
Knowledge-Based Code
Inspection with ICICLE

Laurence R. Brothers, Velusamy Sembugamoorthy, and
Adam E. Irgon , Bellcore

ICICLE1 (intelligent code inspection in a C language environment) is a
multifaceted software system developed with components from several
technologies, including AI, computer-supported cooperative work
(CSCW), and software technology. It is intended to support the process
of formal code inspection within the software development cycle. This
chapter reports on ICICLE in the context of its successful deployment at
Bell Communications Research, Inc. (Bellcore) for code inspection
and discusses its design and operation with particular emphasis on its
AI components.

The Problem: Code Inspection
In this section, we review software development and the telecommuni-
cations industry. We also analyze the techniques of code inspection,
manual and intelligent.

Software Development and the Telecommunications Industry
Modern telecommunications companies are heavily dependent on soft-
ware in virtually all aspects of running their businesses. When a cus-
tomer calls the telephone company and asks for telephone service, cus-

From: IAAI-92 Proceedings. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

tomer service representatives use a host of software systems to deter-
mine the customer’s current status, verify information about the cus-
tomer, determine what services the customer might want (often sup-
ported by sales advice expert systems), and initiate the customer’s
order. Initiated orders are sent to other software systems that provision
the order, selecting and configuring the facilities and equipment that
can implement the customer’s requested services. Other systems moni-
tor and operate the network on an ongoing basis: electronic switching
systems connect calls; software routes calls in the network dynamically;
and software systems monitor the health of the network, providing
alarms as needed and in some cases fixing problems automatically.

The systems used to run the day-to-day business of the telephone
companies are referred to collectively as operations support systems
(OSSs). Development of OSSs is a major part of the services of Bell-
core, which was created at AT&T’s divestiture in 1984 to provide cen-
tralized services to the divested Bell Operating Companies.

This ubiquity of software in telecommunications results in a strategic
edge for companies deploying advanced software systems. At the same
time, bugs in telecommunications software systems can be catastrophic,
as the recent network breakdown in the New York metropolitan area il-
lustrated (Russell 1991). The loss of customers’ goodwill because of
network outages such as this one can have enormous financial impact
on a company. At best, the act of fixing bugs in telecommunications
software systems is expensive; we estimate that in 1990, Bellcore spent
approximately $65 million fixing bugs. Accordingly, the pressure to
make software development quality and productivity gains is powerful.

Manual Code Inspection
In an influential paper, Fred Brooks (1987) argued that no techniques
will fundamentally transform software development quality and pro-
ductivity. Rather, gains will be incremental, as in the case of code in-
spection. Code inspection is a phase of software development intermedi-
ate between implementation and testing. It is a rigorous, formalized
process that is rapidly replacing informal code reviews in companies
such as IBM (Dobbins 1987; Fagan 1976), AT&T Bell Labs (Ackerman
1984), BellNorthern Research (Murray 1985), and Bellcore because it
offers significant software quality and long-term maintenance benefits.

Inspection involves using the knowledge of a team of expert develop-
ers, designers, and application-domain experts to achieve reduction of
errors and more understandable software. Ideally, code inspection
should be performed on all new or significantly changed code, a goal
Bellcore has set. Such inspection pays off handsomely in software quali-

296 BROTHERS, SEMBUGAMOORTHY, AND IRGON

ty gains but also carries a heavy cost. Code inspections are painstaking,
time consuming, and knowledge intensive. Code inspectors must apply
a wide variety of knowledge, including design, programming, and ap-
plication-domain knowledge. In general, it is difficult to find a code in-
spector who is an expert in all these areas. Often, even experienced
code inspectors suffer from cognitive overload.

The nature of code inspections makes them expensive and often un-
popular with software developers. The tendency of software develop-
ment projects to be behind schedule has been well documented
(Brooks 1975). In addition, customer demands for new, increasingly
sophisticated services supported by rapidly changing technology put
software development organizations under pressure to develop systems
faster, cheaper, and better, often at the expense of code inspection.

Code inspection is broken into several phases, the two most important
of which are comment preparation and the code-inspection meeting.

Comment Preparation: Using the distributed materials, code inspec-
tors individually analyze the code and prepare comments relating to
bugs and deviations from coding standards, requirements, and design
specifications.

Code-Inspection Meeting: On the scheduled day, the inspection
team meets, discusses the comments prepared earlier, analyzes the
code wherever necessary, and finalizes the list of comments. Also, cer-
tain statistics such as the number and types of errors found and time
spent are obtained. These data are used for monitoring the effective-
ness of code inspection in the organization.

