
HELPDESK: Using AI to
Improve Customer Service
Debra Logan and Jeffrey Kenyon, Carnegie Group, Inc.

HELPDESK is a software solution that enables a customer service organi-
zation to expand its first-tier problem-resolution capabilities without
adding additional personnel or requiring additional training. It is an
integrated approach to customer support, encompassing a diagnostic
expert system, a hypertext reference facility, and a trouble-ticketing
database system. The effectiveness of the system in meeting its goals
has been verified through user surveys, showing its acceptance in every-
day use. Its success is attributed to the tight integration of its modules,
a phased deployment strategy, and local maintenance.

Introduction
In many organizations, the task of supporting a product or service is
performed by a hot line or help-desk support group. All these groups
share certain characteristics. They receive calls from internal or exter-
nal customers and must track and resolve these calls. The calls are re-
solved by either the support staff or referral to another organization.
Most help desks use some type of trouble ticket, either on paper or
computer, to record calls and maintain a central status board listing
the calls that have not been resolved and any information of general
interest to the group. Many help desks support multiple domains, sev-

From: IAAI-92 Proceedings. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

eral software programs, a variety of hardware, or a family of products.
Just as most help desks share a set of characteristics, they also share a
set of problems:

First, because many help desks support multiple domains, individu-
als develop expertise in particular domains over time, and the help
desk comes to depend on this expertise, referring all difficult problems
in the domain to a particular expert. If the expert is unavailable, then
so is the expertise. The customer must then wait for an answer or rely
on a less experienced individual. If the expert leaves the group or the
company, much of the expertise is lost.

Second, help desks often have high turnover rates because of the

38 LOGAN AND KENYON

Help
Desk

Escalate
priority
if necessary

Report
and
Verify
status

Diagnose and
Resolve
Trouble

Other service
organizations

Close
ticket

Close
ticket

Identify
repeat
trouble

End
User

Open
Ticket

New service
cycle

New service
cycleHand off or

refer

Classify

Resolved

Figure 1. HelpDesk Service Cycle.

stressful nature of the job. This turnover has the effect of draining the
group of expertise. The experienced staff members remaining must
take on the additional task of training replacement staff members.

Third, the number of users supported by a help desk often increases,
but the number of help-desk staff members remains constant because
of economic constraints.

Fourth, help desks are being asked to support increasing numbers of
products and services. Learning everything there is to know in today’s
help-desk environment is a virtual impossibility for the help-desk
staffers.

To alleviate these problems, U S West, a large telecommunications
company,1 began exploring ways of increasing their operational effec-
tiveness while maintaining service quality, maintaining or decreasing
staffing levels, and adding to the user base. AI technology suggested it-
self as a natural way of solving some of the problems that the help
desks at this company were experiencing.

In studying the problem of help desks, it was discovered that they all
carried out three basic functions: administrative, diagnostic, and refer-
ence. Two of the functions, administrative and reference, were deter-
mined to be functions of conventional technology; the third, diagnosis,
required the application of AI technology.

A software solution tightly integrating these functions was then de-
signed and deployed. A phased approach was taken to development, al-
lowing staffers to begin using the software within a week after the start
of development and realize benefits. At the conclusion of the develop-
ment phase, the responsibility for maintenance was transferred entirely
to local control.

In this chapter, we present a complete description of the HELPDESK

software solution, its development and deployment within U S West
Communications, and its emphasis on user empowerment.

Problem Description
The function of a help desk is to resolve the technological problems
encountered by product users. These problems are usually reported
verbally by telephone, although electronic mail, paper mail, and per-
sonal visits can also be used. The help-desk personnel must then track
the information given by the customer until the problem is resolved.
The service cycle is illustrated in figure 1.

In the service cycle, three basic job functions can be identified: infor-
mation tracking, reference, and diagnosis. Each function is problemat-
ic.

HELP DESK 39

To track information, the help-desk staffers are required to fill out a
trouble report. These reports, or trouble tickets, can either be on paper or
online. Tickets are used to track a problem until it is resolved. They can
also serve as input to daily status postings and monthly status reports.

