
CANASTA: The Crash Analysis
Troubleshooting Assistant

Michael S. Register and Anil Rewari

CANASTA (crash analysis troubleshooting assistant) is a Digital propri-
etary knowledge-based system developed by the Artificial Intelligence
Applications Group (AIAG) at Digital Equipment Corporation in col-
laboration with Digital’s customer support centers (CSCs). It is target-
ed to assist computer support engineers at CSCs in analyzing operating
system crashes, traditionally one of the most complex types of prob-
lems reported by customers. Digital started work on CANASTA in January
1988. A version of CANASTA that assists in the analysis of vms operating
system crashes was successful: It is currently deployed at CSCs in over
20 countries and is used to resolve over 850 crash-related customer
calls each month. It is estimated that in time savings alone, it saves Dig-
ital over 2 million dollars each year.

CANASTA’s success largely results from the innovative way in which it
integrated different problem-solving modules that model the different
types of problem-resolution strategies that experts use in this domain.
These strategies include making quick checks (rule based) on whether
the crash at hand is because of a known cause, using deeper analysis
(decision tree–based) reasoning to resolve new types of crash prob-

From: IAAI-91 Proceedings. Copyright © 1991, AAAI (www.aaai.org). All rights reserved.

lems, and checking for similarities among unresolved cases (a form of
case-based generalization) that can lead to the identification of new
hardware and software bugs. In fact, CANASTA’s unresolved crash proces-
sor distinguishes it from other expert systems: It directly assists the ex-
pert in the generation of new knowledge regarding crash-causing bugs.

CANASTA also integrates different technologies that have not been
combined before in this domain. It integrates a remote scripting pack-
age and rule-based inference to provide sophisticated automatic data
collection that allows it to automatically gather data from the cus-
tomer’s machine thousands of miles away. It uses a rule-based system for
quick checks on known problems. It uses a tool that allows experts to
quickly encode troubleshooting knowledge graphically in the form of
decision trees. It uses database technology to store case-related informa-
tion that can be accessed later. CANASTA also includes an innovative
distributed knowledge maintenance system that automatically collects
knowledge from experts worldwide at all CSCs and automatically vali-
dates and redistributes this knowledge to all other sites. This approach
facilitates the sharing of knowledge across various geographic sites.

In the following sections, we describe the crash analysis problem do-
main, the functions and architecture of the deployed system, details
about the development and deployment stages, and the business payoffs.

The Crash Dump Analysis Problem
When an operating system detects an internal error so severe that nor-
mal operations cannot continue, it crashes. For many operating sys-
tems, this process involves signaling a fatal condition and shutting itself
down in an orderly fashion by saving the contents of the registers,
stacks, buffers, and memory at the time of the crash in a crash dump
file. The underlying cause for the error can be a failure in user-written
code, hardware failure, microcode failure, or an error in system soft-
ware. Crash analysis is resolving the problem, whether it is in the hard-
ware or software, and identifying a fix or a “workaround.”

Analyzing crash-related problems is not an easy task because there is
no fixed algorithmic method to identify the cause of the crash. Experi-
ence plays a large role in identifying the problem. Without CANASTA,
the diagnostic process is as follows: First, the support engineer remote-
ly connects (through modem servers) to the customer’s machine to
read the crash dump file on the crashed system. Once connected, s/he
remotely scans the crash dump file and tries to identify the major
symptoms of the crash.

The support engineer then checks to see if the symptoms match any

196 REGISTER AND REWARI

known problems (bugs) that were already identified. Such problems
are documented in over a dozen different textual databases. The sup-
port engineer usually does a key-word search over these textual
databases based on the current symptoms. A significant number of
problems being investigated by support engineers match previously
identified problems. If an appropriate match is found, the support en-
gineer notes the solution specified in the matched database article.

If the support engineer cannot match the current problem to a
known problem, then s/he needs to do some deeper analysis. This pro-
cess involves traversing the stack of procedure calls made prior to the
point where the crash occurred, looking at the assembly language in-
structions and their operands, and locating where the error occurred.
Knowledge of assembly language is required, and for many cases,
knowledge about how the operating system works is required.

If the cause of the problem is identified, the solution is provided to
the customer. For hardware-related problems, this solution usually in-
volves replacing a hardware component. For microcode-related prob-
lems, it involves providing access to a new microcode revision level. For
software-related problems, it can involve providing a new patch (a rela-
tively small piece of software written to fix a specific problem in the sys-
tem or application software), making recommendations to upgrade to
a new operating system version, or correcting the software configura-
tion of the system.