Several difficulties are associated with these two phases. In comment
preparation, the problems are mainly cognitive, focusing on the inabil-
ity of a single developer to understand source code written by another
in a limited amount of time and once understanding the code to be
able comment on it. In the code-inspection meeting, the problems are
mainly secretarial and administrative: The rigorous and formal require-
ments of the code-inspection procedures described by Fagan (1976)
and Ackerman and his colleagues (Ackerman 1984; Ackerman,
Buschwald, and Lewski 1989) are desirable for the reasons they discuss
but also make actual participation in such meetings unpleasant and te-
dious. These problems are not insuperable, but together, they have
combined to make code inspection unpopular in many development
organizations and have reduced the overall value of the activity where
it does take place.

Intelligent Code Inspection
Given the previously described difficulties with code inspection, our

ICICLE 297

task was simple: to provide systems that seek to eliminate the negative
aspects of the process yet accentuate the positives.

ICICLE (Brothers, Sembugamoorthy, and Muller 1990; Rich 1986) is a
software system developed at Bellcore that augments and improves on
manual code inspection by computerizing many of the problem-solving
tasks that underlie code inspection. For some years, C has been the pro-
gramming language of choice in Bellcore, and accordingly, ICICLE is for
C program inspection. ICICLE has been designed to accommodate other
languages, such as C++, as they increase in popularity.

Ideally, a code-inspection system should have the following virtues:
First, from the point of view of the user, a code inspector, it should

make code inspection much more palatable as a task and easy to per-
form, reducing cognitive load and secretarial tedium, thus increasing
the likelihood that it will actually be done.

Second, from the point of view of the manager of a development pro-
ject, it should reduce the time and resources needed to inspect code and
improve the overall quality of inspections by automating a range of tasks
previously done manually and assisting inspectors in better performing
some tasks that are not amenable to complete automation.

These goals can be accomplished by targeting the two difficult phas-
es of code inspection with specific functions:

First, during comment preparation, code inspectors employ infor-
mal static debugging techniques to detect coding errors. The inspec-
tors also work to understand the code and check whether the code
meets the requirements and design specifications. A computer-aided
code-inspection environment should provide tools to aid static debug-
ging, checking coding standards violations, browsing through various
kinds of code-inspection knowledge (such as manual pages, library
function specifications), and above all integrate these tools in a user-
friendly human interface.

Second, during code-inspection meetings, the team of inspectors meet
to reach consensus on problems with the program under inspection. A
good computer-aided code-inspection system should support this coop-
erative effort by computerizing the communications between inspectors,
enabling the team members to maintain their focus of attention without
being required to resort to paper listings, permit comment integration
and recording with a minimum of effort, and also make the secretarial
and administrative burden of the meeting as light as possible.

ICICLE Design and Architecture
In this section, we discuss the design and architecture of ICICLE. We exam-

298 BROTHERS, SEMBUGAMOORTHY, AND IRGON

ine the integration of multiple technologies for code inspection; ICE, the
expert system within ICICLE, the human interface for comment prepara-
tion; and the automation of the code-inspection meeting by ICICLE.

Integrating Multiple Technologies for Code Inspection
As a result of the analysis previously described, we realized the need to
combine components from several technologies.

To support the efforts of an individual code inspector to understand
the code, we needed to provide a sophisticated human interface capa-
ble of browsing and navigating source code in different interconnected
files. We also needed to be able to present the results of the analyses of
software tools such as cross-referencers in an understandable and easy-
to-use fashion. The effect of human program understanding in the
comment-preparation phase is the compilation of a set of comments
about the code. With a knowledge-based debugging tool and conven-
tional debugging tools such as LINT (Johnson 1983), we could provide
an automatically generated set of comments. Some of these comments
pertain to problems in the code that might otherwise have been over-
looked by the human inspector, and other comments might help the
inspector to better understand what the original programmer was try-
ing to do.

The activities of the inspectors during the code-inspection meeting
are primarily administrative and secretarial in nature but can also occa-
sionally involve some of the same activities as in comment preparation.
To support the conduct of the code-inspection meeting, we had to pro-
vide groupware to enable inspectors to carry out all the meeting proce-
dures online but still retain the capabilities of the interface used for
comment preparation.

The architecture that supports these multifarious activities is shown
in figure 1. ICICLE’s current components include the following: (1) a
human interface for effective presentation of information and interac-
tion with the user (also manages annotation and comments, as provid-
ed by either the human user or other automatic subsystems, and con-
tains connections to various software tool interfaces) (2) groupware for
supporting the cooperative effort of code-inspection meetings, (3) soft-
ware tools for static debugging and providing useful program-under-
standing aids such as cross-referencing information, and (4) an expert
system to represent expert developers’ knowledge for detecting pro-
gramming errors and violations of coding standards.

