
TPF Dump Analyzer:
A System to Provide Expert
Assistance to Analysts in Solving
Run-Time Program Exceptions by
Deriving Program Intention from a
TPF Assembly Language Program

R. Greg Arbon, Laurie Atkinson, James Chen, and Chris A. Guida,
Covia Technologies

The TPF dump analyzer (TDA) was conceived in an effort to create an
intelligent programming assistant for the transaction-processing facility
(TPF) programming environment where IBM System/370 assembly lan-
guage is used. This particular program represents the first component
of the system, which provides expert advice in the domain of solving
run-time control dumps (software exceptions) in the TPF environment.
This program is used by the application development, run-time cover-
age, and stability staff members at Covia Technologies to provide more
rapid problem diagnosis and resolution to a set of common TPF pro-
gramming errors. The system has an installed base of nearly 750 users
and has proven to be a useful tool in diagnosing commonly occurring
errors in the TPF environment.

Covia operates and maintains the APOLLO computer reservation sys-
tem (CRS) for United Airlines. The APOLLO reservation system, the

From: IAAI-92 Proceedings. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

world’s largest airline computer facility, supports over 60,000 terminals
in 45 countries, which generate message rates of as much as 1700 mes-
sages per second. APOLLO uses IBM’s TPF as the operating system (IBM,
1987) that executes thousands of programs written in IBM 370 assem-
bly language. A staff of approximately 750 programmers write and
maintain the reservation system software. The software supports func-
tions such as searches for the lowest fare, airline services, hotel services,
car services, airport check in, and the tracking of lost baggage. TDA was
developed by Covia to aid in solving run-time control dumps in this en-
vironment. To better describe the function of TDA, a brief description
of the TPF operating system is necessary.

TPF is used by data processing environments requiring remote access
to a large common database, such as airline reservation systems, bank-
ing systems, and insurance companies. The units of work in a TPF sys-
tem are called entries and are initiated by commands made by a user
such as a travel agent. A typical entry flows through the system in the
following way: After the user inputs a command and hits the enter key,
the TPF scheduler or control program is ready to process the message.
The control program reads the command and determines which set of
programs is required to process it. The correct programs are moved
from disk to main memory, and a block of storage called the entry con-
trol block (ECB) is initialized. (ECB is the primary control medium for
an entry in the TPF system and is used by the application programs
until processing of the entry is completed.) The execution of the appli-
cation program then begins. Based on the contents of the input mes-
sage, control is transferred from one program to another until an out-
put message is formatted and returned to the initiating user’s
computer terminal.

Problem Domain
When a software exception occurs on the APOLLO system, a program in-
terrupt is generated, and sections of memory are written to tape. This
information is postprocessed into a readable format called a dump and
is generally sent to a programmer for analysis. Hundreds of different
types of dumps can occur in TPF, with countless variations of each dif-
ferent type. To identify the problem that is the root cause of the dump,
the programmer uses dump-solving strategies and debugging tech-
niques. Experienced programmers can solve a typical dump in min-
utes, but a novice programmer can require days to solve the same
problem. Also, a novice programmer might require assistance from a
senior programmer to determine the proper strategy for analyzing the

72 ARBON, ET. AL

dump.
The objective of TDA was to develop an intelligent application that

could examine a dump, diagnose the error, and recommend a correc-
tion. TDA is used by programmers and coverage and stability staff mem-
bers to reduce the time required to solve a common set of problems.
TDA reduces the average time required by analysts to solve these prob-
lems and increases the reliability of TPF software testing. These types of
systems are thoroughly discussed in Rich and Shrobe (1978), Waters
(1982), Green et al. (1983), and many others. TDA is an implementa-
tion of a system that is based on these early concepts. TDA is part of a
larger ongoing effort to continuously improve the quality of Covia’s
product and productivity.

