
Putting Knowledge-Based
Concepts to Work for 
Mechanical Design
Ian C. Campbell, Kris J. Luczynski, and Steve K. Hood

CAMES (computer-aided mechanical expert system) is a tool for automati-
cally designing material-handling equipment used in pulp and paper
mills. Operational since 1988, it has designed over 700 machines in a
total of 5 classes and, consequently, has influenced our principles for de-
ploying all knowledge-based systems. Because it is being extended to
other machines within our group of companies, it is becoming more
closely integrated with other knowledge-based and conventional systems.

Principles for Deployment of Knowledge-Based Systems
The deployment of knowledge-based systems in our corporation fol-
lows some principles that are still evolving; the development of these
principles is more important than the development of any individual
system. The principles are that (1) we will develop knowledge-based
applications that are directly in line with our corporate goals, strate-
gies, and critical success factors; (2) knowledge-based applications
must be introduced into our corporation slowly but surely, so that they
neither are rejected by our organization nor destroy valuable aspects of

From: IAAI-91 Proceedings. Copyright © 1991, AAAI (www.aaai.org). All rights reserved. 



our culture; (3) the corporate computing environment must
encourage knowledge-based development; and (4) knowledge-based
application must be under the direct control of the line operating
manager who will most greatly benefit.

Prior History and the Current Environment
This chapter continues the case history of several expert systems, all in-
tended to improve our company’s ability to give well-rounded respons-
es to customer needs by improving mechanical and electrical engineer-
ing specifications, engineering productivity, design quality, and
proposal preparation. Our ultimate knowledge-based–engineering
goal is to use less human effort to make our corporation more respon-
sive to customer needs, thereby ensuring a more profitable corpora-
tion. Previous work on a programmable logic controller (PLC) system
(CALES) is described in Campbell and Bukshteyn (1990). CAPES (com-
puter-aided proposal expert system) is a proposal-preparation system
that is dependent on the CALES and CAMES systems (so we know the pro-
posed system is preengineered and, therefore, can accurately be costed
and priced). An early version of CAPES is partially deployed. These
knowledge-based systems are in direct alignment with our first princi-
ple and our corporate goals, strategies, and critical success factors
(which are not included in this chapter for space considerations).
All these knowledge-based systems are being moved into an environ-
ment with a parallel Common Lisp object system (CLOS) on the corpo-
rate computer. This computer is a four-processor Sequent S27, which is
the corporate fourth-generation language platform, running Informix.
Integration between CLOS and Informix is by standard query language
(SQL) calls. To implement the Information Technology Department’s
(ITD) first strategy—to contribute to “cross-functional and geographic
integration”—CAMES and CALES are being ported to the corporate com-
puter system, a Sequent S27 with 5 Sequent S3 computers operating an
enterprisewide 56 kilobit/second networking environment. This archi-
tecture, supporting standards that include the X Window system, UNIX,
TCP/IP, CLOS, and SQL, will help solve many integration problems be-
tween sales, engineering, business, and knowledge-based systems and is
part of the implementation of ITD’s basic mission. This hardware de-
sign partially implements our third principle, that the corporate com-
puting environment must encourage knowledge-based development.

The Original Problem Defined
In 1986, some apparently intractable business problems were starting to
hurt mechanical design sections of the company. Our company is locat-

158 CAMPBELL, ET AL.



ed in a small western town, and skilled design engineers for pulp or
paper machinery were hard to find. A continued corporate strategy of
selling highly customized solutions to large, complex problems in the
pulp and paper industry helped with our sales success but created inter-
nal problems and the need to improve engineering productivity and
quality. These problems seemed intractable because inexperienced engi-
neers, like all professionals, tend to make errors, and we simply could
not afford to retain a full complement of human expertise from one busi-
ness cycle to another, when the whole relearning cycle would start again.
Therefore, we saw a need and an opportunity to transfer engineering
knowledge between business cycles by using a knowledge-based system.
We hoped that CAMES could make an impact on mechanical engineering
productivity during the current business cycle (1985–1991). However,
even if it did not, we thought CAMES would at least pay for its own devel-
opment. Ultimately, our company would be able to handle more work
with the same number of engineers, or if we were forced to lay off engi-
neers, and business subsequently improved, we would not have to hire
as many inexperienced staff members during the next business cycle.