This trouble-ticketing function can lead to several kinds of difficul-
ties. If the tickets are of a paper variety, they can be easy to fill out, but
paper makes it difficult to disseminate critical information among
members of the group. In addition, the data on paper tickets do not
make ready input to reporting mechanisms or status posting. In the
paper environment, writing the information on the status board is a
manual process, and it is only useful if (1) everyone checks the status
board regularly and (2) everyone can see the status board.

Online tickets present problems of their own. Internal Carnegie
Group assessments found several types of online tickets in use, main-
tained with older databases on large mainframe computers in a central
location. The ticket format tended to be inflexible, and using the data-
storage and data-retrieval facilities was time consuming (Logan, Keny-
on, and White 1991).

The reference function also proved to be complex. The information
that help-desk staffers need to resolve problems is often paper based.
In some environments, there can be several thousand pages of paper
documentation. Keeping the material current is a problem; updates
are frequent and difficult to track. Telephone numbers, contact names,
product release data, and procedures are other examples of informa-
tion that the help-desk staffer must track and have available for users.
Finding a way to efficiently organize and access all the diverse types of
information that a typical help-desk staffer must have available proved
to be a challenging problem.

As a third job function, a help-desk staff member must diagnose
complex problems. Typically, help desks support many different prod-
ucts; end user computing is one example. One help desk Carnegie
Group worked with supported office automation software on a network
of minicomputers in different geographic locations. When a user calls
the help desk with a log-in problem, the problem can potentially be in
the host computer, the network, the application software, or the user’s
procedure. Diagnosing such a problem requires a high degree of ex-
pertise. Generally, expertise in particular domains tends to develop
around certain individuals; learning the details of troubleshooting over
20 different applications is beyond the scope of most people. When
users call, problems are referred to the expert on a particular applica-
tion. The difficulty arises when an expert is temporarily or permanent-
ly unavailable (Logan, Kenyon, and White 1991).

These three functional areas represent the staff member’s perspec-

40 LOGAN AND KENYON

tive on the help-desk problem. From the manager’s viewpoint, there
are different problems associated with running a help desk. The man-
ager’s primary concern is to maintain a consistently high level of sup-
port to customers calling the organization, using people with varying
levels of experience or ability, possibly in multiple locations.

All help desks face economic constraints. If the number of cus-
tomers calling the help desk is increasing, the manager might be faced
with the need to add new support people, who will need to be trained,
or help the existing staff members to manage an increasing work load.
The training of a new staff member can take between 1 and 12 months,
depending on the complexity of what is being supported (Logan,
Kenyon, and White 1991).

Managers must also deal with the problem of replacing staff mem-
bers. Often, the most experienced members of the help desk have
grown beyond their support roles and are ready to move on to other
assignments. In addition, burnout is common because the stress of lis-
tening to customer problems all day takes its toll. The loss of accumu-
lated expertise can be devastating; with the experienced support peo-
ple gone, training replacements becomes even more difficult.

Application Description
After studying the operations of help desks, an architecture for com-
puterizing help-desk support operations was developed using a mix of
conventional and AI technology.

The HELPDESK software solution consists of three integrated mod-
ules. The first is a trouble-ticketing system for reducing the administra-
tive overhead associated with paper trouble tickets. The trouble-track-
ing system is a straightforward database application. The second
HELPDESK module is the diagnostic adviser, for increasing the range
and number of problems solvable by the support staff without assis-
tance. This component of the software is an expert system based on the
Carnegie Group product TESTBENCH. The final module of the software
suite is a hypertext reference system designed to simultaneously consol-
idate and distribute a standard body of information needed by the sup-
port staff. These modules are collectively referred to as the HELPDESK

software system. Figure 2 shows these components in graphic format.

Application of AI Technology: THE Diagnostic Adviser
The diagnostic adviser addresses the issue of scarce, distributed, or van-
ishing expertise within a help-desk organization. It also addresses the
problem of ever-increasing levels of complexity of products and ser-

HELP DESK 41

vices to be supported. By capturing knowledge in an expert system, it
remains available even when the individuals who possess it are not.

