system must tolerate counterexamples in the data.
Many learning algorithms will learn a rule only if the rule is never con-
tradicted. Medicine is not an exact science. Expert judgment will not
be 100 percent consistent. A few anomalous cases should not always in-
validate a rule.

The learning system should assess the quality of its rules. Because
rules might not be valid for all the cases from which the system learns,
the user must know how often a rule can be expected to be correct.

All other things being equal, preference should be given to rules
that are simple and readable and make sense to human experts. The
learning system should be biased toward simple rules.

How TDW Learns. A machine-learning algorithm named METARULE was
developed to meet the requirements of the thallium domain. METARULE

learns diagnostic rule sets in three phases. First, it learns rules for diag-
nosing normal cases. Then, it learns rules for diagnosing abnormal
cases. The five best rules are retained for normal and abnormal cases.
Finally, METARULE selects combinations of these rules to produce a com-
plete rule set.
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When learning about normal or abnormal cases, METARULE begins by
making simple assertions about what makes a case positive (that is,
makes an abnormal case abnormal or a normal case normal). These as-
sertions make up the inductive kernel. Rules in the kernel reference as-
pects of the image, such as which feature types are present, how many
features there are, what numeric values exist for feature attributes, and
so on. Rules involving ranges of numeric attributes are formulated by
seeking cut points with the greatest discriminatory power.

If the case is positive, METARULE postulates that the presence of its
feature types and attributes makes it positive. For example, a positive
case with a reperfusion defect having a magnitude of 100 might lead
METARULE to postulate that (1) a reperfusion defect makes a case posi-
tive, (2) a reperfusion defect with a magnitude of at least 100 makes a
case positive, or (3) having at least one feature makes a case positive.
For negative cases, METARULE postulates that the feature, attribute
value, and number of features prevent the case from being positive.

METARULE builds more complex rules by combining existing rules.
Promising combinations are identified using a beam search. The
search space is the space of all first-order formulas that can be built
from the kernel using the Boolean predicates And, Or, and Not.

A rule can be regarded as a characterizer or a discriminator (Michalski
1983). A characterizer lists things that positive cases have in common; a dis-
criminator tells what separates positive cases from negative cases. Discrimi-
nators are the object of the search. If a rule is not a good discriminator, it
might be useful as a characterizer. A characterizer covers the positive
cases well but includes too many negative ones. In a sense, a characteristic
description is half a solution (few false negatives) in search of its other
half (a description that reduces the number of false positives).

For each promising characterizer, METARULE seeks discriminators that
preserve the coverage of positive cases but reject any false positives.
Promising characterizers are combined with discriminators to form
conjunctive rules. Disjunctive rules are formed by combining comple-
mentary characterizers to extend their coverage. Rules do not need to
be conjunctive or disjunctive exclusively and can grow to an arbitrary
level of complexity.

METARULE maintains lists of the best performing characterizers and
discriminators. The search begins with the strongest characteristic de-
scription. For each characterizer in order of strength, METARULE gener-
ates a list of promising disjunctive rules, ranked from strongest to weak-
est. METARULE forms new rules by joining the most promising
discriminators with the current characterizer. For each promising char-
acterizer, METARULE finds other descriptions that extend the coverage
but include few or no false positives. These descriptions are separated
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to form new rules. As new rules emerge, the lists of characterizers and
discriminators are continually updated.

Several elaborations on this basic strategy are intended to speed the
search or provide a bias toward simpler rules. If METARULE discovers
that two candidate rules are logically equivalent (that is, can be re-
duced to the same expression by symbolic manipulation), the simpler
of the two rules is retained. This approach speeds the search and pro-
motes the use of simple rules. Similarly, if two rules are empirically
equivalent (that is, classify each case the same way for the same rea-
sons), only the simpler rule is retained. Finally, a rule’s simplicity can
partially make up for a small lack of accuracy when selecting a rule to
elaborate. The simplest rule is selected for elaboration from rules that
rate within three percentage points of the best-scoring rule.

The METARULE algorithm most resembles the AQ family of inductive-
learning programs (Michalski 1990). The algorithm evolved during de-
velopment. The first version could generalize about classes of fea-
tures—a hierarchical learning capability similar to that of OTIS (Kerber
1988). This capability was dropped from the final version when it be-
came clear that features are best considered individually rather than as
members of classes.

METARULE’s method of incorporating domain knowledge underwent
a fundamental change during development. The core of METARULE is a
general learning program and is not tailored to a specific domain.
Originally, domain knowledge was incorporated as commonsense rules
to guide the search and derived features. The commonsense rules were
propositions such as “Defects are associated with abnormal cases.”
These propositions were used to prevent the search from exploring
primrose paths. Derived features included LAD-DISTRIBUTION,
which was added to feature descriptions of cases showing a pattern of
defects consistent with stenosis of the left anterior descending (LAD)
coronary artery. I found that the search spent far too much time elabo-
rating portions of the kernel that were not productive for thallium.
The kernel contained many rules that were useful in general learning
problems but not specifically for thallium. Tailoring the inductive ker-
nel for the domain proved a much more effective way of creating an
efficient search than imposing knowledge-based constraints on the use
of a general-purpose kernel.

Development, Deployment, and Evaluation
The development strategy for TDW was a modified version of rapid pro-
totyping. The rapid prototyping strategy is useful when users’ require-
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ments are not well understood (perhaps even by the users themselves)
and must be discovered along the way. I believed, correctly, that I un-
derstood the functional requirements well at the outset. However, I
needed to manage the technical risk imposed by incorporating ma-
chine learning and vision in an expert system.