Unresolved cases are eventually seen by experts. They can try to re-
solve them by deeper analysis of the problem. However, based on their
experiential knowledge about other similar crashes or an analysis of
other unresolved crashes in the textual databases, they might be able
to see similarities with other crashes and make generalizations that
help them in resolving the crash at hand.

The process, as described, has several problems: Previously identified
problems that are known to cause crashes are scattered in dozens of
different textual databases. On the average, it takes about 30 minutes
to scan the various textual databases to check whether the current
crash results from a known problem. There are several reasons for this
delay. First, many times one cannot identify a known problem because
one does not scan the textual database where the right article lies. Sec-
ond, even when known problem types are described in the textual
databases, the descriptions might be incomplete. There is no set for-
mat for the articles. Finally, with the constant release of new products
and software versions, it has become difficult for experts to document
bugs, in a timely fashion, that are introduced by various hardware and
software products.

Collecting symptoms itself requires knowledge. The techniques for

CANASTA 197

collecting some of the symptoms are documented (Kenah, Golden-
berg, and Bate 1988), but others are not documented and are difficult
to obtain. Because of the amount of knowledge required to collect
symptoms and identify bugs, often less experienced support engineers
arrive at wrong conclusions and give wrong solutions. These errors in-
variably result in the customer calling back when the problem reap-
pears, which results in increased calls to CSCs. Furthermore, support
engineers follow no uniform approach in performing deeper analysis,
and many of them have difficulty in performing deeper analysis.

Experts spend more time than necessary in looking at unresolved
cases that are escalated to them because they do not have ready access
to other similar cases seen in the company. Having access to similar un-
resolved problems allows them to make generalizations, resulting in
faster resolution times.

These problems result in a substantial increase in the average time
that a customer has to wait for a solution (also an increase in the time a
customer’s business can be disrupted), resulting in higher costs for
Digital and a decrease in customer satisfaction. There are some tangi-
ble benefits to applying AI technology to this domain. Using an auto-
mated intelligent system results in quicker analysis times because it is
considerably faster than manually searching through textual databases.

With an expert system approach, knowledge can be distributed and
accessed easier than it was previously through the use of textual
databases. Furthermore, expert system technology allows for much eas-
ier maintenance of the knowledge base than conventional software
technology. This ability is especially beneficial in this domain because
new bugs in hardware and software are identified on a continuous
basis. Also, intelligent validation techniques can be used to validate the
knowledge as it is entered into the knowledge base.

Using AI techniques also facilitates the generation of new knowledge.
By using AI techniques to group similar unresolved cases, experts can
now identify new problems faster because they have multiple instances
(crashes) of the unresolved problems. This information also results in
improved communications between the engineering development
groups and the service delivery groups because now the service groups
can send multiple instances of a problem to the engineering groups
for resolution.

Finally, the automatic collection of data from the crash dump re-
quires a significant amount of knowledge. Maintenance of this knowl-
edge is difficult because it changes frequently. Encoding the knowl-
edge in a rule base enables easier maintenance.

CANASTA provides an architecture that uses AI techniques to obtain
these benefits.

198 REGISTER AND REWARI

Architecture and Functions
In this section, we describe the architecture and functions of CANASTA.
In figure 1, the horizontal line at the top separates the customer ma-
chine that crashed from the host machine at CSC where the support
engineer works. The customer machine can be thousands of miles
away. The crash analysis process begins with the support engineer es-
tablishing a remote connection to the customer system through a
modem line.

Data Collection
The data-collection module extracts data from the crash dump file at
the customer machine without transferring the entire dump to CSC. It
uses a remote scripting package that enables it to remotely run com-
mands on the customer machine. Figure 2 depicts the interaction be-
tween the data-collection module, located at the CSC machine, and the
customer’s machine.