The adviser, built using TESTBENCH, offers a method of capturing ex-
pertise as a permanent asset of the group and distributing this exper-
tise to all the support staff. It was chosen because it matched the task of
software and hardware diagnostic problem solving faced by help desks.

TESTBENCH (Carnegie Group 1991) is made up of three modules.
TESTBUILDER is the workstation-based development environment; it
comprises a graphic knowledge editor (figure 3) and an inference en-
gine called the DIAGNOSTIC PROBLEM SOLVER (figure 4). When ready for
deployment, the knowledge base is moved to the delivery environment
and compiled into binary form using the TESTBRIDGE module. The
third module is TESTVIEW, the delivery diagnostic environment avail-
able on a number of platforms, from which end users can run the com-
piled knowledge base.

The value of TESTBENCH is in its knowledge representation. Instead
of programming languages or rules, knowledge in TESTBENCH is cap-
tured in objects specific to the diagnostic domain. At the top level are
category objects, which are used to logically group the symptom objects the

42 LOGAN AND KENYON

TestBuilder

User Support Staff

MacintoshWorkstation

 Reference
Materials

Trouble Ticket
Administration

Macintosh
Network Link

Download

Feedback

Hypercard User Interface

Diagnostic
System

Subject Matter Expert

Figure 2. HELP DESK Components.

system is capable of diagnosing (for example, in the category Printer
Problems might be the symptoms No Printer Output and Printer Error
Message). Attached to each symptom are the failure objects that are pos-
sible causes; when a symptom is selected by an end user for diagnosis,
these failures are each considered in turn and either confirmed or dis-
confirmed based on data gathered from the end user. Data are collect-
ed through the use of question objects and test objects, presented to the
user as required. Questions and tests can be combined into logical fam-
ilies (so that all tests on a subject are asked at one time) and in And or
Or relationships. When a failure is confirmed, it is either repaired (if it
is a component-level failure) using the procedure contained in the re-
pair object attached to the failure, or the system continues to isolate the
failure down to the component level by investigating those failures that
are possible causes for the confirmed failure. Although the diagnostic
behavior is established by the developer, it can be altered at run time,
using rules to change the order of failure investigation or recommend
a different repair.

Development proceeds by acquiring the necessary knowledge from
the domain expert, programming the knowledge into TESTBUILDER,
demonstrating the diagnostic behavior to the expert, then refining the

HELP DESK 43

Figure 3. TEST BUILDER Knowledge Editor.

behavior as needed. Figure 4 shows the TESTBUILDER DIAGNOSTIC PROB-
LEM SOLVER, which is used by the developer to examine and demon-
strate the diagnostic behavior. The DIAGNOSTIC PROBLEM SOLVER uses the
knowledge base to engage the user in a question-and-answer dialog.
This approach is natural for the help-desk environment, in which the
user is often at the other end of the telephone, and the help-desk
staffer is trying to determine what the problem is by querying the user.

There are several alternatives to TESTBENCH’s fault-isolation strategy,
but none met the needs of the HELPDESK application. The most obvi-
ous alternative is the classic rule-based system: Using rules and data gath-
ered from the user, the system attempts to reason to a conclusion. The
difficulty of maintaining a large rule base, especially for a nonprogram-
mer, was a major factor in deciding against this approach. The use of a
deep causal model was also ruled out because of the difficulty in creat-
ing the number of models required (some help desks offer service over
a dozen or more discrete systems). Decision trees, another option,
lacked the needed flexibility and were seen as too difficult to maintain,
especially in a large knowledge base. The last alternative, case-based
reasoning, was assessed as too slow for the requirements of HELPDESK

(response within 2 to 3 seconds) and the diagnostic behavior too

44 LOGAN AND KENYON

Figure 4. TEST BUILDER DIAGNOSTIC PROBLEM SOLVER.

difficult to control. The advantage of TESTBENCH is that it allows a diag-
nostic knowledge base to be built by a nonprogrammer in a format
that facilitates maintainability.