Description of the AI Technology Used in the Application
This section describes the technology used in the CAMES system. We ex-
amine our decision to use Lisp and our initial problems with object-ori-
ented Lisp, the design concept and the selection of the first machine
to design, and initial problems.

The Decision to Use Lisp
One lesson learned from our CALES experience was that the Lisp envi-
ronment contains a powerful development tool. We were prepared to
attack problems in a rapid prototyping way without any clear plan of
how we would handle the later parts of a large problem. We believed
that if, as electrical or mechanical engineers, we could handle the engi-
neering problems, then as Lisp programmers, we would be able to en-
code our mental processes after reasonable work. We knew we could
not or would not explain our expertise to computer programmers, but
we could and would explain it to a computer. This method avoided the
serious problems of an uncooperative prima donna or an arrogant ex-
pert, the expert who is too busy, the expert who is inconsistent and has
to be told so, or conflicting experts getting into a fight. We were all
these things, so we just talked to ourselves a lot.

Our answer to the problem of selecting a development language was
partly new and partly old: object-oriented programming using Lisp. Im-

CAMES 159



plementing this decision was slow but steady and illustrates our second
principle, that important knowledge-based ideas be introduced only as
quickly as the culture can accept them. We considered and rejected the
use of rule-based systems after learning that serious software users were
reporting problems of excessive complexity when the number of rules
exceeded 1,000 or so. Conventional programming languages were too
inflexible. Fearing that new languages would contain hidden problems
that we would not be able to resolve, we rededicated ourselves to engi-
neering solutions, not computer problems.

Initial Problems with Object-Oriented Lisp
In 1987, object-oriented systems were supposed to be available, but
proven ones were so expensive that they were inaccessible to us. Our
method of funding expert system work was by the skunk-works method.
We think of a skunk-works project as one that is short of formally bud-
geted money but is allowed freedom from the normal checks and bal-
ances of bureaucratic organizations. The enormous benefit of this
funding method was that although we could not plan or schedule
progress because of the newness of the application problems and the
relative strangeness of the technology being used, we did not have to.
The price of this freedom was that we could not afford to buy a proven
object-oriented Lisp.

We tried to use Object Lisp on an early version of Golden Common
Lisp, but Object Lisp was not going to be supported. CLOS seemed too
futuristic at this time, and GoldWorks was not available. Thus, we did
the best we could and simply started programming in Common Lisp,
using Golden Common Lisp. Because of the high costs for multiple
copies of Common Lisp and the (to us at this time) specialized hard-
ware, we decided to write a data-entry and initial calculation program
in Pascal. This approach allowed multiple users to specify data on their
own personal computers and then move this information onto one
Lisp system. The ramps (our first) program, eventually grew to over
15,000 lines of Lisp code; the code was purely functional and did not
include state-of-the-art ideas, such as case-based reasoning or con-
straint propagation, and was not object oriented. Figures 1 and 2 show
drawings produced by the first ramps program. The reason for this
brute-force approach to capturing ramp knowledge was that we were
unable to develop a deep sense of comfort with any AI expert in any of
these emerging research areas; any move to case-based reasoning, for
example, seemed to require that our engineering staff turn over pro-
ject control to an expensive AI expert who did not deeply understand
our engineers or our corporation. For human and business reasons, this

160 CAMPBELL, ET AL.



CAMES 161

Figure 1. Ramp Drawings: Weldment.



loss of project control was unacceptable; we preferred a policy of slow,
steady, continuous improvement over an expansive, risky experiment
that used the best available technology. We knew we did not start with
state-of-the art technology in either hardware or software, but this fact
did not prevent a slow, steady growth that eventually resulted in imple-
menting our programs in parallel CLOS, X Windows, and so on. Our cor-
porate culture could never have progressed to this point without mov-
ing through years of lower evolution. This implementation illustrates
principle 2, that knowledge-based applications should be introduced
slowly.

