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By large-scale manufacturing, we refer to the manufacture of a few large,
complex items over a long period of time as opposed to the manufac-
ture of many smaller items during a shorter period of time. For exam-
ple, more than five years are required to build one ship, whereas thou-
sands of automobiles are built at a single plant during one year.
Further, thousands of person-years go into the making of a single ship.
As a result of the complexity of large items and the effort and time re-
quired to build them, it is inevitable that episodes of atypical problem
solving are unknowingly duplicated. This situation results in lost op-
portunities and less than optimal production costs.

The Problem
We illustrate this situation with a common engineering problem in
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ship building. A particular type of valve is used in some thousand fluid
systems on a specific class of ships, and often, it is used in many places
on a single fluid system. The operations performed on each valve are
“receive,” “inspect,” “install,” “test,” and “accept.” Each of these opera-
tions is controlled by different cognizant engineers, and a different set
of cognizant engineers is responsible for each fluid system. When an
operation fails, a well-defined investigatory procedure follows. If the in-
vestigatory procedure is sufficiently robust, a repair method for the fail-
ure is invoked. However, if a repair method is not evident, the investi-
gatory procedure becomes unstructured. Usually, the cognizant
engineer confers with colleagues or superiors. When a repair method
is found, it is documented but is not made public. An engineer with a
similar problem in the future is lucky if someone in his(her) group re-
members the old repair method and retrieves the applicable docu-
ment. More often than not, engineers confront atypical problems
afresh, without opportunities to exploit similar past solutions.

In the ship-building industry, these sorts of problems are called non-
conformances. Specifically, a nonconformance is the failure of a system or
subsystem whose repair method is not dictated by standard resolution
procedures. Nonconformances occur with all components of mechani-
cal, electric, and structural systems. In our facility, some 35,000 non-
comformances occur annually. The problem of redundant resolutions
of a nonconformance (RRN) occurs when a nonconformance is re-
searched and resolved in relative isolation. The RRN problem arises
because useful expertise that can be applied to nonconformance prob-
lems is transient and distributed over both time and space. For exam-
ple, (1) a particular nonconformance is addressed by different people
as a result of personnel turnover, (2) similar nonconformances recur at
different times during the construction cycle of systems or subsystems,
(3) similar subproblems of large complex nonconformances are ad-
dressed on different occasions by different personnel, and (4) a partic-
ular nonconformance is addressed by different departments or differ-
ent people within the same department.

The RRN problem is compounded in large-scale manufacturing be-
cause communication among the experts is sparse. The obvious solu-
tion to the problem is to identify and categorize nonconformances and
their respective problem-solving strategies and resolutions and make
this knowledge readily available to all engineers for application to cur-
rent nonconformances. However, this solution is difficult because
knowledge must be extracted from multiple experts, the knowledge
must uniformly be represented, and relevant knowledge must be acces-
sible to any one expert.
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The Solution
In January 1986, a manufacturing and production engineering project
was initiated to demonstrate the feasibility of a paperless nonconfor-
mance system using AI technology. The initial approach was to express
the requisite knowledge as rules in a production system. A prototype sys-
tem was developed in KEE on an AI workstation and then later reimple-
mented in Goldworks on a personal computer. The initial results were
promising. However, as the system became increasingly complex, it
began to suffer the problems of brittleness and knowledge-acquisition
bottleneck. The system could not resolve nonconformances that were
not already explicit in the knowledge base, and the experts found it in-
creasingly difficult to express their knowledge as a collection of rules.

The results of an internal research and development project during
1988–1989 demonstrated that case-based knowledge representation is a
close match to the properties of the RRN problem (Lewis 1989). By
1990, a case-based reasoning application to the RRN problem was con-
structed, and by the second quarter of 1990, it was deployed with a
sufficiently large, albeit incomplete, knowledge base.

The basic idea of case-based reasoning is to recall, adapt, and exe-
cute traces of former experiences in an attempt to deal with a current
experience. Former experiences are represented as a library of cases
that reside in memory, where individual cases are related through vari-
ous link types, including abstraction, exemplar, index, and failure
links. When confronted with a new problem, a case-based reasoning
system retrieves a maximally similar case, and information from the
case is adapted to the new problem in an attempt to solve it. If the solu-
tion is successful, the new case is embedded in memory for future
problem solving. If the solution is unsuccessful, the case is tagged and
embedded in memory with the reasons why it did not work.