ICICLE’s architecture is modular. Because all the analysis tools are in-
terfaced with the human interfaces through text files, it is easy to add
new analysis tools (for example, complexity analysis tools, program

ICICLE 299

slice analyzers). Even if some or all of the analysis tools fail for a given
source code module (perhaps the program is syntactically incorrect or
in an unusual language dialect), ICICLE still provides all the functions
necessary to perform a code inspection, albeit with reduced efficacy.

The primary innovations offered by ICICLE are embodied in (1) the ex-
pert system for automatic detection of bugs in C programs, (2) ICE (the
ICICLE C expert), (3) a CSCW system for code-inspection meeting support
(we refer to this as ICICLE groupware), and (4) the integration of these
technologies to enable all the complex and demanding activities of code
inspection to run online through the medium of a single system.

ICE: The ICICLE C Expert
Certain classes of relatively simple errors and warnings can be captured
by bug-detection tools such as LINT or DAVE (Lukey 1980). To detect
more complex errors, one needs to acquire and represent the heuristic
rules that expert developers use. Because of the easy modifiability of
the rule base and the availability of explanation facilities, rule-based
systems provide an excellent framework to represent not only these
rules but also those for detecting violations of coding standards. Exam-
ples of rule-based debugging systems are FALOSY (Osterweil and Fosdick
1976), MESSAGE TRACE ANALYZER (Gupta and Seviora 1983), and Haran-

300 BROTHERS, SEMBUGAMOORTHY, AND IRGON

Figure 1. ICICLE Architecture.

di’s (1983) system. The first two systems require the program to be run
and are therefore unsuitable for code inspection. Code inspection re-
quires syntactically correct code but is not intended to perform run-
time analyses, which are usually performed by a separate testing group.
Koenig (1989) compiled more significant debugging knowledge than
that represented in Harandi’s system. ICICLE has rules to detect many of
the characteristic problems reported by Koenig.

ICE contains a YACC2-based C grammar parser, which can efficiently ac-
cept C code and output a Lisp-readable annotated parse tree in the
form of a series of S-expressions. The parser is by no means as
complete a parser as, for example, those used by C compilers. Because
code presented for inspection must compile without errors, the gram-
mar and actions can be fine tuned to provide exactly the information
required by the rules of the expert system component and need not
provide robust explanations of syntactical and lexical errors.

ICE’s primary inference mechanism is a rule-based system written in
ART, a commercial multiparadigm expert system shell, along with auxil-
iary routines in Lisp. The output of the parser is decomposed into
schemata suitable for assertion into the frame knowledge base used by
the expert system. The shell’s relational pattern-matching inference
engine is capable of detecting specific patterns or templates of parse
tree nodes corresponding to potential errors, dangerous coding uses,
and coding standards violations. If this structural (syntactic) matching
is not sufficient to detect some errors or violations, additional Lisp rou-
tines can be triggered to perform semantic analysis of the area of the
code being focused on by the pattern-matching step. For example, syn-
tactic analysis can find an instance of a pointer being dereferenced,
but further semantic analysis is required to determine if dereferencing
the pointer is likely to lead to a segmentation fault.

Cliche recognition (Wills 1990; Harandi and Ning 1990; Johnson 1986)
is an emerging technology for identifying the function or intention of
a piece of code by recognizing a pattern associated with the function.
Detection of the intention of a programmer goes a step beyond mere
semantic analysis into the more difficult area of pragmatics. This tech-
nology can be used to recognize patterns of C traps and pitfalls. It pro-
vides a higher-level language-independent framework (for example,
PLAN CALCULUS [Rich 1986]) to represent patterns of code and seman-
tic and program-understanding knowledge (for example, the represen-
tation in PAT [Harandi and Ning 1990]). Tutoring systems such as
PROUST (Johnson 1986) and TALUS (Murray 1985) have also experi-
mented with frameworks to represent debugging knowledge. Com-
pared to the pattern-matching and object-oriented languages available
in rule-based system shells such as ART, these higher-level frameworks

ICICLE 301

make it easier to represent knowledge to catch complex traps and pit-
falls that involve sophisticated patterns (delocalized plans [Letovsky
and Soloway 1985]) and semantic information dispersed across many
procedures and modules. However, none of the reported cliche-recog-
nition systems is scalable to large, real-life application systems imple-
mented in languages such as C (Harandi and Ning 1990; Rich and
Wills 1990). Hence, we decided to use an integrated frame- and rule-
based expert system shell to implement ICE.