The rationale for applying AI to this problem domain was based on
previous experience with other applications and on knowledge of the
current state of the technology. Previous attempts to create analysis
tools were stymied by the difficulty of maintaining complicated proce-
dural code; the lack of necessary skills required to build sophisticated
AI programs; and the cost and complexity of the available hardware,
languages, and development shells used to produce AI solutions.

Many of the previous analysis tools stopped short of performing any
analysis and were actually data-manipulation tools that massaged and
translated information into a more useful format for the human ana-
lyst. TDA uses some of these existing tools and then proceeds to apply
AI to perform intelligent problem analysis.

Application Description
The architecture of TDA is innovative in that it uses a hybrid approach,
mixing evidential forward chaining, model-based reasoning, and fo-
cused opportunistic search.

TDA Architecture
The architecture of TDA, shown in figure 1, consists of three distinct
components: information-gathering utilities, assembly program recon-
struction, and problem diagnosis. The utilities component reads the
dump file and instantiates objects defined within the class hierarchy
for use by the diagnostic component. The assembly program reconstruction
component takes the program from the utilities component in the form
of a flat set of hex data and constructs a model of a System/370 assem-
bly code listing. This model contains all the assembly instructions as
well as flow relations between different sections of code (we describe it
in more detail later). The diagnostic component, which includes forward-

TPF DUMP ANALYZER 73

chaining rules and model-based reasoning, then analyzes the various
data, as well as the program model, to identify the root cause of the
problem and provide a recommendation for a solution. A report, con-
sisting of relevant parts of the data, organized by the utilities compo-
nent and the diagnosis component, is then presented to the user. The
intelligent components of TDA include the reconstruction of the pro-
gram and the execution of the diagnosis component.

Information-Gathering Utilities
TDA was designed and constructed using an object-oriented approach
to organize the data given in the dump. The file containing the dump
is read once, and each part of the dump that is of use to TDA is instanti-
ated as an object. Specifically, information from the dump that TDA

uses includes the following:
General registers: The general registers contain the values of the 16- to

32-bit general registers at the time the dump occurred. These registers
can be used for base addresses, indexes, or accumulators.

Control registers: Sixteen 32-bit control registers are available to the

74 ARBON, ET. AL

Dump Report

TDA

Information

Gathering Utilities

registers ECB
program

(hex format)
etc.

Rulebase

Diagnosis

Assembly

Program

Reconstructor

program flow model -

program chunk

depiction

Diagnosis Report

Model Based

Analysis

macro trace . . .

Diagnosis Component

Figure 1. High-Level Architecture of TDA.

operating system but not the application programs. TDA uses these reg-
isters to determine which system functions were active at the time of
the dump.

Program status word: The program status word (PSW) contains infor-
mation about the status of the program currently being executed. It in-
cludes the instruction address, condition code, and other information
used to control instruction sequencing and determine the state of the
central processing unit. The PSW is used by TDA to determine the
failed instruction.

Storage protection keys: A storage protection key is associated with each
4K block of memory. A store instruction is permitted only when the
program-access key matches the memory storage key. A protection ex-
ception occurs when this action is attempted, and the keys do not
match. The dump contains a partial listing of the storage keys associat-
ed with each 4K block.

Macro trace: A macro trace is a list of the last 250 macro calls executed
by the system. This list includes any macro call executed by any pro-
gram (TPF is a multiprocessor system). TDA extracts the macro calls rele-
vant to the current problem being analyzed. This listing of macro calls
is also provided to the user in the output report.

Core blocks (levels): Core blocks are data within the blocks of memory
currently being accessed by this entry.

Entry control block: The entry control block (ECB) is the primary con-
trol medium for an entry into APOLLO. One ECB is assigned to each
entry into the APOLLO system and represents the entry while in the sys-
tem. The ECB contains such items as register save areas, error indica-
tors, information regarding related core and file locations, program
enter and return addresses, and work areas.

Program: Program refers to the program in which the entry failed in
hexadecimal format. This information provides the basis for the pro-
gram flow model, which is described later.