First Phase: Design Concept
The first phase of this project was to agree on the design concept. This
concept was that any reasonably intelligent technical person should be
able to sit at a personal computer and answer specification questions
about the machine to be designed; a specific instance of this machine
should then be created. For example, if a person wanted a conveyor
designed with certain economic, reliability, speed, and weight
specifications, we would expect output consisting of complete mechan-
ical weldment, assembly, and installation drawings.

In our situation, we knew that our equipment consisted of about 50
major classes of mechanical equipment connected by a custom-pro-
grammed PLC. Some of these pieces of equipment literally had an
infinite number of possible instances, and it was seldom that two in-
stances were designed to be identical. Other machine designs differed
in only a small number of degrees of freedom, but all system designs
were fundamentally different.

The first important decision dealt with changing the CAD system used
for design. In 1984, our company standardized its use of a CAD pro-
gram, selecting Anvil 1000. This program did not have a published in-
terface and could not easily be driven from another program. Even if it
was to be driven, the manual specifically warned against doing it be-
cause this interface might change in a later program release. In con-
trast, Autocad had a standard interface and even had an AutoLisp lan-
guage built into it. AutoLisp was intended to allow users to do limited
things, such as extend commands within Autocad, but was not capable
of handling CAMES. We elected to use Autocad, starting a trend that
might eliminate Anvil 1000 within our company.

Original Programming
The design program was written in Common Lisp, but the initial input
program was written in Pascal so it could run on any 8088 or 286 com-

162 CAMPBELL, ET AL.



CAMES 163

Figure 2. Ramp Drawings: Assembly and Installation.



puter (386s were not available at this time). The initial machine class,
called ramps, was started in the fall of 1987. The first ramps were
drawn within a few months and were relatively successful. However, to
our surprise, we soon started to miss some production deadlines, creat-
ing serious problems. The main reason for this failure was that we had
not mastered the breadth and depth of the options and complexities
of our chosen machine. We elaborate on some of our failures in the
next subsection.

Selecting the First Machine to Design
The fundamental criterion for selecting ramps as our first class of ma-
chine was economic. The class of ramps is the machine in our compa-
ny with the greatest number of “same as but different” designs.

All experienced design engineers warned us not to attempt this
generic design of ramps. The most skilled engineers claimed that al-
though they looked easy, ramps were the most difficult machines to de-
sign because they were infinitely variable; any change in one
specification would change almost all the design. Other, less experi-
enced, or bystander engineers, believed that ramps were too easy to
test the concept. These opinions seemed important, but what seemed
more important was the hope of financial payback; we would handle
the technical problems sooner or later, easy or hard. In addition, we
believed that it was wise to start with the hardest problem first, so that
each different instance is a simplification, not a complication. In retro-
spect, this approach was our first major error because the deep com-
plexity of options nearly caused project engineers to lose confidence
and commitment.

Initial Problems: Drafting Standards
The complexity of the task almost defeated us even before we started
handling many variants of ramps. There appeared to be constant
change in implied drafting standards. The different ways to write a
number all have different meanings on engineering drawings; that is,
1, 1.0, 1.00, 1.000, 1.12, 1.125, and 1-1⁄8 all represent different concepts.
The number 1.13 might not be in the allowable number set at a certain
time. There are complex rules about rounding up or rounding down,
some of which make little mathematical sense, but they are a part of
our company culture. They could eventually be changed but not to ac-
commodate a computer. As another simple example, the decision to
record lengths in millimeters, decimeters, or meters or in inches or
feet and inches was not primarily mathematical but the result of stan-
dards. The standards were not necessarily logical or stable. Humans

164 CAMPBELL, ET AL.



could (at a cost) adapt to irrationally derived changes in standards, but
our program could not. As a result, our business processes were gradu-
ally forced to become disciplined to handle CAMES. These changes were
desirable in a manual system but were impossible to identify or imple-
ment before the use of CAMES. The process of changing business pro-
cesses as a result of using CAMES is a valuable side benefit.