Although, in general, detection of the intention of a programmer is
difficult, several of ICE’s rules are designed to detect simple cliches.
For example, a common use of the C for loop is to iterate through a
fixed-size array. ICE rules can detect possible errors in array bounds
and iterator direction based on the expected template provided by this
programming cliche. ICE rules do not attempt to detect higher-level
cliches, such as sorting functions or access methods; such analysis is be-
yond the representational and computational capacity of the system.
Figure 2 shows the interrelationship of the YACC parser, the parse tree,
the pattern-matching rules, and the auxiliary semantic routines.

ICE currently contains about 45 programming heuristics, implement-
ed as a rule-based system. These heuristics can catch many of the traps

302 BROTHERS, SEMBUGAMOORTHY, AND IRGON

Figure 2. ICE Architecture.

and pitfalls compiled by Koenig (1989). They fall into several classes:
Standards violations: An example is a failure to initialize automatic

variables. These rules are mainly syntactic and, thus, have complete
certainty that their firing is correct. Standards violations generally do
not reflect actual bugs but are enforced by development organizations
to ensure consistent good programming practices across different
modules and systems.

Definite programming errors: These errors are serious coding er-
rors, for example, an attempt to dereference the null pointer. These
rules are also sure that they are flagging real errors. Most of these rules
operate on a fairly small scale, for example, a single expression or op-
eration.

Possible programming errors: Frequently, the system is unable to de-
termine whether a dangerous coding situation is definitely an error;
these situations are flagged as such. For example, a for loop that runs
from 1 to n (instead of 0 to n - 1) might be correct, but it is atypical
enough to flag for further attention. Usability testing has demonstrated
that the flagging of false positives is not a problem for users or the sys-
tem. Because of the high cost of bug correction after code inspection,
even a high ratio of false positives to actual bugs detected is acceptable.

All these situations are flagged differently and are displayed as such
through the user interface.

Human Interface for Comment Preparation
In the process of code inspection, various ICICLE features come to the
fore in different phases. Both comment preparation and the code-in-
spection meeting require support for automated analysis, human pro-
gram understanding, and various secretarial and organizational tasks
such as recording and filing annotations, but the style of system use is
markedly different during the two phases.

The ICICLE human interface was implemented using the XVIEW tool
kit for the X WINDOW system. The functions of X permit easy operation
of applications on remote displays, helping to enable the CSCW inter-
face functions. ICICLE can operate on any display device that runs X as
long as at least one machine can run the X VIEW client or a client with
similar functions.

The human interface has two modalities of operation: comment
preparation and code-inspection meeting. The latter mode subsumes
the functions of the former, with the addition of groupware to auto-
mate the cooperative effort of the meeting. Figure 3 is a screen dump
of the ICICLE human interface in its most basic configuration.

The output of comment preparation is a file that contains all com-

ICICLE 303

ments and annotations made by the human user and ICICLE compo-
nents such as ICE and LINT. This file is used as one of several input to
the code-inspection meeting. Each inspector is required to review the
module individually and prepare separate sets of comments and anno-
tations in separate comment files.

Groupware for Code-Inspection Meeting Support
Figure 4 shows a typical code-inspection meeting situation. During the
code-inspection meeting, active analysis of the module’s source code is
secondary to the discussion of the validity of comments and annota-
tions compiled during the previous comment-preparation phase. Nev-
ertheless, many of the functions required during comment preparation
might be needed during the meeting. ICICLE automates the conduct of
the code-inspection meeting by supporting the various secretarial and
administrative roles assigned to the inspectors during the meeting.

The groupware of the basic ICICLE product requires each inspector to
be present, with a personal workstation or terminal in the same room
for the duration of the meeting (usually about two hours). To accom-
modate the requirements of distributed work groups and also afford
the possibility of using ICICLE for informal code-review sessions, we ex-

304 BROTHERS, SEMBUGAMOORTHY, AND IRGON

Figure 3. ICICLE Human Interface.

plored the use of multiple media (voice, image, and video) in the
groupware interface to permit inspectors to carry out inspections from
their separate offices or across internetworked local area networks be-
tween remote sites. ICICLE groupware obviates the need for paper at the
meeting (although paper listings and documents can still be used as an
auxiliary aid) and greatly enhances the efficiency of code-inspection
meeting procedures by streamlining secretarial and administrative pro-
cedures through computer support.

For further discussion of ICICLE’s groupware and usability testing re-
sults and other human-computer interaction issues, see Brothers, Sem-
bugamoorthy, and Muller (1990).

ICICLE: Development, Maintenance, and Use
In this section, we discuss details of ICICLE’s development, maintenance,
and use.