Assembly Program Reconstructor
The reconstruction of the assembly language program consists of step-
ping through the file of hex data and extracting each instruction. As
this extraction is performed, all branch instructions are identified to
determine the addresses of labels that exist within the program. These
addresses then enable TDA to build the labels that delineate the pro-
gram into program chunks. TDA must also determine the length of
macro calls within the program that are of unknown length. This de-
termination is accomplished by constructing different potential macro
call lengths and checking for valid instructions based on these lengths.

TPF DUMP ANALYZER 75

Known locations of labels further ahead in the listing are used to en-
sure that no instructions overlap the address of any label.

An example of the translation of an assembly language program into
a set of program chunks is shown in figure 2. The labels seen in the as-
sembly version do not exist in the hex representation of the data be-
cause references to them are replaced during compilation with specific
addresses. A typical program contains approximately 1000 instructions,
which are translated by TDA into approximately 250 program chunks.

By constructing these program chunks, the program can be repre-
sented by TDA as a directed cyclic graph (Aho, Sethi, and Ullman 1986;
Pearl, Verma 1988), with the program chunks as the nodes and the
flow relations (to-from relations) as the arcs. Each program chunk con-

76 ARBON, ET. AL

YCD2000 EQU *
L R5,CE1CR8
AH R5,=H’20’
LH R6,0(R5)

YCD2100 EQU *
CLC 46(R2),=C’DM’
BE YCD2200
TM 6(R5),X’04’
BO YCD2000
CLC 4(R3),=X’FFFF’
BNE YCD2300

YCD2200 EQU *
MVC 0(9,R5),3(R3)
LA R5,9(R5)
B YCD2400

YCD2300 EQU *
SH R4,=H’1’

YCD2400 EQU *
LA R3,9(R3)
BCT R6,YCD2100
BACKC

Figure 2. Section of an Assembly Program and the Associated Program Chunks.

label 0

label 1

label 2

label 3

label 4

L

AH

LH

CLC

BE

TM

BO

CLC

BNE

MVC

LA

B

SH

LA

BCT

BACKC

YCD2000

YCD2200

YCD2300

YCD2400

YCD2100

sists of the instructions contained in the particular section of code and
flow pointers indicating possible paths of execution both to and from
the current chunk. The combination of these chunks forms the set of
possible logical flows of the program. It is the model that the reasoning
system uses when identifying possible paths of program execution to
isolate the root cause of a dump. TDA begins by examining the program
chunk that contains the failed instruction. The search space can then
be expanded by following possible paths of program execution.

Problem Diagnosis
The diagnosis component of TDA uses a combination of reasoning tech-
niques to determine the solution to the current problem, including ev-
idential forward chaining, model-based reasoning, and focused oppor-
tunistic search. It begins with the use of a set of forward-chaining rules
that identify evidence of interesting situations that might explain the
problem. Sometimes, the solution is determined simply by firing this
rule set. Other times, however, these interesting situations require
more sophisticated reasoning techniques. For such cases, a search is
begun to ascertain further evidence of a problem type by perusing the
flow model of the program to follow possible paths of execution.
Sometimes TDA identifies a situation where previous assumptions need
to be changed and the analysis restarted.

Different sequences of instruction types indicate different types of
problems. The objective of the model-based reasoning component of
TDA is to step through the program model (represented by the interre-
lated program chunks) to identify the interesting instructions that
identify a problem type. This reasoning is guided by the values of the
registers at the time the dump occurred and utilizes the concept of fo-
cusing on probable diagnoses to limit the potential scope of the
search.

For example, a possible dump type is a protection exception. This dump
occurs when a program attempts to access an area of memory that the
program does not have the authority to access. That is, the storage key
for the block of memory does not match the key associated with the ap-
plication program. One of the problem types that would cause a pro-
tection exception is the presence of a loop that contains an increment
of a base register combined with a loop that is executed too many
times. Once this loop is exited, the base register addresses a new block
of memory with a different storage protect key. Thus, when the base
register is used in a subsequent instruction and is addressing an area of
memory with a different protect key, a protection exception dump oc-
curs. In this case, TDA detects the presence of the loop, finds the in-

TPF DUMP ANALYZER 77

struction that increments the base register, and determines the reason
that the loop was executed too many times.