We started to realize, as we had with CALES, that we were dealing with
a problem in translation. We were translating specifications into me-
chanical drawings, and we started thinking of a mechanical drawing
not as a mathematical fact but as a description in a graphic language.
The language has some standards, many dialects, and some major vari-
ants. These standards were policed by the department that checked the
mechanical drawings, but the individuals in this department had differ-
ing views on standards and sometimes seemed to apply different stan-
dards to CAMES drawings than they did to human-generated CAD draw-
ings or manual drawings. It took several critical months to work out
satisfactory drafting standards for CAMES.

Initial Problems: Deeper Knowledge
This process of defining drafting standards for CAMES ironically was
helped by the checking department after we started receiving drawings
that were heavily red lined, that is, demanded many small corrections in
red pencil. These small corrections were invariably proven to be correct
in CAMES and incorrect when changed by the checking department.

CAMES now started to receive its first small measure of respect. No en-
gineer or draftsperson normally had the time, inclination, or courage
to challenge the checking department; we all just accepted its dictates
because it was easier this way. However, with a knowledge-based tool, it
was impossible to make superficial fixes. The design knowledge either
had to be correct or had to be corrected. After some of the actions of
the checking department were shown to be fallible, we started catching
errors that would have cost between 10 and 100 times more money to
fix in the field under the hostile gaze of a customer concerned about
the late startup of his(her) billion dollar paper mill. As a reliable im-
plementer of standards, CAMES became known as a useful tool. The
greatest complaint became that “it takes too long and costs too much
to transfer any machine into CAMES.”

Details of the Operation of CAMES

The CAMES programs design the required machine and then automati-
cally invoke Autocad to produce a drawing package for each machine

CAMES 165



processed. A manufacturing package consists of all the detailed weld-
ment, assembly, and installation drawings and bills of materials re-
quired for a specific machine on a specific project. The system can pro-
duce drawings overnight using data entered during working hours or
in a few minutes if necessary. In some cases, the Autocad drawing re-
quires manual drafting corrections, but the average time for producing
the ramp package was reduced by 50 percent or more. Figure 1 shows
an example of a weldment drawing for a ramp. Figure 2 shows an
example of an assembly and installation drawing for a ramp. These
drawings were completely designed by CAMES and have not been
touched by a human designer, although the task would be easy with the
use of Autocad.

How CAMES Does What It Does
The ever-evolving design and frequent drafting standard changes con-
sumed more and more programming time. Consequently, an attempt
was made to structure the program in a similar way for each machine
and rewrite the function library so it would approximate the Autocad
drafting commands. This approach, we hoped, would allow users to
make certain types of modifications themselves. In this concept, the
drawing itself, with its three main views (plan, elevation, and front), is
an object. The structure of the program for each drafting view is identi-
cal. Critical points (for example, the location of various elements, such
as conduits, motor position, bearings) are associated with an object ei-
ther by formulas or constants. Predrafted machine elements used as
drafting blocks are assigned to the particular view by name and loca-
tion relative to the view coordinates; so, the program always knows
where to insert in relation to other components. The program uses a
function library common for all the machines. The program maintains
its own database of important machine components. If a new element,
for example, electric motor, is specified, the program prompts the user
for certain information about the new motor and its drafting represen-
tation (blocks); after recording this information in the database, the
program is automatically ready to use it. A separate database is kept for
important customer information, for example, bale dimensions and
electric component specifications. The program also tracks the overall
drawing database: If new requirements resemble previous designs, the
user is alerted. The program uses an interface to Autocad and gener-
ates drawings using a set of standard or modified Autocad commands.