ICICLE Development
The ICICLE project was started as a research prototype intended to ex-
plore issues of code inspection by means of an intelligent assistant ap-
proach to program understanding. We understood immediately that
many other research prototypes (Harandi and Ning 1990; Johnson

ICICLE 305

Figure 4. A Bellcore Code-Inspection Meeting.

1986; Letovsky and Soloway 1985; Rich and Wills 1990; Harandi 1983)
in the field had encountered scaling problems in dealing with such
large and difficult phases of software development as specification, de-
sign, and implementation (see Sembugamoorthy et al. for more de-
tails). We chose, therefore, to focus initially on the relatively isolated
phase of software engineering known as code inspection, which we felt
existing techniques and hardware could address in real-world situa-
tions. Further impetus for our work was the realization that the ordi-
nary code-inspection process was entirely manual and not computer as-
sisted in any way, so that our efforts would not have to conform to a
rigid set of expectations in our planned user community (nevertheless,
we tried to continue to uphold the principles of the old style of code
inspection where this approach was reasonable).

The project was initiated in response to an internal Bellcore policy
to include code inspection for all new software. We anticipated that
many software developers would be unfamiliar with code inspection
and that given the scale of Bellcore’s software development efforts,
even a slight savings of time or a slight improvement in effectiveness
could save many millions of dollars. Later, positive results from usabili-
ty testing and the joining of our efforts with those of the Bellcore Ad-
vanced Software Environment (BASE) development group continued
to support our work.

Our initial feasibility prototype took approximately 1-1/2 staff-years
for two developers (L. Brothers and V. Sembugamoorthy) to complete.
From the beginning, we had the cooperation of a major Bellcore soft-
ware development group without whose assistance the system could
never have been constructed. Developers from this organization per-
mitted us to observe their manual code inspections and also took part
in usability testing and field trials of various ICICLE prototypes.

Once our experimental prototype had been tested (approximately 2-
1/2 total staff-years, or 1-1/2 calendar-years, of research and develop-
ment from project initiation), it was time to turn ICICLE into a deploy-
able software system. Approximately three more staff-years, or another
year of real time, including the efforts of developers from BASE as well
as our own group (Knowledge-Based Systems Development), led finally
to the development of the ICICLE software system, which has been de-
ployed internally for several months.

At every stage of ICICLE’s development, we followed the principles of
user-centered design, with particular emphasis on usability testing.
Software developers who have used the ICICLE system have reacted al-
most uniformly positive to the introduction of the system despite the
radical changes it brings to the code-inspection process. As the ICICLE

product continues to be used for real code inspections, many changes,

306 BROTHERS, SEMBUGAMOORTHY, AND IRGON

both small and large, are being planned to improve the code-inspec-
tion process.

ICICLE Maintenance
ICICLE is currently being maintained as an internal software system by
BASE. Because every organization has a different set of coding stan-
dards and might or might not approve of certain use rules within the
ICE expert system, ICICLE must be configured slightly differently for
each development group it is deployed for. Fortunately, this configura-
tion is made easy by the alteration of a pair of setup files that define
which rules are to be used and also permit development organizations
to add certain coding standards of their own. An additional issue is the
use by different development organizations of a variety of database lan-
guages such as SQL preprocessors. Another configuration item requires
such preprocessors to be accessible to the ICE analysis scripts so that all
source code can be analyzed to the greatest extent possible.

Current development directions include a transition from ART, a
Lisp-based product, to a C-based shell of comparable power. ICICLE will
also be ported to use the MOTIF3 tool kit and will be extended to cover
additional languages and environments beyond C and UNIX. BASE
treats ICICLE as a component of its general product BASIS, which ad-
dresses all phases of the software development process; every one of
these components will have to be actively maintained by a staff of de-
velopers for the lifetime of the product to support the changing needs
and situations of Bellcore software developers.

ICICLE Use
At present, BASE is still deploying ICICLE to its initial client group.
Once use patterns are analyzed, and requests for maintenance are re-
ceived, BASE will update ICICLE’s components accordingly. As of this
writing, ICICLE has been deployed to several Bellcore development or-
ganizations, covering hundreds of potential and actual users. During
the course of its development, other development groups were invited
to help test the system, and the needs and concerns of different groups
were thereby addressed.

Because many Bellcore development organizations use traditional
dumb terminals connected to minicomputers or mainframes, ICICLE in-
troduction has been slowed by the need to purchase special equipment
(workstations and software licenses). Fortunately, many of these organi-
zations have begun to actively convert their operations to workstation
and PC-based configurations, so we anticipate accelerated deployment
of ICICLE in the near future.