Depending on the type of programming construct for which TDA is
searching, different opportunistic search strategies are used that focus
on the most probable diagnosis first, as described in de Kleer (1991).
For example, when searching for the update of a register that seems to
contain a bad value, TDA steps back through the previous program
chunks, scanning for the use of this bad register. The search space is
then expanded to include each chunk that references the bad register
in order of proximity to the current chunk and continues in a breadth-
first search manner.

However, when searching for a looping construct, TDA scans forward
through the program chunks looking for the presence of a connection
that creates a loop. Although it is impossible to determine if a program
terminates (the halting problem [Harrison 1978]), it is possible to look
for localized sequences of instructions that provide evidence of an incor-
rect looping construct (for example, decrementing a counter from zero

78 ARBON, ET. AL

reset bad register to

newly found register

find the previous update eliminate this path and

find another update

A B C

update of bad register found?

determine instruction type

type=increment?

increment instruction causes

failed instruction to address

new protect key area?

type=load?

load from another register?

load of a constant?

load from ECB?

load of base of core

block which is held by ECB?

load from data level?

level held by ECB?

LEVEL NOT HELDDONE

DONE

DONE

INCREMENT PROBLEM

Fig. 3.B.

DONE

AB

C LEVEL NOT HELD

DONE

Y

Y
Y

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

Y N

DONE

N

N

type = macro?

N

DONE DONE

Y N

Fig. 3.A.

examine

program

flow model

Figure 3a. Decision Tree Used When a Register Contains a Bad Value.

and checking for zero to terminate or not initializing a register correctly.)
Different types of program dumps are distinguished by different

flavors of problems. This distinction between dump types allows for dif-
ferent search methodologies when deriving a diagnosis of the particu-
lar problem.

These methods include both the selection of where to search and
the choice of what parts of the search space to prune. For example,
when searching for the solution to a protection exception dump and
determining the path that the program was executing before the dump
occurred, a path is eliminated for two reasons: (1) a previous instruc-
tion is found that would have caused a protection exception before ex-
ecuting the failed instruction and (2) a load of a valid value to a regis-
ter known to contain a bad value is found.

An example of the reasoning logic for a particular problem is given
in figure 3a. If TDA has determined that a dump occurred because a
register was being assigned a bad value, then this section of the rule
base is used. First, the model-based reasoning component is invoked to
find the instruction that last updated this bad register. If such an in-
struction is found, then the forward-chaining can continue, and the
type of the update instruction (that is, increment, load) determines

TPF DUMP ANALYZER 79

Figure 3b. Decision Tree Used When a Register Contains a Bad Value.

any negative registers?

Branch-on-count(for loop construct)

found using negative register?

LOOPING PROBLEM loop found?

LOOPING PROBLEM

Branch-on-count instruction

used for loop control?

add branch-on-count

register to bad register list
DONE

bad register incremented

by another register?

add other register

to bad register list

DONE

A

A

Y

Y

Y

Y

Y

N

N

N

N

N

Fig. 3.B.

examine

program

flow model

examine

program

flow model

which set of rules fires next. If, for example, this instruction incre-
ments the bad register, then TDA attempts to confirm that the incre-
ment instruction caused the register to contain a bad value. If an incre-
ment problem is detected, then TDA continues to look for a looping
problem, as illustrated in figure 3b. During this diagnosis, TDA might
alter the target of its search. For example, if an instruction is found
that loads the bad register with a second register (as shown in figure
3a), TDA begins searching for the update of this second register. Anoth-
er example of TDA altering the target of its search is given in figure 3b,
where a looping problem has been detected, and a branch-on-count in-
struction is being used to control the loop. That is, a register is decre-
mented and tested for zero on each iteration through the loop. In this
case, TDA updates the target register to be this loop control register and
begins the analysis again. This capability allows TDA to find a root cause
of a problem rather than simply the most recent symptom of the prob-
lem.