166 CAMPBELL, ET AL.



The Difficulty of the Design Problem
From the mechanical and drafting point of view, the machines com-
pleted to date in CAMES are not the most complicated in the machine
line; however, their detailed design is subject to much change and is
adapted to suit the other more complicated and standardized ma-
chines in the roll bale line. Almost all basic design criteria of the CAMES

machines are subject to change, including main geometric dimension
(length, width, height) and the position of motors, reducers, switches,
and bearing types. These variabilities in the design propagate, to the
drawing dimensions, changing patterns that must adhere to certain
rules and be easy for the end user to read. For example, machine di-
mensions must be laid out differently for a motor on the left of a par-
ticular machine than for a machine on the right, greatly changing the
structure of the dimension lines, not just the data for the dimensions.
Problems are also caused when an additional machine is located on a
CAMES machine. The design does not change, but the dimensioning
must now accommodate both machines without “collisions.” The rules
governing the dimensioning have become complex and are one of the
main reasons for an increase in programming time with design
changes.

The Errors Found
The CAMES user answers between 30 and 80 questions pertaining to a par-
ticular machine. Most of the questions are simple, and the typing time
should not exceed 10 to 15 minutes. However, for various organizational
reasons, collecting the data before typing can consume a considerable
amount of time. After data entry, the user usually reviews the CAMES-gen-
erated drawing in Autocad or plots it, marks the errors, and then cor-
rects them in CAD. Most of the errors are caused by design and standard
changes that usually keep ahead of programming. The usual area of
error is line collision, for example, dimensions resulting from not updat-
ing the drafting blocks. There are few design or calculation errors.

Phase Two: Selecting the Second Machine
After our experiences with ramps, we wanted to design other classes of
machines. The specifications for this second phase of our work were
(1) the ability to handle interconnected systems of machines; (2) fast,
correct manufacturing packages for each machine; (3) a friendly inter-
face and database; (4) straightforward program design and structure;
and (5) ease of modification when the design changes.

CAMES 167



At this stage, CAMES was considered interesting but not proven. The
next step was to automatically design whole systems of interconnected
machines. However, the delays and disappointments caused by initial
problems in ramp production had caused some hostility in the minds
of the managers of our roll product line. Therefore, we decided to de-
velop CAMES to handle whole systems of machines using our second
most important product line, pulp baling. CAMES would be used with
our most important line if it was successful on the second line. The
class of pulp bale chain conveyors was selected as the next machine be-
cause it was the most frequently used machine in the pulp bale product
line. This machine is designed in a wide variety of lengths, widths,
strand spacings, and motor and reducer types. As with ramps, the basic
layout of the program was completed in just a few months. Since this
time, the program has constantly been modified with changing design
standards and various requests for improvement. Figures 3 through 6
show designs produced at this stage of the project. There were signs in
early 1991 that at least four to six product-line engineers wanted to
learn CLOS to be able to extend CAMES in the future. It is psychologically
important to them that they continue to control the basic knowledge,
and some seem prepared to learn simple CLOS programs, if necessary,
to retain their professional control of the product line.

Major Weaknesses in CAMES, Phase Two
A need for constant change and improvement leads us to the major
weakness in the existing CAMES system: A Lisp engineer-programmer is
required to modify the design engine, and the design engine is not ex-
tensible by the domain expert (a non-Lisp engineer). Much initial
knowledge about the chain conveyor machine was collected from three
relatively inexperienced engineers, who, in retrospect, did not have
full knowledge of the whole design spectrum. With each new
modification and addition, the design and program became more
complex. Our experience (not unique) is that for each stage of the
problem, it takes approximately 20 percent of the total programming
time to complete 80 percent of the machine, but the remaining 20 per-
cent of the work takes 80 percent of the total time. The last 20 percent
of the work renders the project acceptable to the user and cannot be
ignored. We also found that it is often economically correct to com-
plete a machine with only about 95 percent of the options captured,
leaving the remaining options to human correction in Autocad. This
fact exists because the incremental investment in programming could
not be recaptured for some infrequently used options. These issues

168 CAMPBELL, ET AL.



CAMES 169

Figure 3. Chain-Conveyor Drawings: Weldment.



would be handled differently if CAMES were extensible by a domain ex-
pert and if these problems were in the hands of a project-oriented user
and not a “staff stranger” with his(her) own time constraints.