ICICLE 307

Looking Back at ICICLE

Here, we examine the impact of ICICLE on Bellcore and the code-in-
spection process as well as the lessons we learned during its develop-
ment.

Impact of ICICLE

As anticipated, Bellcore’s code-inspection goals were difficult to meet,
partially because of the problems attributed to the old regime of manu-
al inspections. Even modest gains in inspection rates and efficiency
would be major gains for the productivity of Bellcore’s software devel-
opment organization because of the organization’s size.

We characterize the scale of Bellcore’s software development effort
with the following statistics from 1990: Bellcore produced 18.1 million
lines of new or significantly changed code and spent 68,000 hours in-
specting 20 percent of this code manually. Inspections resulted in an
average fault-detection rate of 7 for every 1000 lines of code inspected.
The cost of correcting defects detected during code inspection aver-
aged in the hundreds of dollars. The cost of correcting defects detect-
ed during software use averaged $20,000. The correction of defects
(not found during inspection or testing) cost $65 million in Bellcore
development costs (from a budget of about $400 million), excluding
potentially enormous costs from lost productivity in the user communi-
ty.

Gains from the use of ICICLE fall into the following areas. For each
area, we describe our experience to date:

More inspections done: Surveys of ICICLE users indicate an over-
whelming preference (over 90 percent) for inspections using ICICLE as
opposed to manual inspections. A major barrier to increasing inspec-
tion rates is developers’ distaste for inspections. Comments from users
of ICICLE indicate that it removes many of the most onerous aspects of
inspections. ICICLE is currently used on five major software projects.
The current version of ICICLE processes Kernighan and Ritchie C. In the
near future, versions of ICICLE for ANSI C and C++ will be deployed, mak-
ing further gains in inspection rates possible.

More errors found: We know that ICE detects errors that many devel-
opers are unfamiliar with; we have observed inspectors being surprised
by errors detected by ICE. Because analysis tools such as ICE and LINT

are capable of automatically finding many classes of errors, ICICLE users
are freed to concentrate on more sophisticated and subtle problems,
which they otherwise would not have time to look for. This analysis by
people is further enhanced by the finely tuned human interface de-
scribed earlier. Specific data on additional errors found with ICICLE

308 BROTHERS, SEMBUGAMOORTHY, AND IRGON

have not been obtained to date because tight development schedules
have not allowed for the needed comparative studies. With conserva-
tive assumptions of one additional error found with ICICLE for every
1000 lines inspected and just 5 percent of these errors remaining in de-
ployed code, the use of ICICLE could have saved Bellcore approximately
$3 million for 1990, when only about 20 percent of the code was in-
spected.

Less time taken for inspections: We know that ICICLE saves a lot of
paper shuffling during comment preparation and inspection meetings
and that it eliminates most of the secretarial drudgery and bookkeep-
ing associated with manual inspections. Because our analysis of time
spent in manual code-inspection meetings revealed that a large por-
tion of meeting time was wasted in paper shuffling, we believe that ICI-
CLE can be used to save meeting time. Clearly, however, the discovery of
more errors for every 1000 might have a countervailing effect on this
statistic because more comments will have to be analyzed, discussed,
and resolved. Thus, instead of merely reducing meeting time, ICICLE

might be said to increase the value of meeting time, however much
time is spent.

Impact on the code-inspection process: Following our analysis of ICI-
CLE use (for more detail see Brothers, Sembugamoorthy, and Muller
[1990]), we determined that computerized code inspection can signifi-
cantly alter the nature of the special roles (moderator, reader, and
scribe) assigned for traditional code-inspection meetings. For example,
because the scribe has much less work to do in an ICICLE-moderated in-
spection meeting and because the moderator performs no special
functions within ICICLE, we suggested that these roles be merged. Such
a merger would permit smaller inspection teams, consequently allow-
ing the performance of more inspections or less cost in staff time. If
the size of average inspection teams was reduced from four to three,
and the number of inspections stayed constant, Bellcore could save ap-
proximately $1.5 million in inspection costs.

As discussed previously, ICICLE is intended not merely to improve
metrics such as the number of code inspections and the errors found
but, more importantly, to increase the value of code inspections as
such. As ICICLE permeates our software development organization more
thoroughly, we expect a consensus to emerge among developers about
the value of ICICLE in each of these areas and to obtain better statistics
to demonstrate this success.