A rule-based controller controls the sequence of information-gather-
ing activities. It determines what information still needs to be collected

CANASTA 199

EXPERT

Case Management
System

Symp / solu
K B M S

Deeper Analysis
K B M S

Digital CSC

New Rules

New Trees

CANASTA

Customer Machine
(crash dump)

Customer Site

Unresolved
Case

Data
Collection

Symptom/solution
Module

Deeper Analysis
Module

Unresolved Crash
Processor

Symptom/solution
KB

Similarity set
Heuristics

Methodology
Tree KB

Figure 1. The CANASTA Architecture.

and how. There is a large amount of knowledge regarding methods for
extracting the relevant symptoms from the dump file for different
types of crashes. The knowledge is represented in the form of about
750 OPS5 rules. When the controller determines that a particular piece
of information is required from the crash dump at the customer ma-
chine, it sends a command to the customer machine over the modem
connection using the remote scripting package. The commands usual-
ly involve running the system dump analyzer, a tool that formats binary
crash dump files into ASCII text and displays particular parameters of in-
terest. Output from the system dump analyzer at the customer site is
automatically sent back to the data-collection module at CSC by the re-
mote scripting package. This information is parsed, and then based on
the parsed value, the controller decides which command to send next
to the customer machine. It collects 15 key symptoms that CANASTA uses
to make an initial hypothesis about whether the problem is because of
a known bug. In case the crash is not resolved by the symptom-solution
or deeper analysis modules (described later), it later collects additional
parameter values and saves them with the unresolved case so that these
additional symptoms are available to experts who look at the unre-
solved cases.

Using AI techniques (rule-based data collection) has resulted in con-
siderable leverage. Initially, we started out with a procedural represen-
tation of the knowledge, but later, it was found easier tomaintain and

200 REGISTER AND REWARI

Customer Machine

Over RSU
HOST

SDA dump

Parsers
SDA

Commands

Control

Data Collection
KB

Figure 2. The Data-Collection Module.

add data-collection knowledge by representing it declaratively in the
form of rules. It was difficult to represent the data-collection tech-
niques using algorithms because too many exceptions had to be dealt
with. Using a rule base allows CANASTA to represent this knowledge
more conveniently and collect only the parameters that it needs to
meet our goals of completeness and speed.

The goals for the data-collection module were to automatically col-
lect data for 95 percent of the crash types with 99 percent accuracy and
to collect the initial 15 symptoms within 3 minutes over a 1200-baud
modem line. All these goals were met.

Symptom-Solution Module
After the initial set of symptoms are collected, CANASTA invokes the first
of its analysis modules. The symptom-solution module uses a knowledge
base of symptom-solution rules to see if the given crash matches a well-
known hardware or software bug. A sample rule is shown in figure 3. If
the combination of initial symptoms in the current crash matches a
rule, then a hypothesis (the “description” part of the rule) is displayed
to the support engineer. For many cases, this hypothesis is, in fact, the
conclusion. However, for other rules, a further test is required (the
“technique for confirmation” part of the rule) to actually confirm
whether the current hypothesis is true. This determination involves
running further commands remotely on the customer machine, that is,
probing the dump file in more detail. If the test results are positive,
then the hypothesis is proved to be correct, and a solution is then dis-
played (the “solution-recommendation” part of the rule). The ratio-
nale for having techniques for confirmation tied to particular rules is
to save the overhead costs of performing such tests for every crash
when they are only required to confirm specific bugs.

Rule-based pattern matching and heuristic identification of prob-
lems give considerable leverage in trying to quickly identify the cause
of the problem, especially in a domain where almost half of the prob-
lems seen are repeated problems that were previously seen by others.
This module is implemented in FOXGLOVE, a rule-based shell developed
internally in our group. Currently, there are over 630 symptom-solu-
tion rules in CANASTA-VMS. Almost 75 percent of the rules point to soft-
ware problems that cause crashes. There are rules for problems caused
by system software bugs, application software bugs, hardware faults,
faulty system configuration parameters, and microcode bugs.

Deeper Analysis Module
If a match is not found in the symptom-solution knowledge base or if

CANASTA 201

the confirmation test does not succeed, then the deeper analysis module
is invoked. This module uses a methodology tree knowledge base, containing
knowledge of how experts troubleshoot crashes, to guide the user in
analyzing the crash dump. This module suggests the most appropriate
tests to be performed given the particular crash type and eventually in-
dicts a hardware component in the case of hardware problems or nar-
rows the list of possible software causes.

Currently, the deeper analysis module’s troubleshooting knowledge
is organized into several decision trees that are separated on the basis
of high-level symptoms. A graphic view of a portion of the length viola-
tion tree is shown in figure 4. At the top of the tree, we only know that
this particular crash was caused by a length violation. At run time,
CANASTA asks the user questions to determine the reason for the length
violation. By the time CANASTA reaches a leaf node in the tree, CANASTA

has either isolated the reason for the crash or significantly narrowed
the list of possible reasons.