CAMES creates and maintains its own dynamic database of various
typical components, for example, motors, reducers, terminal boxes,
and some customer data. In this way, we built in some extensibility,
but this feature needs to be improved in quantity and quality, proba-
bly by using CLOS.

Moving toward Object-Oriented Programming and Extensibility
For this second phase of our work, we wanted to simplify the Lisp code
and use a repeating programming structure for each new machine,
moving in the direction of the objects and instances used in object-ori-
ented programming. For example, libraries, variable names, and
blocks were standardized for easy reusability, recognition, and mainte-
nance. The system consists of three main units: data entry, design, and
output. While designing a machine, the system searches its database
for characteristics (for example, dimension or quantity) of various ma-
chine components. Drawings can be drawn to a specified scale with op-
tions for dimensions in metric, imperial, or both. Much of this second
phase was done in muLisp. In retrospect, the main difficulty encoun-
tered in program development and maintenance is with knowledge ac-
quisition and the frequent changes in design standards. Often, the
knowledge that was used for design became obsolete once the pro-
gramming was completed.

Details of Making the Drawings
Our first approach to making drawings was to represent a machine as a
composition of a series of simple elements, build it in a three-dimen-
sional space, and then project it onto three views on a two- dimension-
al drawing. It worked well for our first simple ramps; however, it be-
came increasingly difficult to build more complicated ramp
components or mechanisms with their intersecting lines and compli-
cated shapes. It was also difficult to tell the computer which lines were
important enough to be shown on the drawing and which were not.
Human rules governing this information are often inexact. When we
started even more complex machines, their projections in three di-
mensions became intricate for certain components. Therefore, we de-
cided to use drafting blocks for each two- dimensional view. These
blocks either were extracted from master drawings or were specially

170 CAMPBELL, ET AL.



Figure 4. Chain-Conveyor Drawings: Assembly and Installation.



made by our drafting department. For some machines, we overreacted
with block representations and had to revert to elementary program-
ming. However, with time and experience, we developed artful skills in
which blocks were used to represent certain design details, and func-
tional programming was used to represent other elements of design.
We do not yet know how to reduce this art to code.

Innovations Brought by the Application
As this chapter indicated, we believe that CAMES has improved our abili-
ty to check errors and improve design quality, increase human produc-
tivity for standard machines, increase drafting quality, and allow more
time for innovation and creativity and has increased our options for
using less skilled personnel. It has acted as a catalyst, even as a driver,
for identifying and improving inefficient bureaucratic processes. We
hope it will be a vehicle for transferring engineering knowledge be-
tween business cycles.

Our users want to continue our CAMES effort because they see per-
sonal and corporate benefits; we believe that this continued use is the
ultimate endorsement. Some users consider themselves the best ma-
chine designers in the world and see CAMES as a natural evolution of
their profession. We could not be more flattered.

Conditions for a Successful Application
Users demand that CAMES permit easy modification. However, a user
must accept education about how CAMES works and upgrade his(her)
general computer skills. For example, a user should have a good work-
ing knowledge about the machine being designed, the CAD system
used, and some basic DOS skills. Users must actively be involved in the
machine-designing process and not expect miracles from CAMES.

The Nature and Estimate of the Payoff to Our Organization
We estimate that by mid-1991, over 1,000 machines will have been de-
signed by CAMES, saving a minimum of 16 hours each and, therefore,
yielding a total savings of over 16,000 person-hours during the 5 years
of development and use. At a minimum, we claim breaking even for
the project to date. However, we don’t think of strategic moves in terms
of economic payout, and we consider CAMES to be a strategic initiative
whose serious contribution will be most significant after the integration
of all three systems: CALES, CAPES, and CAMES.

172 CAMPBELL, ET AL.



CAMES 173

Figure 5. Stacker Drawing: Assembly and Installation.