The forward-chaining logic, as well as the methods used to search
the program model, were derived from the TDA Expert Group. This
group consisted of a select group of TPF analysts considered to be ex-
perts in solving dumps or persons with a broad range of knowledge
about the TPF system.

During the problem diagnosis, as facts are determined relating to
the problem being solved, the report is updated. These facts include
such results as there is a looping problem, or register 2 contains a bad
value, and it was updated by register 4 at displacement 100 in the pro-
gram. Other useful information is added to the report. This informa-
tion includes such items as the instruction that was being executed
when the dump occurred, registers that contain bad (or potentially
bad) values, and an ordered list of macros executed by this entry. TDA

constructs these items through straightforward operations on data in
the dump so that the programmer does not have to spend time with
these mundane tasks. The programmer is thus freed to work on a more
sophisticated analysis of the problem, and the potential for computa-
tional errors is eliminated.

Implementation and Development Issues
The actual implementation of the dump analyzer was preceded by a
number of analyses to determine where the use of AI could provide a
high return on investment. These analyses included a study to deter-
mine which of the problems that were being solved by the analysis
groups could be automated and solved by an intelligent, online soft-

80 ARBON, ET. AL

ware system.
Many problems can occur within the System/370 architecture. Crite-

ria for the inclusion of a problem in the analysis capabilities of TDA en-
compassed problem complexity, problem frequency, availability of data
to determine a solution, and computational complexity of the determi-
nation of a solution. With these criteria in mind, a group of experts was
selected that represented the diverse application, operations, and sup-
port groups within the company. These persons determined which
dump types should be addressed and in what order. The overriding cri-
teria for selecting the first dump type were high problem frequency
and ease of determining a solution.

Another factor in the design of the system was the impact on the
company computer network that would be caused by transferring the
data required to solve the problem to TDA and then back to the analyst.
This factor led to the decisions to process only minidumps, which are
limited to approximately 200K (A full TPF dump on the System/370
can be as large as 32 megabytes.), and to deploy TDA on a mainframe
computer using the MVS operating system as opposed to each program-
mer’s workstation (thus maintaining the volume of traffic on the local
area network [LAN] at current levels and avoiding potential LAN per-
formance problems).

The development team that constructed TDA consisted of three peo-
ple: a project lead; and two developers, one full time and the other
part time. The development team worked with a group of TPF experts
to construct and validate the knowledge base of TDA.

The development effort used a prototyping approach that allowed
for early validation of the system requirements and functions and pro-
vided the opportunity to include or remove features from the system.
The prototypes were continually extended, leading to a final installed
system that met the system requirements. The expert group assisted in
the validation of each prototype. This process ensured that the analyses
that TDA performed were similar to what an expert would do and, most
importantly, that the analyses were correct.

The total development time from inception to system installation
was 8 months and took approximately 2800 hours.

Application Deployment
Deploying TDA for use by the user community was discussed with the ex-
pert group to determine the various impacts associated with bringing a
new utility into the analysis environment. It was agreed that among the
most important considerations was to minimize the impact to both the

TPF DUMP ANALYZER 81

existing dump postprocessing utilities and the user community itself.
With this goal in mind, an architecture for installation was derived that
would simply intercept the dumps as they were processed.

Previous Dump Architecture
As illustrated in figure 4, the previous dump process involved a user re-
quest through the STPP program (run under the VM/CMs operating sys-
tem), which invokes the MVS dump postprocessor. On completion of
the dump processing, the output report (minidump) is sent to the
user’s mailbox or an output device defined by the user.

New Dump Process, Including TDA

The current process for TDA (figure 5) uses the previous postprocessing
architecture. The output report (minidump) from the MVS dump post-
processor is provided to TDA as input. The report is then analyzed, and
a TDA analysis report is attached to the beginning of the minidump.
This final report is then sent to the user’s mailbox or an output device
defined by the user.