Currently, the tree knowledge base covers a small breadth of crash
types but one that captures 80 percent of the problem types seen at

202 REGISTER AND REWARI

IF:
VMS-VERSION = (one-of 5.0 5.0-1 5.0-2 5.1 5.1-1)
BUGCHECK-TYPE = INVEXCEPTN
MODULE-OF-CRASH = ETDRIVER
MODULE-OFFSET = x1546

THEN:

DESCRIPTION:
“The crash occurs due to a synchronization problem in the
ETDRIVER while it is stepping down its list of UCB.”

TECHNIQUE FOR CONFIRMATION:
“Check to see if R5 = FFFFFFFF. This tells us that the UCB
has already been severed.”

SOLUTION-RECOMMENDATION:
“You should first recommend the customer upgrade to VMS
version V5.2 because this patch and 6 others are included in
this major release!

If the customer cannot upgrade then send them patch
number 0055.”

Figure 3. A Symptom-Solution Rule.

CSCs. In some places, the tree knowledge base lacks depth. Some of
the conclusions it reaches are of a high level, and further probing (by
the support engineer) is required to identify a cause at the hardware
component level or software module level. Experts at CSCs were pro-
vided with a maintenance tool for expanding the depth and breadth of
the methodology tree knowledge base.

Unresolved Crash Processor
CANASTA’s unresolved crash processor periodically collects unresolved
crash cases from all CSCs that run CANASTA and, using heuristic knowl-
edge, groups similar unresolved crashes into similarity sets. It attempts a
high-level classification of the cause for each similarity set. These sets
are then made available to users worldwide, although the main
beneficiaries of this module are the much-overworked expert-level sup-
port engineers and the engineers in the software and hardware develop-
ment groups to whom the unresolved cases are escalated. AI techniques
such as the heuristic grouping of cases into similarity sets and the
heuristic classification of these sets are the basis of making the unre-
solved crash processor a powerful tool that is crucial in expediting the
process of experts generating new knowledge about crash-causing bugs.

The unresolved crash processor design consists of three subcompo-
nents: the back end, the browser, and the matcher.

CANASTA 203

N

N

N

N

N

N

Y

Y

Y

Y

Y

Y

Length Violation Sub Tree

PC = VA

Probe
Further

Data
Aligner
Board

Data
Path

Module

Data
Aligner
Board

Data
Path

Module

Instruction
Decode
Board

Instruction
Decode
Board

Updated PC
for JSB/BSB

on stack?

Does rotated VA
match the VA we

tried to build?

Is VA a single bit
off from VA we
tried to build?

Dropped a bit in VA
compared to correct VA?

If P0 in signal
array is rotated,
does it match

the PC in JSB, BSB?

Figure 4. The Length Violation Decision Tree.

The Unresolved Crash Processor Back End. The back end collects all
the unresolved crash cases and groups them into similarity sets, provid-
ing a high-level classification for each set. First, it collects the unre-
solved crash cases from CSCs all over the world. It then uses a heuristic
rule base to group similar cases into sets. The rules in this heuristic
rule base are domain specific and include knowledge such as “crashes
occurring in the same software module with very similar offsets are
most probably due to the same underlying cause.’’ Once the sets are
formed, it infers a high-level characterization of the cause for the
crashes in each similarity set. It uses a set of heuristics to perform this
function; for example:

If all the crashes in a set occurred in the same minor release of VMS, then
the problem seems to be in that minor version of the VMS software (as op-
posed to hardware or the microcode).

If several of these heuristics are applicable, then the similarity set
can have several possible causes attached to it. The back end then re-
moves all sets that have a small number of cases in them, treating them
as noise. The remaining sets correspond to the most common types of
problems remaining unresolved, as seen at CSCs worldwide.