Lessons Learned
As a result of our work, we have gained insights into numerous issues

ICICLE 309

regarding the application of AI techniques to problems in software en-
gineering. Following are some of the most significant. Not all these in-
sights are new or original, but inasmuch as other efforts in the field
have sometimes neglected them, we can repeat them here with new
emphasis:

Scalability: Unless research prototypes are designed with eventual
deployment among real user populations for real problems in mind,
they will remain, at best, studies. We were forced to abandon several
promising directions that seemed valuable in prototype form because
of the improper amount of resources they would consume when scaled
to real-world situations. For example, we had hoped to represent a sig-
nificant amount of project-specific knowledge within ICICLE to expand
the reasoning capabilities of ICE and also provide more sophisticated
assistance for program understanding. However, the knowledge-acqui-
sition problem forced us to retreat from the representation of knowl-
edge to the presentation of information in its stead.

Ripeness: In the area of code inspection, we found a phase of the
software development process that was ripe for exploitation. Because it
was entirely manual and at the same time regarded as exceedingly diffi-
cult and onerous, we could introduce radical changes into existing pro-
cedures without social engineering among the target user population,
and we could almost guarantee from project inception that our system
would be received favorably. Even systems that can objectively be
demonstrated to provide performance that is superior to existing sys-
tems might fail if the user population does not perceive the need for
the new systems or if the cost of changing over is too great.

Problem integration: Our system was designed from the start to ad-
dress all major aspects of code inspection, from individual comment
preparation to group code-inspection meetings to form and report
generation. ICICLE would have been much less valuable had it only sup-
ported part of the process, even had this support been even stronger
for this phase than the actual system now provides. We were forced to
integrate multiple technologies to provide a product capable of deal-
ing with the whole problem of code inspection.

Problem isolation: Despite our need to address the whole problem
of code inspection, we were able to avoid having to construct a system
to deal with the manifold other problems of software development in
general. Had our system been required to address other issues in re-
quirements, specification, design, implementation, or maintenance, we
would have been unable to ever deploy a usable system.

Additionally, we learned some less abstract lessons about the specific
systems we developed and deployed:

Human interface: Regardless of the success of the ICE software analy-

310 BROTHERS, SEMBUGAMOORTHY, AND IRGON

sis expert system, the human interface is undoubtedly the most critical
component. An intelligent assistant program, at least in the style of ICI-
CLE, can be rendered worthless by a human interface that makes inter-
action with the program difficult or otherwise provides less than opti-
mal performance. We were frequently forced to alter the human
interface in response to requests by usability testers and based on our
observation of users’ interactions with the system.

ICE: Although our rule-based framework enabled us to quickly write
and modify both simple and powerful rules for error detection, we
eventually found that we had employed this complex pattern-matching
system in a few cases to discover errors that could have been more effi-
ciently found by much simpler systems. In fact, we now use a simple
SED-based4 system to detect certain categories of errors that were un-
necessarily written in a form much more wasteful of resources. We
found that in this case, it was important to trade off simplicity and con-
sistency of approach for efficiency and eventually achieved an order-of-
magnitude increase in performance. Of course, most rules continue to
operate within our expert system shell language, but we have been
forced by concerns for efficiency to constantly reevaluate our choice of
rules and rule formats.

Groupware: Through detailed task analysis, we were able to con-
struct a groupware system based on a limited set of primitive opera-
tions nonetheless capable of supporting all our communications re-
quirements for the code-inspection meeting. Despite its small size and
relative simplicity, the development of the ICICLE groupware took an
unexpected amount of development, testing, and refinement. The in-
teraction of multiple users, combined with the synergetic increase in
the interaction complexity of other ICICLE subsystems operating in a
groupware, made the system unusually hard to develop and test. Never-
theless, we consider this ICICLE component one of the most valuable ICI-
CLE subsystems.

Software tools: We had hoped to directly employ many vendor tools
to either detect errors or assist users with program understanding. Un-
fortunately, we found most such software tools to be either too inflexi-
ble to use for our purposes or too isolated and self-contained to con-
nect to our tool framework. We still plan to adopt more such tools but
have found our choices more limited than we had expected.

Our work on ICICLE has not only been of use in the development of a
system to help users to accomplish a difficult and time-consuming task,
it has also reinforced our beliefs in the basic principles of applied re-
search and exploratory development. Our diligent task analysis, inte-
gration of diverse technologies, and, above all, our commitment to the
philosophy and procedures of user-centered design helped to ensure

ICICLE 311

that our research hypotheses could be developed into a working soft-
ware system capable of dealing with serious problems in the software
development life cycle.

Acknowledgments
We are grateful to Carl Lewis and other members of the Bellcore Provi-
sioning Order Control System Development Department who provided
critical assistance in usability and field testing of various ICICLE versions.
ICICLE could not have been deployed without the work of Reva Leung,
Bob Kayel, and Eric Jung of the Bellcore Advanced Software Environ-
ment Department. The continued encouragement and support of our
own management, namely, Chris Riley, Dave Kessell, and Bob Martin,
was essential to our success.