The characteristics of case-based reasoning that render it suitable for
the RRN problem are (1) case structure, through which previous paper
reports of nonconformances and their solution strategies and resolu-
tions are representable; (2) similarity metrics, by which relevant repre-
sentations of nonconformance reports and solutions are retrieved; (3)
adaptation techniques, by which the resolution of a current nonconfor-
mance problem is derived from a retrieved report; and (4) the organi-
zation of the case library, through which experience with a current dispo-
sition is embedded in memory for future use.

The primary advantages of case-based over rule-based knowledge
representation are that the problems of brittleness and knowledge-ac-
quisition bottleneck are less severe. Case-based reasoning systems are
designed to adapt an old solution to a new, similar problem. Further,
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the expert is more comfortable relating his(her) expertise constrained
by case-oriented knowledge representation as opposed to rule-oriented
knowledge representation, and the knowledge base is refined and up-
dated during use.

In the following discussion, we provide the groundwork for the de-
velopment of the system and then describe the system and its benefits.
Other problem areas to which case-based reasoning techniques have
been applied and from which we borrowed some fundamental ideas in-
clude legal domains (Ashley and Rissland 1988; Bain 1986; Rissland
and Skalak 1989b), medical domains (Koton 1988), engineering de-
sign (Daube and Hayes-Roth 1989; Huhns and Acosta 1988), and soft-
ware diagnostics (Simoudis and Miller 1990). Overviews of case-based
reasoning are provided in Riesbeck and Schank (1989) and Slade
(1991). Experimental case-based reasoning systems are discussed in
Hammond (1986) and Kolodner, Simpson, and Sycara-Cyranski
(1985). A hybrid system consisting of a case-based reasoning compo-
nent and a qualitative reasoning component is discussed in Koton
(1988). A hybrid system consisting of a case-based reasoning compo-
nent and a rule-based component is discussed in Rissland and Skalak
(1989a, 1989b). The production of a generic case-based reasoning tool
(CABARET) is in progress at the University of Massachusetts for the pur-
pose of studying issues concerning case-based reasoning (Rissland and
Skalak 1989a), and a case-based reasoning shell sponsored by the De-
fense Advanced Research Projects Agency is discussed in Stottler,
Henke, and King (1989).

Groundwork 1: 
Similarity Metrics for Case-Based Reasoning Systems
Assume that an object can be represented as a list of n attribute-value
pairs, where each value is numeric. An object is represented as a point
in n-dimensional space, where the dimensions represent the attributes,
and the object is the point whose coordinates are determined by the at-
tribute values. The geometric definition of distance quantifies the simi-
larity between two objects. Smaller distances indicate increasing similari-
ty. A library of objects is represented as points plotted in n-dimensions,
where clusters of similar objects and unique objects are identifiable
(Stottler et al. 1989). To illustrate, suppose the object is a part, and the
dimensions of the part are height and weight. The two parts

[height(6),weight(100)], [height(5),weight(110)]

are more similar than

[height(5),weight(100)], [height(2),weight(30)] ,
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with the closeness measure of each pair calculated as approximately 10
and 70, respectively.

Assume now that attribute values are symbolic. A first-order defini-
tion of similarity is prescribed by the larger number of exact matches
of attribute-value pairs of any two objects; that is, a larger number of
matches indicates increasing similarity. Although this definition ap-
pears to be reasonable, numerous counterexamples can be construed
for which high similarity does not warrant the extension of a known at-
tribute of an object to a target object. For example, if two nonconform-
ing parts are determined highly similar based on irrelevant attributes,
the fact that the one nonconformance is resolved by method M does
not warrant the inference that the other one can be resolved by M. If it
is known, however, the extent to which certain attributes are relevant
to a nonconformance, and the values of the relevant attributes match
in each case, then the inference of M to the other part is more reason-
able. Thus, similarity is defined as the larger number of matches of at-
tribute-value pairs relevant to a particular nonconformance. This idea
is worked out conceptually in the theory of determinations (Davies and
Russell 1987). The theory suggests that a library of prior nonconfor-
mances and their solutions be augmented with a set of determination
rules that record relevance information among sets of attributes and
possible nonconformance solutions.