Finally, the unresolved crash processor back end builds a set of rules,
one for each similarity set, that are used by the unresolved crash pro-
cessor matcher module. As described later, the matcher is used by
users during run time to check whether the current unresolved case
corresponds to a known set of similar cases. To form a rule that repre-
sents a match with a similarity set, the back end takes certain key symp-
toms of the cases in a set and includes them as conditions in the left-
hand side of a rule. Three symptoms—the software module, the offset,
and the VMS version—are always included as conditions in the left-hand
side of the rule because they are vital to detecting similarity. If there is
a single value for this symptom in all the cases in the set, then the left-
hand side of the rule will simply have an equality test. If there are mul-
tiple values, then a condition of the form “(one-of <symptom> ‘(<symp-
tom-value1> …))” is generated. If multiple causes are listed in a
similarity set, then a rule is formed for each possible cause.

To illustrate, on the left-hand side of figure 5 is an example of a simi-
larity set. In this example, only the symptoms deemed significant in
identifying the problem are included. The right-hand side of the figure
contains the two rules that would be generated from this problem de-
scription. Two rules are generated because there are two potential
causes associated with the problem. The first rule identifies the prob-
lem when caused by a microcode problem. The left-hand side includes
the basic symptoms (module, vms-version, offset) as well as another

204 REGISTER AND REWARI

symptom that is critical in isolating microcode problems (cpu-type).
The second rule is identical to the first except that cpu-type is replaced
with current-image. In this case, the current image is critical in isolat-
ing software problems that occur when this specific image is running
on the system.

Unresolved Crash Processor Browser. The browser is an interface meant
primarily for expert support engineers viewing the sets of unresolved
cases. To the expert support engineers, the automated grouping into
sets saves substantial effort and time. When manually looking at unre-
solved crashes, they do not have other similar unresolved cases avail-
able to compare them with. If they did have other such cases, it would
be much easier for them to make generalizations and resolve the cur-
rent unresolved crash. Having similar unresolved cases as a comparison
helps in strengthening hypotheses and discarding others. It significant-
ly shortens the resolution time and, thus, accelerates the generation of
new knowledge about known crash-causing problems that goes into the
symptom-solution or deeper analysis knowledge bases.

Unresolved Crash Processor Matcher. The matcher is available to all
users during run time. When the symptom-solution and deeper analy-
sis modules do not assist in resolving the current crash, then a user has
an unresolved case. S/he can quickly check whether the current crash
corresponds to a set of similar unresolved crashes in the unresolved
crash processor database. If a match exists, then the user knows that

CANASTA 205

((PROBLEM-TEMPLATE: IF:
cpu-type: NAUTILUS module-of-crash = CTDRIVER
vms-version: 4.4, 4.2 vms-version = (one-of 4.4 4.2)
module: CTDRIVER module-offset = (one-of AA9 A7E)
offset: AA9, A7E cpu-type = NAUTILUS
image: NETACP) THEN:

Cause seems to be due to the microcode
version on this CPU family.

(CAUSED-BY MICROCODE IMAGE) IF:
module-of-crash = CTDRIVER

individual instances follow …) vms-version = (one-of 4.4 4.2)
module-offset = (one-of #xAA9 #xA7E)
current-image = NETACP

THEN:
Cause seems to be related to the
image running at the time of crash.

Figure 5. A Similarity Set (left) and the Two Rules Derived for This Set (right).

such cases have already been seen at CSCs, and by looking at the com-
ments attached to the particular similarity set of unresolved cases, s/he
might find information that would assist him(her) in proceeding fur-
ther. For example, an expert trying to resolve a set of similar unre-
solved crashes might place a comment stating that any support engi-
neer seeing similar crashes should get some further parameters to
store along with the case that will help the expert in further analysis.

The unresolved crash processor matcher consists of a rule base, with
one rule for each similarity set. A rule fires if the symptoms of the cur-
rent crash match with certain key symptoms of the crash cases in a par-
ticular similarity set. The user can then look at the individual crash
cases in this set and the comments attached to this set.

Implementing the Unresolved Crash Processor. The unresolved crash
processor was written in VAX Lisp, Digital’s implementation of Com-
mon Lisp (Steele 1989). The unresolved crash processor matcher rule
base uses FOXGLOVE rules.

In the latest run of the unresolved crash processor back end, it col-
lected approximately 2500 unresolved cases from 20 CSC sites world-
wide. With a threshold of 4 (at least 4 cases in a set), about 90 similarity
sets were formed. Our main expert estimates that over 50 rules were
generated by him alone within the short time of 8 weeks as a result of
accessing these sets through CANASTA. As a comparison, in the previous
year when the unresolved crash processor was not available, it is esti-
mated that the knowledge generated by all experts at the U.S. CSC
during the course of the entire year was less than 100 bugs (rules).