Notes

1. ICICLE currently runs under UNIX on Sun Microsystems workstations
using the ART expert system shell and the X WINDOW system. The human
interface was built using the XVIEW tool kit.
2. YACC, yet another compiler compiler, is a common UNIX tool.
3. An example is ART-IM.
4. SED, the stream editor, is a commonly available filter language avail-
able on UNIX systems.

References

Ackerman, A. F. 1984. Software Inspections and the Industrial Produc-
tion of Software. In Software Validation, ed. H. L. Hausen. New York: El-
sevier.

Ackerman, A. F.; Buschwald, L. S.; and Lewski, F. H. 1989. Software In-
spections: An Effective Verification Process. IEEE Software. 6(3) (May):
31–36.

Brooks, F. 1987. No Silver Bullet: Essence and Accidents of Software
Engineering. IEEE Computer.

Brooks, F. 1975. The Mythical Man-Month. Reading, Mass.: Addison-Wes-
ley.

Brothers, L.; Sembugamoorthy, V.; and Muller, M. 1990. ICICLE: Group-
ware for Code Inspection. Presented at the Computer Supported Co-

312 BROTHERS, SEMBUGAMOORTHY, AND IRGON

operative Work Conference, Los Angeles, California, October.

Dobbins, J. H. 1987. Inspections as an Up-Front Quality Technique. In
Handbook of Software Quality Assurance, eds. G. G. Schulmeyer and J. J.
McManus, 137–177. New York: Van Nostrand Reinhold.

Fagan, M. E. 1976. Design and Code Inspections to Reduce Errors in
Program Development. IBM Systems Journal 15(3): 182–211.

Gupta, N. K., and Seviora, R. E. 1983. An Expert System Approach to
Real-Time System Debugging. In Proceedings of the First Conference
on Artificial Intelligence Applications, 282–288. Washington, D.C.:
IEEE Computer Society.

Harandi, M. T. 1983. Knowledge-Based Program Debugging: A Heuris-
tic Model. In Proceedings of the 1983 Softfair, 282–288.

Harandi, M. T., and Ning, J. Q. 1990. Knowledge-Based Program Analy-
sis. 2(1) (January): IEEE Software: 74–81.

ohnson, W. L. 1986. Intention-Based Diagnosis of Errors in Novice Programs.
San Mateo, Calif.: Morgan Kaufmann.

Johnson, S. C. 1983. LINT, a C Program Checker. In UNIX Programmer’s
Manual, vol. 2. Murray Hill, N.J.: Bell Labs.

Koenig, A. 1989. C Traps and Pitfalls. Reading, Mass.: Addison-Wesley.

Letovsky, S., and Soloway, E. 1985. Strategies for Documenting Delocal-
ized Plans. In Proceedings of the Conference on Software Mainte-
nance, 144–151. Washington, D.C.: IEEE Computer Society.

Lukey, F. J. 1980. Understanding and Debugging Programs. Internation-
al Journal of Man-Machine Studies: 189–202.

Murray, W. R. 1985. Heuristic and Formal Methods in Automatic Pro-
gram Debugging. In Proceedings of the Ninth International Joint Con-
ference on Artificial Intelligence, 15–19. Menlo Park, Calif.: Interna-
tional Joint Conferences on Artificial Intelligence.

Osterweil, L. J., and Fosdick, L. D. 1976. DAVE: A Validation Error De-
tection and Documentation System for FORTRAN Programs. Software
Practices and Experience 6: 473–486.

Rich, C. 1986. A Formal Representation for Plans in the PROGRAMMER’S
APPRENTICE. In Readings in Artificial Intelligence and Software Engineering,
eds. C Rich and R. C. Waters. San Mateo, Calif.: Morgan Kaufmann.

Rich, C., and Wills, L. M. 1990. Recognizing a Program Design: A
Graph Parsing Approach. IEEE Software. 7(1) (January): 82–89.

Russell, G. W. 1991. Experience with Inspection in Ultralarge-Scale De-
velopments. IEEE Software: 25–31.

Sembugamoorthy, Y., and Brothers, L. 1990. ICICLE: Intelligent Code In-

ICICLE 313

spection in a C-Language Environment. Presented at the Computer Sci-
ence and Applications (COMPSAC) Conference.

Wills, L. M. 1990. Automated Program Recognition: A Feasibility
Demonstration. Artificial Intelligence 45:113–172.

When the Public Network Dies. 1991. Networking Management: 31–35.

314 BROTHERS, SEMBUGAMOORTHY, AND IRGON