A related approach argues that similarity is a function of the purpose
of object comparisons (Kedar-Cabelli 1986). Knowledge about the pur-
pose of the comparison of two objects focuses attention on the relevant
attributes of the objects. In this approach, similarity is defined as the
number of matches of attribute-value pairs constrained by the purpose
of comparison. The approach suggests that a library of nonconfor-
mances be examined with an explicit purpose, where determination
rules record relevance information between purposes and sets of at-
tributes. To expand the previous example, suppose the purpose of re-
viewing a library of nonconformances is to collect those nonconfor-
mances that involve a certain vendor. A determination rule will have
associated the vendor with a range of attributes and values, and thus, a
cluster of nonconformance reports are retrieved accordingly.

We note that determination rules preserve semantic information
about the relations among sets of attributes. A subsidiary problem is, of
course, how determination rules come to exist. In our domain, deter-
mination rules are articulated by expert engineers in ship building and
are not always accurate. An alternative domain-independent approach,
the structure-mapping theory (SMT), avoids this problem by couching simi-
larity as a function of syntax only (Gentner 1983). First, we distinguish
between attributes, relations, and higher-order predicates, for exam-
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ple, a(X), a(X,Y), and a(b(X,Y),c(Y,Z)), respectively. The systematicity
principle states that “a predicate that belongs to a mappable system of
mutually interconnecting relationships is more likely to be imported
into the target than is an isolated predicate” (Gentner 1983, p. 163).
Similarity, then, is defined as the degree of match between higher-order
predicates whose arguments denote increasingly interconnected rela-
tionships. For example, the predicate

[material(diaphragm,X), temp(X,Degree,Beginning,End)] —>
[fail(diaphragm, End + N)] ,

where N = f(X,Degree,Beginning,End) and —> denotes causation,
states that the failure of a diaphragm is caused by, and is a function of,
the material that the diaphragm is made of, the extent to which it is
heated, and the interval during which it is heated. SMT suggests that a
predicate of this form affords more similarity import than, say, materi-
al(diaphragm, X). Further examples and empirical support of SMT are
provided in Gentner (1983). Although we have not used this technique
in our application, we consider it a promising approach to a domain-
independent formalization of similarity.

Groundwork 2: 
Adaptation Techniques for Case-Based Reasoning Systems
A simple adaptation technique of a retrieved case is structural adapta-
tion, in which adaptation rules apply directly to a solution stored in a
case. Here, we describe four kinds of structural adaptation (Riesbeck
and Schank 1989).

First is null adaptation. The simplest technique, it directly transfers an
old solution to a new problem. Note that this technique can be
achieved with methods simpler than case-based reasoning, including
lookup tables and associative connectionist systems.

Second is parameterized adaptation, which adjusts the solution variables
of a target case relative to the solution variables of a source case. For ex-
ample, a problem variable X in a source case can be related to a solu-
tion variable Y according to the rule “As X increases, Y decreases.” The
value of X in a target case is compared to the value of X in the source
case, and the value of Y in the target case is instantiated relative to the
value of Y in the source case. Refer to Bain (1986) and Rissland and
Ashley (1986) for further discussion and application of this technique.

Third is the abstraction-respecialization technique, which presupposes
the organization of attributes of a case library into an is-a hierarchy
and considers constraints on possible solutions to a problem in a target
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case. The idea is that if a solution of a source case does not satisfy the
constraints of the target case, then one should abstract and respecialize
over the source attribute and check the new value against the con-
straints. For example, suppose repair(pump(diaphragm)) is proposed
as a solution to faulty(pump) through a source case, and a constraint
imposed on the solution of the target case is not(repair(pump(di-
aphragm))). Abstraction and respecialization over the attribute
faulty(pump) in the source case might issue replace(pump(di-
aphragm)), which is consistent with the constraint. The idea of tweak-
ing a solution involves higher abstractions and respecializations over
several parts of the source case and working each part back to satisfy
multiple constraints of the target case. Refer to Alterman (1986) for
further discussion and application of this technique.

Fourth is critic-based adaptation, which occurs when a critic repairs a
retrieved solution to fit the target case. The repair method is then at-
tached to the solution and embedded in memory for future use. An ex-
ample of this technique is to reorder the steps in the retrieved solu-
tion. For example, suppose a solution to paint(chair) and
paint(ceiling) is paint(chair), climb(ladder), paint(ceiling), and de-
scend(ladder). A similar problem, paint(ladder) and paint(ceiling),
might propose paint(ladder), climb(ladder), paint(ceiling), and de-
scend(ladder), which the critic will note is unacceptable. One way to
repair the solution is to reorder the steps into climb(ladder),
paint(ceiling), descend(ladder), paint(ladder). Refer to Hammond
(1986) for further discussion and application of this technique.