Case Management Module
All crash cases that are seen by support engineers are saved in a case
database. It allows them to browse through both the resolved and unre-
solved cases seen at their site. There are several important benefits of
saving case-related information in a database. CANASTA always saves the
status of a case before exiting, including information about whether
the crash was resolved using information from outside CANASTA’s knowl-
edge bases. Experts can now retrieve all such cases resolved by non-
CANASTA means and fill the holes in the CANASTA knowledge bases by
adding information about such problems and their solutions. Also, a
history of crashes seen on a particular machine is available and can be
used when analyzing new crashes on this machine. Finally, it is easy to
generate statistics from the database. For example, the most common
crash types being encountered or the number of crashes caused by a
particular software module can now be generated.

206 REGISTER AND REWARI

Knowledge Base Maintenance
A knowledge-based application such as CANASTA is only as good as its
knowledge base. Critical to CANASTA is the timely and periodic update
of its various knowledge bases. New bugs in hardware and software are
continuously identified, and previously identified bugs frequently ex-
tend to new releases of software or might have better solutions avail-
able at a later date. CANASTA has two main types of knowledge bases: a
rule base where well-known symptom-solution rules are encoded and a
decision tree–based knowledge base where the troubleshooting
methodology that experts use is encoded. The development team pro-
vided tools and processes to allow the support engineers to maintain
these knowledge bases on their own.

For maintaining the symptom-solution knowledge base, a tool was
developed that allows experts to enter knowledge of known problems
in the form of templates into an exclusive crash-related textual
database. The templates are basically textual renditions of the rules in
the knowledge base. The CANASTA template consists of essential symp-
toms that identify a problem and textual attributes such as a descrip-
tion of the problem, the technique for confirming the problem, and
the solution. The user first enters the values of only the minimum set
of symptoms that are relevant to identify the problem. The tool dynam-
ically checks whether the values being entered are valid (it has valida-
tion routines attached to each symptom slot). It also checks for consis-
tency among different symptom values (there are constraints in the
relationships between some of the different symptoms). The checks
are based on domain-dependent information. For example, version 5.0
of the VMS operating system is valid for the newer central processing
units (CPUs). If the user types in VMS 5.0 as the VMS version and then
types in the CPU type as VAX 780 (an old CPU that is incompatible with
VMS 5.0), then the system indicates a warning. Therefore, even though
the value 780 is valid as a DEC CPU, this value is inconsistent with the
value of the VMS version already filled in. This type of checking ensures
that the conditions in the rule are consistent with each other. The
maintenance tool resides at CANASTA sites worldwide, so that crash anal-
ysis experts from various locations can enter knowledge into CANASTA.
Once the template is filled, the maintenance tool automatically for-
wards it to a central site where all such templates are collected.

All templates received at the central site are parsed and translated
into rules and are then compared for consistency with all the existing
rules in the knowledge base. The central-site software has both do-
main-dependent, as well as domain-independent, heuristics to check
for consistency. A new rule is added only if it is found to be consistent

CANASTA 207

with all the other rules in the knowledge base. In this case, the corre-
sponding textual template is also added to the exclusive crash-related
textual database, allowing the experts to view the rules in a textual for-
mat. They can modify textual entries in the textual database, resulting
in corresponding modifications to rules in the rule base. The updated
knowledge base and the corresponding textual database are then
copied over Digital’s internal network by demon processes running at
CANASTA sites around the world. The knowledge and textual databases
are updated and distributed on a weekly basis.

The symptom-solution knowledge base of previously identified bugs
has been exclusively maintained by the experts since September 1989.
New rules are added when new bugs are identified in software or hard-
ware. Rules are modified when bugs are found to extend to other CPUs,
operating system versions, or software modules; the techniques for
confirming the bugs are changed; or better solutions become available.
On the average each week, about 5 new rules are entered, and about
10 existing rules are modified.

The deeper analysis knowledge base is maintained using DECtree, a
tool developed by Digital. DECtree provides a graphic user interface
that allows one to create or modify decision trees. It translates the deci-
sion trees into C source code that is compiled and linked to the rest of
the CANASTA run-time system.