HELPDESK’S diagnostic adviser is a TESTBENCH application, developed
and maintained locally by a knowledge engineer working with one or
more experts within the help-desk group itself. Once the diagnostic be-
havior is verified and validated on the development platform, a run-
time version that cannot be modified is delivered on the MACINTOSH

platform. The ability to maintain the diagnostic adviser locally, without
the help of a programmer or a knowledge engineer, is vitally impor-
tant; help desks, as a group, are dynamic environments, with knowl-
edge assets requiring regular updates. Rather than turning the respon-
sibility for maintenance over to a programmer, the task can instead be
given to a senior member of the customer support team, who modifies
the system in response to his/her colleagues. By keeping maintenance
under local control, the probability that the system will evolve over
time to meet the needs of the users increases dramatically.

A traditional approach was inadequate for help desks because of the
many different interacting components of the environment. Most help
desks must have multiple experts to support the multiple areas of their
responsibility. AI’s approach of separating knowledge base from infer-
ence engine was a natural choice; multiple knowledge bases could be
constructed, but the same diagnostic inference engine could be used
for each one. The ability to incorporate the knowledge of multiple do-
main experts was a critical element in the success of the software. In
addition, because domain knowledge is different for each help desk,
the paradigm of a general problem-solving method (diagnosing) used
over a variety of different domains matched the nature of the environ-
ment.

TESTBENCH was chosen for its proven record of success in building
diagnostic expert systems, its knowledge representation, and its graph-
ic user interface.

The diagnostic adviser alone was not sufficient to solve the problem.
The other technologies (database and hypertext) used to solve the ad-
ministrative and reference lookup function are described in the follow-
ing sections.

Application of Other Technology: Trouble-Ticketing System
and Reference
The Trouble-Ticketing System (TTS) replaces paper trouble tickets with
computerized versions of the same tickets. These electronic tickets are
easily passed between members of the help-desk staff; are used to auto-

HELP DESK 45

matically maintain a central, electronic status board; and can be used
to provide a variety of administrative reports. The software is MACIN-
TOSH based, with a hypercard interface to an OMNIS 5 database.

TTS is based on a client-server architecture, with the server contain-
ing a central database of tickets. Any number of client workstation
users can log onto the server over local area networks (LANs) or wide-
area networks (WANs). These clients are able to create and store un-
opened tickets on their own machines, but once a ticket is opened, it is
saved on the central server and appears on the central status board.

The central status board is a computer-based version of the standard
chalk or white board maintained by most help-desk operations. It is au-
tomatically updated and is instantly available to all users on the system,
anywhere on the LAN or WAN. Users are able to select tickets directly
from the status board and continue call resolution from the point
where the last support person left off without having to re-request basic
information from the caller.

The REFERENCE DESK module of the HELPDESK software is a
MACINTOSH-based hypercard stack developed from the ground up ac-
cording to the needs of each help-desk organization. In addition to
containing detailed descriptions of various procedures routinely per-
formed by the help desk (for example, changing a password) or lists of
often-used telephone numbers, reference information can include
such items as maps, tables, or textual or graphic information on hard-
ware or software. The designer of the reference material is limited only
by the development software.

A hypertext approach (Conklin 1987) was seen as superior because
of the eclectic nature of the information to be captured. Each organi-
zation would require the ability to include any type of information, tex-
tual or graphic, and establish unique links between items to navigate
through the information effectively.

A fourth module, the TTS ADMINISTRATOR, is used only by developers
and maintainers of HELPDESK systems. The TTS ADMINISTRATOR is used
primarily to create and modify the electronic versions of the tickets
and the layout of the central status board in an icon-based, WYSIWYG
(what you see is what you get) interface.

Technology Integration
Only by integrating these three software components was it possible to
deliver a total solution that met the needs of diverse groups of users
doing similar jobs. The help-desk problem was solved by integrating
three shell technologies (diagnostic expert system, database, and hy-
pertext). Each shell was selected to match the demands of a specific

46 LOGAN AND KENYON

job function and then populated with domain-specific knowledge. This
integration of conventional and AI technologies is an innovative way of
solving a real and pressing business problem.