A more complex adaptation technique is derivational adaptation, in
which a known method for solving an old problem is tried on a similar
new problem (Riesbeck and Schank 1989). For example, suppose a
case represents a problem space, including initial and goal states and a
method for solving the problem. Let the relevant attributes for measur-
ing similarity between two cases be the initial states and goal states.
Suppose the source case is a solution to a particular sliding block puz-
zle that was solved by representing the problem as A* search. The case
will contain an initial state, a goal state, a set of operators for traversing
the problem space, a heuristic function f* = g* + h* that estimates the
merit of each state generated, and a sequence of moves representing
the solution. One way to adapt the case for solving a similar problem is
to rerun the A* algorithm against the new problem parameters of a
similar case. A more complex version of this technique is discussed in
Carbonell (1983), in which the relevant dimensions for measuring sim-
ilarity are the initial state, the goal state, path constraints, and opera-
tors. A retrieved case is adapted by reducing the differences between it
and a new similar case along each dimension, in concert.
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Description and Operation of the System
The current system consists of five modules: (1) an input module for the
acquisition of resolved nonconformance reports and known informa-
tion about current unresolved nonconformances, (2) a reasoning mod-
ule that retrieves a select group of (possibly adapted) nonconformance
reports, (3) a display module that reports potential solutions found by
the reasoning module, (4) an edit module that allows the user to manu-
ally adapt the retrieved solution, and (5) an accept module that prints
the solution and updates the case library (Brown 1990). Figure 1 shows
the system architecture. We discuss the operation of the system in the
following subsections. The system was developed on an IBM personal
computer using Borland TURBO C and C++.

Input
The input module consists of a case-acquisiton submodule that is used to
build and edit the case library and a problem-acquisition submodule that is
used to submit known problem parameters of a current nonconfor-
mance. The structure of a case is the same in both submodules. A pri-
mary concern in determining case structure is the following: If case
structure is overly specific, the case library becomes overly large, and
the retrieval and adaptation of a case is similar to a lookup table. How-
ever, if case structure is underspecified, the case library is smaller, but
complex adaptation techniques are required, and the system approach-
es analogical reasoning. The structure of a case in our system naturally
models previous paper reports of nonconformances and their resolu-
tions. Case attributes include both numeric and symbolic values, and
the attributes are mapped directly from existing nonconformance doc-
uments. Although the earlier rule-based systems were inadequate,
much of the domain knowledge collected for these systems was trans-
ferable to the case-based reasoning system. This approach expedited
the construction of the case library and resulted in a fair trade-off be-
tween adjustment complexity and the number of cases.

Reason
The reasoning module consists of the retrieve and adapt submodules.
The retrieval of previous similar nonconformances is guided by a set of
determination rules that represent relevance information between par-
ticular nonconformance problems and sets of attributes. The purpose
of the determination rules is to focus attention on previous nonconfor-
mances and resolutions that are most similar to the current problem.
The determination rules are initially provided by experts. For example,
an engineer often associates the problem “leaky valve of type X” with
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the manufacturer of the valve, and this additional piece of knowledge
serves to narrow the selection of possibly applicable nonconformances.

Standard nonconformance solutions are stored in a secondary
knowledge base, and determination rules can point to this knowledge
rather than retrieve a similar, adaptable solution from the case library.
This knowledge is the same as the usual investigatory procedures in-
voked for typical nonconformances.

Structural adaptation techniques are used to adapt the solution of a
retrieved case to a target case. Three of the four adaptation techniques
are automatically performed by the reasoning module: null adaptation,
parameterized adaptation, and abstraction-respecialization.

Null adaptation occurs when determination rules point to a standard
nonconformance solution in the secondary knowledge base.

Parameterized adaptation occurs when the system notices that a non-
conformance is similar to a prior case in the case library whose solu-
tion variables vary proportionally with the variables in its problem
definition. A new solution is proposed by adjusting the parameters of
the old solution to comply with the requirements of the new problem.
For example, some cases contain a variable X in the problem definition
that represents the difference between the actual and desired amounts
of pressure released through a valve, a variable Y in the solution that
represents the number of quarter turns of an adjustment screw, and an
equation relating X and Y. A similar valve with a similar problem, for
which such an equation is unavailable, will use the equation in the
source case to propose a solution to the new problem.