Development
Early in the project, based on a set of requirements and discussion ses-
sions with several experts, a high-level architecture of the system was
designed. We followed many of the suggestions in Kline and Dolins
(1987) for identifying the knowledge representation schemes to use.
During the first year, we went through several design-implement cycles,
similar to the iterative cycles mentioned in Buchanan et al. (1983).
The development schedule was tied to base-level releases, with each
base level having increased functions or knowledge. By the time we re-
leased base level 4 in April 1990, all the modules had been implement-
ed with full function.

The CANASTA team had the full-time commitment of one of Digital’s
leading experts in crash dump analysis for knowledge-acquisition pur-
poses. The knowledge acquisition was undertaken in two ways: We peri-
odically interviewed the expert, and he scanned the textual databases
and placed knowledge about crash-causing bugs into CANASTA using the
maintenance tool previously described.

208 REGISTER AND REWARI

The initial development costs included about six person-years for
software development and about two years of expert time for knowl-
edge acquisition.

Testing and Deployment
After each base-level release, CANASTA was tested by both the developers
in Marlboro and experts at the U.S. CSC in Colorado. Several types of
testing were performed. Each module was tested to check that it was
behaving correctly. The developers extensively tested all the modules,
except the data-collection module, to verify that they were working as
designed. The data-collection module was extensively tested by several
of the experts. The experts generated several hundred dumps to test
the data-collection module.

After testing module behavior, the different modules in CANASTA

were tested on actual customer crashes to verify that they arrived at
conclusions that were similar to ones that expert-level support engi-
neers had arrived at. The data-collection module was run on some
difficult crash dumps to verify that it could collect all required symp-
tom values. The symptom-solution module was tested on different
types of cases to find out how it compared with experts in identifying
known problems, both in terms of accuracy and time. To test the unre-
solved crash processor, our expert collected a number of unresolved
cases that he had grouped into similarity sets and had provided high-
level classifications for. We ran these unresolved cases through the un-
resolved crash processor to compare its results with the expert’s results.
The validation heuristics for the maintenance tool were tested by en-
tering inconsistent symptom-solution rules.

Several criteria were used to measure the success of the deployment
effort. First, CANASTA had to be installed at all the major CSCs world-
wide. By October 1989, this effort was accomplished: CANASTA was in-
stalled at over 20 CSCs in the United States, Europe, Canada, Australia,
and Japan. We also wanted CSCs to receive training in using CANASTA.
This goal was met by April 1990, with training being offered at most of
the major CANASTA sites. We also wanted support engineers to use
CANASTA on most crash-related calls seen at CSCs. Current figures indi-
cate that in most CSCs outside the United States, almost all crash-relat-
ed calls are run through CANASTA. During the summer of 1990, almost
200 crash-related calls were being run through CANASTA every week. We
see this goal as being met.

Because CANASTA runs on existing CSC hardware and requires only
Digital software, the main deployment cost at CSCs was training. To

CANASTA 209

date, at the U.S. CSC in Colorado, 2 instructors have spent 1 week
training about 105 engineers to use CANASTA.

Nature and Estimate of Payoff
There have been a variety of business payoffs since CANASTA’s deploy-
ment. The bottom line is that the use of CANASTA at CSCs has resulted
in substantial savings to Digital in handling crash-related calls. It is esti-
mated that in time savings alone, it is saving Digital over two million
dollars each year. Most of the savings directly result from the savings in
call-resolution times and increased first-time-correct resolutions. Some
of the types of payoffs are hard to quantify, although they are clearly
felt by users and managers at CSCs. The most significant of these pay-
offs are described below.

The average time for handling crash-related calls has decreased. The
automatic data-collection module collects the symptoms in less than 3
minutes for most crashes and does so with greater accuracy than most
engineers. Cases where a technique for confirmation is not necessary
are directly identified within 10 seconds. The rest of the cases require a
further test to confirm the initial hypothesis. It usually takes a few min-
utes to perform the additional test. In both cases, a great deal of time is
saved over the previous method of scanning a dozen databases to find
a match, which on the average took over 30 minutes.

Experts are able to identify the causes of unresolved cases much
faster now by using the similarity sets of unresolved cases generated by
the unresolved crash processor. This step leads to a significant decrease
in time for identifying bugs in new software and hardware products.
Furthermore, the sharing of a common-case database and knowledge
base among the engineering staff (the developers of software) and
CSCs has resulted in quicker dissemination of knowledge about exist-
ing problems and quicker resolution of unresolved cases.