To be successful, it was felt that a tight integration of the modules
was key. It would not be sufficient to have separate applications han-
dling each of the needed functions; instead, the movement between
expert system, database, and hypertext modules had to be as seamless
and natural as possible. The HELPDESK software is not viewed as an AI
application; it is a solution where AI has a key role but is working in
concert with other technology.

Application Development and Deployment
The average software life cycle proceeds along a linear course
through the preliminary exploration and requirement analysis to de-
velopment, validation, implementation, and maintenance (Tuthill
1990). Although true in the case of the individual modules of
HELPDESK, the design of the software invites a parallel and sometimes
overlapping development process. It is precisely this process that al-
lows the system developers to introduce change as an evolutionary
(rather than a revolutionary) process and to build user acceptance at
each phase.

Typically, development of a custom HELPDESK begins with the appli-
cation assessment. After determining that the HELPDESK software is
appropriate for a support group, the appropriate hardware is pur-
chased and deployed. The first software module to be developed is
the trouble-ticketing software because its design is copied (at least
initially) from an existing paper ticket. The ticket can be designed,
implemented, and the users trained within the first week of develop-
ment. The support staff becomes acclimated to both the MACINTOSH

and the trouble-ticketing software while development on the other
modules continues.

The REFERENCE DESK is easily implemented in stages as needs become
apparent, and time becomes available. It might begin as nothing more
than an electronic list of telephone numbers, then expand to cover a
number of basic procedures. As the help-desk staffers gain familiarity
with the system, they will often be vocal about what they would like to
see included in the reference materials. The REFERENCE DESK, more so
than any other module, continues to expand and grow over the soft-
ware life cycle.

The diagnostic adviser is the most difficult portion to develop be-
cause it often involves learning both new hardware and new software. It

HELP DESK 47

also involves knowledge acquisition, verification, and validation to en-
sure that the system meets the demands of the real world.

The initial development of the TTS system took approximately one
person-year and occurred over a period of six months. The develop-
ment staff consisted of two developers and a project manager. Aver-
aged over the five subsequent deployments, the cost for each deploy-
ment was roughly the annual cost of one help-desk staff member.
Because the system has allowed at least one group to expand the hours
of coverage and the number of systems they support without adding to
the head count, the system has proven its ability to pay off for U S West
(Logan, Kenyon, and White 1991).

Deployment
Deployment of the HELPDESK software required the purchase of MACIN-
TOSH II computers for the help-desk staff members, an additional
MACINTOSH as the central file server, and cable sufficient to connect the
clients and server on the APPLE TALK network.

Training on the HELPDESK software was minimal, consisting of an ini-
tial 4 hour session with all the help-desk staff members and short one-
on-one sessions (usually 15 minutes or less) when new functions were
added to the system.

At the initial site, the system was deployed with approximately 15
MACINTOSH workstations. For a subsequent deployment, the system was
installed on approximately 10 workstations. In addition, the diagnostic
adviser was made available to all end users through the UNIX server
used for a variety of office automation tasks. At the conclusion of a di-
agnostic session, if the outcome of the session is unsatisfactory, the end
user has the option of mailing a log of the session to the help desk’s
electronic mail address along with a text description of why the resolu-
tion was unsatisfactory.

Deployment of these systems has become a short process, taking
from one to four weeks. The variation is accounted for by whether the
site has hardware already in place or whether the hardware must be in-
stalled as a part of the process of deploying the software.

Maintenance
The concept of local maintenance is a key element in the design phi-
losophy of the HELPDESK. Using the TTS Administrator software, TEST-
BUILDER (the development environment for the adviser system), and
hypercard, each module of the HELPDESK system is maintainable on a
local level by domain experts with little or no programming expertise.
One or more staff members of the help desk perform all HELPDESK

48 LOGAN AND KENYON

maintenance, and their training is an important part in the delivery of
each HELPDESK application.