The abstraction-respecialization adaptation technique occurs over
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those source cases that contain alternative solutions to a problem.
Some features of a problem impose constraints on admissible solu-
tions. If a proposed solution is inconsistent with any constraint of the
new problem, an alternative solution is proposed. A typical example is
the failure of a valve for which the preferable solutions are to repair
the valve (most preferred), replace the valve, or consult the manufac-
turer (least preferred). If during problem acquisition, the user indicat-
ed that the valve cannot be repaired, the second solution is proposed
instead of the first.

Derivational adaptation techniques, in which a problem-solving strategy
is applied to problem parameters of a current nonconformance, are
under investigation but were not implemented in the system. Whereas
structural adaptation techniques are simple and easy to understand by
users, derivational techniques are relatively complex. It is suspected
that the derivational technique will discourage users. For similar rea-
sons, we did not use SMT as a similarity metric for retrieving cases.

Display
The display module redisplays the problem and offers possible solutions
found by the reasoning module. The user examines the solutions and
chooses to either edit a solution or accept one of the solutions offered.

Edit
Critic-based adaptation is used in the edit module when the user knows
that the proposed solution is unacceptable and can modify the solution
to make it fit the target case. For example, a particular manufacturer’s
valve cannot be repaired but must be replaced. In the source case, the
manufacturer’s name was not included in the description of the prob-
lem. Everything else being equal, the proposed solution was to repair
the valve, which the user knew would not work. Thus, s/he changed the
solution to “replace valve” and entered the manufacturer’s name in the
appropriate slot of the problem description. When the knowledge base
is updated with this new information, the reasons why the original solu-
tion did not work become implicit in the new case.

Accept
Continuing the previous example, the accept module prints a noncon-
formance document and updates the case library with the new knowl-
edge. The current method of knowledge update is to add the newly
adapted case to the library. Ideally, the original case and the adapted
case would be fused into a more general case that covers both prob-
lems. This subject is one for future research and development.
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Deployment and Discussion of Benefits
In total, 10 person-years went into the development of the current sys-
tem, some 5 of which were spent on the manufacturing and produc-
tion engineering project developing the earlier rule-based systems, and
2 person-years were spent on the AI internal research and development
project. At roughly $75,000 for each person-year, the application cost
$750,000. The system was deployed by the second quarter of 1990. Cur-
rently, it is used in 3 of 6 engineering departments that are involved
with some phase of fluid system construction. The number of users
makes up approximately 2.5 percent of the total engineering force. To
date, the system has been used on more than 200 atypical nonconfor-
mances. The return during the first year of use is estimated to be
$240,000, based on the following calculations: Some 20,000 nonconfor-
mances were processed. The manual resolution of nonconformances
takes 3 hours for each nonconformance, on the average. At an hourly
rate of $40, this figure calculates to $2,400,000. Overall, the system re-
duced the average time to process a nonconformance by about 10 per-
cent, as estimated by current users and management. Thus, the esti-
mated return for the first year of deployment is $240,000. This figure
does not reflect additional savings realized from reduced scheduling
delays, nor does it reflect other benefits derived from the internal re-
search and development and manufacturing and production engineer-
ing projects. For example, the internal research and development pro-
ject resulted in proposals of AI solutions for other problems in ship
manufacturing and command and control systems (in progress or
under evaluation), and the early trial development work of the manu-
facturing and production engineering project was used as a resource
for applications suited for rule-based systems.

Generally, the case-based reasoning system demonstrated an increas-
ing robustness and flexibility that was missing in the earlier rule-based
systems. Engineers appear to be more comfortable with case-based rea-
soning techniques than with rule-based techniques. A general lesson
learned from our efforts is that an engineer is more likely to use X if
s/he understands X. In contrast with the rule-based systems, the knowl-
edge base for the case-based reasoning system is compiled and main-
tained by users, and the knowledge base is automatically updated dur-
ing use. The current task of the manufacturing and production
engineering project is to deploy similar systems for electric and struc-
tural systems and investigate coupling the systems with existing databas-
es. As the systems become more widely deployed and as the case li-
braries expand with use, we hope to see our return increase
exponentially.
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