As a result of a test conducted in April 1991 (without the benefit of
the CALES-CAMES-CAPES integration), several CAMES machines perhaps in-
dicated a reduction in target hours from 32 to 8. However, a process of
continuing review was necessary to prove these figures and continue the
downward trend to a target total person-hours reduction of 90 percent.
This process involves monthly benchmarks and continuous incremental
changes to programs and surrounding bureaucratic procedures.

Further qualitative and quantitative benefits can be credited to
CAMES. Person-hours assigned to machine packages include design and
drafting time but do not usually include plotting or material list com-
pletion and vary from 8 to 40 hours for each machine. There are sim-
ple cost-accounting problems surrounding the data we collected be-
cause the design time for CAMES is so small that operators take
responsibility for plotting and bill-of-material tests, invalidating any
simple comparison between the budget and actual costs. The design
time shrinks, so that bureaucratic time becomes oppressive. Regardless
of these problems, it takes only a few minutes for CAMES to produce a
manufacturing package. The engineering data necessary for actual
entry of the specifications, annual correction of drawings, preparation
of bills of material, plotting, and other overhead operations consume a
considerable proportion of the time. An obvious possibility is to auto-
mate these tasks, starting by using CAPES. In spite of these issues, the ac-
counting data collected to date show that a time reduction of 50 per-
cent was achieved with respect to previous processes. Activity-based cost
accounting would reveal more benefits in our opinion.

Some engineers feel threatened by CAMES, as some felt threatened by
the earlier proliferation of CAD. When fully implemented, CAMES will ac-
tually protect our corporation and jobs in any cyclical downturn of the
economy. Some designers and engineers doubt CAMES will be able to
process complex machines, but they can offer no theoretical
justification for their position. As the developers of CAPES, CAMES, and
CALES, we see no theoretical barrier to a complete mapping of cus-
tomer needs into fully integrated electromechanical designs and
preengineered proposals. Our company is in the process of commit-
ting itself to this concept of doing business and is considering restruc-
turing and repositioning areas that might use these concepts.

Deployment Times, Costs, and Technology Transfer Problems
CAMES technology was developed in a branch of the Lamb companies in
Vancouver, British Columbia, about 250 miles from the main design
office. The location caused logistic problems concerning design changes,

174 CAMPBELL, ET AL.



CAMES 175

Figure 6. Aligner Drawing: Assembly and Installation.



program updates, inquiries, and user training. Now that most Lamb
branches are connected through a comprehensive network system, com-
munication between users and programmers was made much easier.

An attempt to transfer the CAMES ramps to the main design office was
attempted but was unsuccessful. This failure was because the ramps
were processed in a branch office and sent to the main office as a
finished package in an established process no one wanted to change.
The technology transfer of the chain conveyors and other machines
took place in mid-1990 and was generally accepted by users. These
users developed a plan to complete additional machines in the course
of the next several months. It will take six to eight weeks to complete a
new machine package with the system now in use. CAMES development
took four years and an estimated six person-years of programming ef-
fort to create the existing tool. Because of continued change, the de-
velopment of CAMES machines will never stop.

A critical move was made in 1990 by transferring the responsibility
for the CAMES development to the line manager of the department that
will obtain the greatest benefit from CAMES. This move illustrates the
implementation of our fourth and most important principle, that the
application must be under the direct control of a line operation man-
ager, even if this person has no knowledge of AI or knowledge-based
systems. This trend will continue as responsibility for implementing the
CAPES, CALES, and CAMES systems is entrusted to line managers as part of
a serious corporate reengineering effort by our group of companies,
which involves empowering knowledge workers and is accompanied by
organizational repositioning, delayering, and downsizing.

Acknowledgments
We thank Phil Parker for his long-term contributions and committ-
ment to CAMES.

References
Campbell, I. C., and Bukshteyn, I. 1990. Putting Knowledge-Based Con-
cepts to Work for Generic PLC Programming. In Proceedings of the
Second Annual Conference on Innovative Applications of Artificial In-
telligence, 108–113. Menlo Park, Calif.: American Association for
Artificial Intelligence.

176 CAMPBELL, ET AL.