Local maintenance also allows a faster resolution of errors or gaps in
the domain knowledge base. Help-desk environments are constantly
changing, and releases are made on an as-needed basis; if needed, the
domain knowledge can be updated as often as once a day.2 Local con-
trol of the maintenance process significantly reduces the development
and testing cycle for changes and extensions. A feeling of ownership is
another advantage stemming from the emphasis on local maintenance.
A software system that is maintained by a local administrator quickly
becomes tailored to the group’s environment and becomes their soft-
ware rather than an externally imposed software package that they
must use and conform to.

The drawbacks of local maintenance are few and can be avoided by
the group’s management. The problems observed were primarily be-
cause of the assignment of maintenance responsibilities to a staff mem-
ber with a variety of other, more pressing responsibilities. The diagnos-
tic system was not updated in response to the staff’s suggestions, and as
a result, it became outdated quickly. Staff members stopped consulting
the system once they had learned its contents, and eventually it became
little more than a training tool for new staff members. In a changing
environment, the HELPDESK domain knowledge must be updated on a
regular basis; otherwise, it becomes an outdated snapshot from the
past.

Before releasing new versions, the domain knowledge must be
verified and validated. Verification, or confirming that the knowledge in
the system is in agreement with the expert’s knowledge, is a simple
matter because it is the expert who placed the knowledge into the sys-
tem. Validation, or ensuring that the knowledge is in agreement with
the real world, is a more complex affair. For the TTS and REFERENCE

DESK modules, validation is carried out by recruiting a user (if possible,
the user who requested the modifications) to evaluate the changes. For
the diagnostic adviser, the preferred way of performing validation is to
induce the failure in the real world and then ask a third party to use
the adviser to solve the problem. In cases where induction of a failure
is too dangerous or costly, a third party reviews the transcript of the
user-adviser dialog. The preexisting knowledge should also be reexam-
ined to ensure that the new knowledge has not corrupted the existing
knowledge in some way.

The validation of the preexisting domain knowledge was facilitated
by the use of the TESTBENCH diagnostic shell. With TESTBENCH, a li-
brary of user-adviser dialogs can be developed and rerun automatically,
providing an effective means of automated regression testing.

HELP DESK 49

Application Use and Payoff
The HELPDESK software developed over the course of these projects is
in use by five different user groups; approximately 50 people use the
software on a daily basis to perform their job function. A help desk re-
sponsible for office automation support has deployed the diagnostic
adviser module on a regional network, enabling hundreds of users to
troubleshoot some of their own problems. HELPDESK systems at U S
West have been deployed and in use since September 1989 and have
produced multiple benefits.

In the first deployment, at a help desk supporting a number of soft-
ware applications, the PREDICTOR application with approximately 3000
end users was targeted for HELPDESK development; all calls regarding
this application were automatically referred to the domain expert. The
HELPDESK software was delivered and deployed in 20 person-weeks.
The diagnostic adviser enabled the help-desk personnel to respond ef-
fectively to 80 percent of the incoming calls in the first 4 months of its
deployment in which the help desk received, on average, 30 calls each
month. For this 80 percent, the time required to resolve the problem
was reduced by approximately 30 minutes; this savings was the result of
eliminating the average time between the referral to the domain ex-
pert and the expert returning the call and resolving the problem
(Logan, Carey, and Hayes 1990).

A second benefit that resulted from the introduction of the
HELPDESK software had to do with the increase in support capabilities
that the help-desk personnel were able to provide. In the first help-
desk organization where the software was deployed, there were 10
help-desk analysts supporting 7 computer systems. The help desk oper-
ated from 6:00 A.M. to 8:00 P.M. Over the course of a year after the
HELPDESK software was installed, the number of systems supported rose
to 12, and the hours of operation increased from 14 to 20. According
to U S West management, the increase in support capabilities was ac-
complished without an increase in head count because of the deploy-
ment of the HELPDESK software. With the preexisting manual proce-
dures, this expansion of service would have required a minimum of
one to two additional support personnel.