The machine-learning component involved the greatest technical
risk; so, I began by prototyping METARULE. METARULE was prototyped in
INTERLISP-D on a Xerox 1186 Lisp machine, then ported to C for delivery.
The use of Lisp greatly speeded development because of the power and
flexibility of the language and the INTERLISP environment for program-
ming, debugging, evaluating, and changing code. The salutary effect of
Lisp on development time can be gauged by the fact that porting
METARULE to C took as long as the initial prototyping effort—six months.

I demonstrated TDW to USAFSAM sponsors and clinicians about every
four months. This process allowed the future users to evaluate the user
interface and function and request changes or additional features. Each
new capability was added in two steps: First, the user interface was built
and demonstrated to the users to show the concept of operation. I
modified the concept and the interface, based on users’ comments,
then built the capability. Once a capability was built, I never had to
modify it. Except for the METARULE prototype, I rarely had to discard
code during development. This point is significant because many expert
system projects that plan to use rapid prototyping find that there is
never enough time or money to throw code away and start over.

This strategy can be called incremental prototyping because it falls be-
tween rapid prototyping and incremental development. Like rapid
prototyping, the users could specify their requirements as changes to a
prototype rather than having to write them down cold. As in incremen-
tal development, I developed the riskiest parts first and could have
aborted the project should TDW have proved infeasible. This strategy
worked well for TDW. I recommend it for systems in which the user re-
quirements are largely (but not completely) understood at the begin-
ning, and considerable technical risk needs to be managed.

TDW was researched, developed, and tested during a 2.5-year effort
involving about 3.75 person-years of effort at a cost of about $500,000
(including equipment and labor). It was deployed at USAFSAM in De-
cember 1990.

I evaluated TDW’s ability to learn to read thallium imagery like a US-
AFSAM physician—that is, learn rules that predict physicians’ grading
of a thallium image—and learn to predict coronary artery disease from
thallium imagery independent of the methods used by physicians—that
is, learn rules that predict the outcome of angiography.

TDW was tested on training sets varying from 50 to 115 cases in size.
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(Below 50 cases, METARULE began to tailor its rules to the quirks of indi-
vidual cases rather than generalize.) A rule set’s performance on cases
not included in the training set always closely mirrored its ability to
classify the training set itself.

TDW’s best rule for grading images like a physician correctly predicts
82 percent of the gradings. This figure is comparable to the level of
consistency among physicians: A study of intercoder reliability in thalli-
um interpretation showed that physicians agree about 87 percent of
the time (Trobaugh et al. 1978). TDW successfully learns diagnostic
rules that replicate the judgment of expert physicians.

It is noteworthy that TDW’s rules are much simpler than the physi-
cians’ own explanations of how they diagnose. In the talking protocols,
physicians consider many subtleties. For example, the positioning of
the heart within the chest could present an extra thickness of muscle
wall to the camera, accentuating a hot region. However, the learned
rules show that the presence of horseshoes and the characteristics of
the largest single reperfusion defect adequately predict the physicians’
diagnostic calls.

The best rule for predicting angiographic results correctly predicts
76 percent of the outcomes (62 percent of abnormal cases and 83 per-
cent of normal cases). For comparison, USAFSAM’s most skilled physi-
cians correctly predict 74 percent of angiographic outcomes (60 per-
cent for abnormal cases and 82 percent for normal cases). Learning by
example as physicians learn on the job, TDW performs comparably with
USAFSAM’s best diagnosticians.

TDW will improve patient care and reduce cost by reducing the num-
ber of cardiac catheterizations. A study of diagnoses by less experi-
enced physicians shows that TDW would have prevented as many as half
of the catheterizations. There is no satisfactory method for measuring
the number of catheterizations that TDW saves because it is difficult to
tell how a physician would have diagnosed a case without TDW’s assis-
tance. Based on retrospective data from the 1989 case load, TDW should
save 15 catheterizations this year. The cost reduction is difficult to cal-
culate because USAFSAM physicians do not charge their patients for
the procedure.

Discussion
There is a growing concern among practitioners of AI in medicine
about the paucity of deployed applications. Discussion has centered on
four issues: (1) some problems in this field are too hard to solve well;
(2) the lack of computerized patient records in most hospitals gives AI

116 SAUNDERS



medical systems little to work on unless someone takes the time to
enter patient information; (3) medical AI applications might automate
the most enjoyable part of the physician’s job; and (4) AI medical appli-
cations, like most new medical technology, improve patient care but in-
crease costs. If AI medical applications reduced costs, wouldn’t we see
an explosion of deployed applications?

TDW owes much of its success to the selection of a diagnostic prob-
lem that is significant, requiring the use of emerging technologies, but
not overwhelming. Feature extraction from thallium imagery can be
performed using well-established pattern-matching techniques. If fea-
ture extraction had required extensive object reconstruction and scene
analysis, TDW would still be where those technologies are—in the lab.
The problem posed by learning diagnostic rules was harder than the vi-
sion problem, and the technological solution was correspondingly
more mature. Machine learning is ready to start migrating from the lab
into applications, and TDW is one of the first applied learning systems
in medicine.

The patient data required by TDW, digitized imagery, already existed
in computerized form. The typing required of the physician is no more
than physicians already do in writing up their findings and diagnosis.

Because TDW encourages the physician to make judgments and com-
pare them with TDW’s, the workstation appears to be more of a colleague
than a replacement. I hope that physicians will find it enjoyable to use.

TDW’s development cost was substantial because it included research,
development, and production—the system had to be robust and
friendly enough for clinical use. Like other AI medical applications, it
improves patient care at a cost.

I hope that TDW will encourage other researchers to deploy applica-
tions that apply emerging technologies such as machine learning to
significant, manageable problems in medicine.
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