Delivery Benefits
Many benefits have been derived from this development effort, in prob-
lem-solving methods as well as increased programmer productivity.

During the course of the knowledge-acquisition process, experts from
diverse application, operation, and support groups were gathered to dis-
cuss problem-solving methodologies. This process was educational to all
the participants in that it allowed the normalization of each group’s analy-
sis techniques as well as the derivation of new techniques owed to the syn-
ergistic nature of the meetings. The TDA project provided a formal mech-
anism for this gathering of experts that did not previously exist.

Prior to approving the TDA project, a detailed cost-benefit analysis
was performed that identified a potential for nearly a half a million

82 ARBON, ET. AL

VM MVS

STPP EXEC

MAIL BOX

POST-PROCESS

REPORT

USER

TAPE

Figure 4. Previous Dump Postprocessing Architecture.

dollars in annual personnel savings because of the automation of the
dump analyses during both the development process and normal oper-
ations. These savings have been documented and justify the develop-
ment of the system.

It was determined that TDA saves an experienced TPF programmer an
average of one hour during the analysis process and a novice TPF pro-
grammer an average of a full day (eight hours). TDA also reduces the
amount of supervision required by less experienced programmers
when analyzing a TPF dump, freeing senior personnel to focus on more
complex problems. (The average time savings for each dump was esti-
mated at approximately six hours.)

TDA has provided productivity improvements in four separate areas
of the development and operations process: (1) the analysis of prob-
lems occurring on the online APOLLO system, (2) system testing during
new project development, (3) general testing of system operations and
existing application enhancements, and (4) the installation and load-
ing of new software segments onto the APOLLO system.

Roughly 1000 TPF dumps occur on the online APOLLO system that are
analyzed each year. TDA reduces the amount of time required to solve
these dumps by 6000 hours (6 hours for each dump, on average).
Dumps that occur during new project development are usually en-
countered during the system-testing phase of the project. On average,
20 development projects occur during a year. Each of these projects
encounters approximately 25 dumps during system testing. TDA re-
duces the total time required to solve these problems by 3000 hours
(20 projects x 25 dumps each project x 6 hours each dump). There are
25 application areas, each of which generates 4 dumps each month, on
average, during ongoing application enhancement and testing. This
process adds another 7200 hours in time savings (25 projects x 4
dumps each month x 12 months x 6 hours each dump). Finally, the
time saved during the installation and loading process comes to about
1500 hours each year. There are typically 250 installation and load cy-
cles each year, with an average of one dump each cycle (250 installa-

TPF DUMP ANALYZER 83

Figure 5. The Current Process for Dump Analysis.

VM MVS

STPP EXEC

MAIL BOX

POST-PROCESS

REPORT

USER

TDA

FINAL

REPORT TAPE

tion and load cycles x 1 dump each cycle x 6 hours each dump).
Additional nonquantifiable benefits, such as improved customer

goodwill and greater system reliability, were also identified, but it is im-
possible to quantify actual cost savings in these categories.

Highlights of TDA Benefits.
Automated dump analysis: Automated control dump analysis results in
increased up time, cost savings, and efficient use of programming re-
sources. These factors are especially critical when viewed from the
maintenance perspective. As newer, high-level languages are intro-
duced into our environment (C, PL/1), the level of expertise related to
the TPF assembly language programming environment is inexorably de-
teriorated. An automated analysis system significantly reduces the per-
sonnel required to support the tremendous amount of TPF assembly
code that has been created over the last 20 years (~ 10 million lines of
code).

Rapid problem resolution: The TPF dump analyzer reduces the time
required for programmers to diagnose and resolve common program-
ming errors.

Quantified productivity improvements: The greatest savings is nearly
half a million dollars annually in personnel costs. These costs savings
are realized by saving time and increasing productivity; there has been
no actual staff reduction at Covia. The productivity improvements were
quantified by determining the amount of time that the programming
staff would have spent performing the tasks now done by TDA.