The HELPDESK system also improved the quality of service provided
by the help-desk staff. Daily users of the HELPDESK software were asked
the question, Do you feel that the HELPDESK software has improved the
quality of customer service that your group provides? Of the 21 respon-
dents, 17 said yes. They also reported that the HELPDESK software had
decreased call turnaround time and attributed this decrease to the soft-
ware itself. Finally, users of the expert system portion of the system re-

50 LOGAN AND KENYON

port that it has decreased the number of calls that they must refer to
domain experts (Logan, Kenyon, and White 1991).

Conclusions
The success of the HELPDESK projects at U S West is the result of three
factors. First, the application modules provide a total software solution
for help-desk groups. By mixing conventional and AI technologies, the
users were given what they needed to become more efficient at their
jobs. In the original vision of automated help-desk support, the expert
system was the only component that was needed. In gathering user re-
quirements as part of the original application assessment, however, it
soon became apparent that there were other needs, such as an online
trouble-tracking system, that were far more pressing than the need for
expert system technology. By listening to the users and providing them
with all the component pieces that they needed, user support was
gained as well as user acceptance of the technology.

Managing the initial introduction of new software technology for
help-desk groups and working toward final deployment and accep-
tance of the system is a difficult task in the best of times. The evolution-
ary approach toward software development is a positive influence on

HELP DESK 51

this process. Introducing components individually enables users to fa-
miliarize themselves with the software more gradually and allows the
organization to realize benefits sooner. The sequence of deployment of
the components can be based on ease of use, required development
time, and potential for high visibility and most dramatic effect on pro-
ductivity. For example, the HELPDESK REFERENCE DESK is the easiest to
understand and use of the three components. Although the TTS system
involves some pain—that is, it is not as fast as paper—the payback (in
terms of increased efficiency) is large and readily appreciated by a
group that might have been laboring under a paper system or a con-
ventional system with cumbersome restrictions.

Finally, the notion of local maintenance is critical. The most com-
mon complaint that users had about older trouble-ticketing systems
and, indeed, telephone company software in general was its inflexibili-
ty and often its inability to meet their needs. Older, monolithic systems
still widely used in the telecommunications industry are not easily
changed. Users are forced to adapt to the software, not the other way
around. Teaching the expert to maintain the diagnostic system using
TESTBENCH allows the expert system to be constantly changed and up-
dated as the parameters of the environment change. The same philoso-
phy is extended to the ticketing and reference components of the
HELPDESK, allowing users to add new ticket families and new reference

52 LOGAN AND KENYON

materials as the need arises. In the dynamic environment of the help
desk, this approach was the only way to ensure that the system would
continue to be useful after the developers were out of the picture. Fur-
ther, when a system can be maintained locally and when changes and
extensions proposed by the group are quickly realized, the pride of
ownership enforces the acceptance climate.

Notes
1. All the data in this chapter were obtained in working with different
help-desk groups at U S West.
2. On average, REFERENCEDESK is updated once a month, but both the
trouble-ticketing system and diagnostic adviser are updated every six
months.

References
Carnegie Group. 1991. TESTBUILDER User’s Guide, Software Version
2.0. Pittsburgh, Penn.: Carnegie Group, Inc.

Conklin, J. 1987. A Survey of Hypertext, revision 2, Technical Report
STP-356-86, Microelectronics and Computer Technology Corporation,
Austin, Texas.

Logan, D.; Kenyon, J.; and White, J. 1991. Help-Desk Support Systems
to Improve Service Quality. Paper presented at 1991 NEC ComForum:
Customer Service: Strategy for the ‘90s, Orlando, Florida, 9-–12 De-
cember.

Logan, D.; Cary, J.; and Hayes, S. 1990. The PREDICTOR HELPDESK Assis-
tant: Software Problem Diagnosis and Resolution. In Expert Systems
Conference and Exposition Proceedings, 35–46. Detroit, Mich: Engi-
neering Society of Detroit.

Tuthill, G. S. 1990. Knowledge Engineering: Concepts and Practices for
Knowledge-Based Systems. Blue Ridge Summit, Pa.: Tab Books.

HELP DESK 53