More accurate identification of software problems has resulted in a
decrease in the unnecessary replacement of hardware. Besides the cost
of the boards, some of which are expensive, this step also saves in the
fixed cost associated with sending a field engineer to replace the
board. Recently, an expert discovered with the help of the unresolved
crash processor that a set of similar unresolved cases was the result of
design faults in a hardware product. Catching such hardware design
faults early in the release period saves Digital a significant amount of
money because a reduced number of hardware components have to be
replaced in existing installed systems.

The presence of a case-management facility, where all cases, resolved

210 REGISTER AND REWARI

and unresolved, are saved, has resulted in several advantages: First, sup-
port engineers can retrieve cases relating to those that they are investi-
gating by features, such as symptoms, customer ID, dates, and type of
resolution. Also, by running the cases in the case database at a site
against the weekly knowledge base updates, many unresolved cases are
flagged as resolved because rules are modified or added. Support engi-
neers can go back to customers and on a proactive basis suggest
changes to their systems that will prevent a repeat of the problem. This
sort of tracking was not possible earlier. Furthermore, support engi-
neers at CSCs can now trace the crash history of each customer ma-
chine for which calls were reported. Having the crash history of a
specific machine can help in isolating the cause of the latest crash in
this machine.

The introduction of a distributed knowledge maintenance system al-
lows the incorporation of expertise from multiple sites worldwide. The
smaller CSCs in Europe and Asia can now benefit from the large vol-
ume of crashes seen at the U.S. CSC. They now share a global case
database and the same knowledge base.

CANASTA is perceived as a good training tool at CSCs for new support
engineers working on crash analysis. The symptom-solution module,
which identifies almost 45 percent of the cases as known bugs, has
confirmation techniques for many rules that indicate to the engineers
the type of tests that are required to confirm different hypotheses. The
decision trees help new engineers in learning about the sequence of
tests that are required to confirm different conclusions.

Customer satisfaction has increased because of the quicker resolu-
tion of problems and the accurate identification of problems the first
time around. The U.S. CSC has been experiencing a reduction in the
gross volume of crash-related calls. Several of the expert engineers are
attributing this reduction to the increase in first-time-correct resolu-
tions by support engineers who are using CANASTA.

Summary
CANASTA represents a major breakthrough in the way crashes are ana-
lyzed at Digital. Using AI technology, CANASTA integrates multiple prob-
lem-solving strategies into a single architecture. CANASTA not only assists
in initially analyzing a crash, it also provides assistance in the genera-
tion and distribution of new knowledge about crash-causing problems.

The success of CANASTA has led us to believe that we can develop di-
agnostic systems with architectures similar to that of CANASTA to assist
support engineers in the resolution of various types of computer hard-

CANASTA 211

ware and software problems. In fact, an effort is already under way to
develop CANASTA-ULTRIX to handle crashes in the ULTRIX operating sys-
tem (Digital’s implementation of UNIX). As we gain experience with sev-
eral other domains, Digital might well build a shell that is based on this
architecture. Such a shell would allow us to release a series of quickly
built AI-based diagnostic systems that could be of great use at CSCs.

Acknowledgments
The CANASTA project has been fortunate to have the enthusiastic support
of Steve Brissette, one of the leading experts in Digital in the domain of
crash dump analysis. We are also grateful to Charlie Gindhart and Mark
Fisher, who contributed much of their time toward developing the ini-
tial version of the automatic data-collection module. Shanti Subbara-
man worked with us during the first year of the project, and we thank
her for her efforts in the project during this critical time period. Mark
Swartwout, the CANASTA project manager, played a crucial role in help-
ing us access the right people and acquiring the necessary resources.

References

Buchanan, B.; Barstow, D.; Bechtal, R.; Bennet, J.; Clancey, W.; Ku-
likowski, C.; Mitchell, T.; and Waterman, D. 1983. Constructing an Ex-
pert System. In Building Expert Systems, 127–167. Reading, Mass.: Addi-
son-Wesley.

Kenah, L. J.; Goldenberg, R. E.; and Bate, S. F 1988. VAX-VMS Internals
and Data Structures. Burlington, Mass.: Digital.

Kline P. J., and Dolins S. B. 1987. Choosing Architectures for Expert
Systems, Technical Report, Corporate Computer Science Center, Texas
Instruments Inc., Dallas, Texas.

Steele, G. 1989. Common Lisp: The Language. Burlington, Mass.: Digital.

212 REGISTER AND REWARI