Maintenance Issues
The initial maintenance of TDA will be performed by a member of the
Artificial Intelligence Group. It is planned to train a member (or mem-
bers) of the development staff to maintain the system in the future.

TDA has generated a great deal of interest and excitement in the user
community, especially because it provides an analysis aid in an environ-
ment that is intimidating and complex. Numerous suggestions have
been made, however, for further enhancement of the system to auto-
mate the processing of other problem types. These suggestions are
being collected and will be addressed during a subsequent develop-
ment phase.

TDA will also be a continuing effort, which will allow the system to
handle a wider variety of dump types. This enhancement and others
are discussed in the following section.

84 ARBON, ET. AL

Future Enhancements
This section outlines future system enhancements. Such enhancements
include extending the diagnostic capabilities, using the system as a
code analyzer, and adding a tutorial.

Extend Diagnostic Capabilities
The dump analyzer will be extended to diagnose a wider range of
problems than are currently addressed. This task will be accomplished
by performing ongoing knowledge acquisition with the community of
analysts who use TDA. As further problems are given sufficient descrip-
tion to allow a solution to be encoded in TDA, these newly identified di-
agnoses will be added. This knowledge-acquisition–TDA enhancement
process is envisioned to be a continuous, ongoing effort.

By adding additional problem types that TDA will need to solve, the
computational complexity of the reasoning system within TDA will in-
crease. These additions will most likely require the simultaneous assess-
ment of many possibly contradictory solutions, suggesting the addition
of a truth maintenance system (Forbus and deKleer 1991) to enable
TDA to perform these more sophisticated analyses in an efficient man-
ner.

Use with Other Languages
TDA can be used with the assembled output of any language, such as C
or COBOL, that generates native System/370 code because TDA con-
structs its internal representation of the offending program from the
actual System/370 hex representation.

Use as a Code Analyzer
Based on the unanimous comments received from our expert group,
we concluded that it would be appropriate to use TDA as a preventative
measure, not just as a means of diagnosing existing errors. Thus, TDA

would serve a purpose similar to the UNIX LINT utility, although not
nearly as extensive as LINT because it has been incrementally improved
for most of two decades.

The use of TDA as a code analyzer would not remove the need for the
analysis of real-time program exceptions because the body of code being
exercised spans 20 years of development and will be replaced slowly over
time, if at all. Also, computational restrictions, such as the halting
problem and the postcorrespondence problem (Harrison 1978), limit
the capability of determining program correctness. Thus, there seems to
be a long-term use for a system that diagnoses problems ex post facto.

TPF DUMP ANALYZER 85

Provide Tutorial Services
Another enhancement planned for TDA is to include a sophisticated hy-
pertext-based tutorial system that can be used to teach the basics of the
dump-solving process to novice programmers.

Conclusion
TDA is the first component in what will be a larger set of programming
assistants that will improve the efficiency of the development and oper-
ations functions within Covia. To maintain the high levels of service
and system up time and stay competitive, it is essential to develop pro-
cesses and tools that assist existing programming and support staff
members in performing their jobs more efficiently.

The objective of TDA was to develop an intelligent application that
could be used by both programmers and coverage staff members to re-
duce the time required to solve a common set of problems. TDA is just
one component of a larger ongoing effort to improve quality and re-
duce costs and time to market.

About Covia and TDA

Covia is an information systems company serving the travel industry in
45 countries.

TDA was developed on IBM PS/2s using OS/2 and DOS. The expert sys-
tem was developed using Aion Corporation’s Aion Development Sys-
tem (ADS). The system is deployed on a mainframe computer running
MVS and interacts with other mainframes running VM/CMS.

Acknowledgments
We would like to thank our experts who provided the knowledge and
intelligence that was encoded in TDA: Atul Amin, Tammy Homan,
Bryan Karr, Steve Murphy, Ky Slickers, Steve Schoenstein, and Jerry
Tyra. Additionally, we would like to thank Pierre Campbell, Ralph Hen-
ning, and Greg Mally for their help during the installation process;
John Bray, Kip Henderson, Kyung Lee, Jerry Looney, Tom Osborne,
and Jeannie Smith for their insightful comments during the design
and development process; and Phil Marie, Rich Lee, and Brad Boston
for supporting our efforts.

Suggestions for Further Reading

Balzer, R. 1990. AI and Software Engineering, Will the Twain Ever

86 ARBON, ET. AL

Meet? In Proceedings of the Eighth National Conference on Artificial
Intelligence, 1123–1125. Menlo Park, Calif.: American Association for
Artificial Intelligence.

Bobrow, D. 1985. Qualitative Reasoning about Physical Systems. Amster-
dam: Elsevier Science Publishers, North Holland Publications.

Fikes, R. 1990. AI and Software Engineering—Managing Exploratory
Programming. In Proceedings of the Eighth National Conference on
Artificial Intelligence, 1126–1127. Menlo Park, Calif.: American Associ-
ation for Artificial Intelligence.

Fox, M. S. 1990. Looking for the AI in Software Engineering: An Appli-
cations Perspective. In Proceedings of the Eighth National Conference
on Artificial Intelligence, 1128–1129. Menlo Park, Calif.: American As-
sociation for Artificial Intelligence.

Hayes-Roth, F.; Waterman, D. A.; and Lenat, D. B. 1983. Building Expert
Systems. Reading, Mass.: Addison-Wesley.

McDermott, J. 1990. Developing Software Is Like Talking to Eskimos
about Snow. In Proceedings of the Eighth National Conference on
Artificial Intelligence, 1130–1133. Menlo Park, Calif.: American Associ-
ation for Artificial Intelligence.

Soloway, E. 1990. The Techies versus the Non-Techies: Today’s Two Cul-
tures. In Proceedings of the Eighth National Conference on Artificial
Intelligence, 1123–1125. Menlo Park, Calif.: American Association for
Artificial Intelligence.

Stallings, W. 1987. Computer Organization and Architecture: Principles of
Structure and Function. New York: Macmillan.

References

Aho, A. V.; Sethi, R.; and Ullman, J. D. 1986. Compilers: Principles, Tech-
niques, and Tools. Reading, Mass.: Addison-Wesley.

de Kleer, J. 1991. Focusing on Probable Diagnoses. In Proceedings of
the Ninth National Conference on Artificial Intelligence, 842–848.
Menlo Park, Calif.: American Association for Artificial Intelligence.

Forbus, K., and de Kleer, J. 1991. Building Problem Solvers: Program
Notes on Truth Maintenance Systems. Presented at AAAI-91 Tutorial
on Truth Maintenance Systems, 15 July, Anaheim, Calif.

Green, C.; Luckham, D.; Balzar, T.; Cheatham, T.; and Rich, C. 1983.
Report on a Knowledge-Based Software Assistant, Technical Report
RADC-TR-83-195, Rome Air Development Center, Rome, New York.

TPF DUMP ANALYZER 87

Harrison, M. A. 1978. Introduction to Formal Language Theory. Reading,
Mass.: Addison-Wesley.

IBM. 1987. IBM System/370—Principles of Operation, 11th ed. York-
town Heights, N.Y.: IBM T. J. Watson Research Center.

Pearl, J., and Verma, T. 1988. The Logic of Representing Dependencies
by Directed Graphs. In Proceedings of the Sixth National Conference
on Artificial Intelligence, 374–379. Menlo Park, Calif.: American Asso-
ciation for Artificial Intelligence.

Rich, C., and Shrobe, H. 1978. Initial Report on a Lisp PROGRAMMER’S
APPRENTICE. IEEE Transactions on Software Engineering SE-4(6): 456–467.

Waters, R. 1982. The PROGRAMMER’S APPRENTICE: Knowledge-Based Edit-
ing. IEEE Transactions on Software Engineering SE-8(1).

88 ARBON, ET. AL

