
Automatic Programming for
Sequence Control
Hiroyuki Mizutani, Yasuko Nakayama, Satoshi Ito, Yasuo Namio-
ka, and Takayuki Matsudaira, Toshiba Corporation

Industrial plants are controlled using sequence control programs run-
ning on programmable controllers. Sequence control program design
has been carried out manually, and an increase in applications of pro-
grammable controllers has caused a shortage of programmers. There-
fore, automatic programming systems are strongly required in this
field.

Controllers receive operation signals from plant operators and cur-
rent plant states through sensors, then select actions that have to be ex-
ecuted. Sequence control programs consist of a large amount of con-
trol logic (about 100K program steps) for such decisions. The
following problems were found in previous manual designs of se-
quence control programs:

First, control logic is often omitted.
Second, programs might include some mutual contradictions.
Third, information that is necessary to complete one program step is

distributed in several different kinds of specification document. It costs
too much time for program designers to understand specifications.

Fourth, alteration of control specifications often occurs, resulting in
a wide range of program modifications.

The purpose of the automatic programming system (CAD-PC/AI) de-

From: IAAI-92 Proceedings. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

scribed in this chapter is to reduce these difficulties to increase pro-
ductivity and improve the quality of sequence control program design.
Moreover, it aims to facilitate a systematic accumulation of design
knowledge.

There are two kinds of design knowledge used in generating se-
quence control programs: One is knowledge about the environment in
which the programs work. The other is the specific programming
knowledge for plant control.

We found through an analysis of designers’ behavior that knowledge
about the environment (that is, plant) plays an essential role through-
out the entire life cycle of software development: requirement analysis,
specification validation, implementation, testing, and maintenance.
This knowledge constitutes a model of the plant that is to be con-
trolled and leads us to propose a model-based automatic programming
paradigm. Under this paradigm, the plant model supports every task in
the software life cycle.

The second significant kind of knowledge is for refining specifica-
tions to target program codes. It appears that two kinds of program-
ming knowledge are involved: One is to find reusable program parts
suitable to given specifications. The other is to select a program skele-
ton and refine it in a stepwise fashion, according to the specifications,
into concrete programs when program parts cannot be reused.

We chose the knowledge-based approach to develop CAD-PC/AI. The
significant innovations are as follows:

First, it is one of the first knowledge-based systems in the plant con-
trol program design domain in which knowledge about the environ-
ment, as well as programming knowledge, is crucial.

Second, it demonstrates a new technology for making a knowledge
base widely applicable, that is, the generic-specific modeling technique
and model transformation discussed later.

Problem and Approach
A plant system includes operators, operation devices, programmable
controllers, plant machines, actuators, sensors, and products, as shown
in figure 1.

Control programs in conventional problem-oriented languages (for
example, LADDER DIAGRAM) are written at the signal level—input-output
(I-O) signals of programmable controllers—as shown in figure 2.

Because these programs have become increasingly complex to
implement, they are still being manually designed; as a result, the
process has begun to suffer from several of the problems that were

316 MIZUTANI, ET AL.

previously mentioned.
At the first stage of automatic programming system development, we

established the software life cycle that we describe here. It was set up
similar to conventional design processes so that designers would be
able to easily transfer to the new system and maintain it. Because of
this policy, it was necessary to simulate designers’ conventional think-
ing on the computer system. Therefore, AI techniques were considered
promising.

Previously, automatic programming research was based on the theo-
rem-proving approach (Manna and Waldinger 1980), the program-
transformation approach (Fickas 1985; Darington 1981; Green and
Westfold 1982), and the knowledge-based approach (Barstow 1985;
Lubars and Harandi 1987; Smith, Kotik, and Westfold 1985; Neighbors
1984). We selected the knowledge-based approach, where an informal
high-level specification would be attainable, and prototyping would be
easy; moreover, a conventional program-parts database could be used.

AUTOMATIC PROGRAMMING FOR SEQUENCE CONTROL 317

Figure 1. Conceptual Block Diagram for Plants.

Figure 2. Example of Control Programs Written in LADDER DIAGRAM.

Requirement Analysis Phase
Requirement analysis means deriving detailed specifications from brief
requirements given in terms of the structure and operation of the
plant. There are two aspects to requirement specification: One is ma-
chine specification (figure 3), which gives a static description of the plant
in terms of actuators, sensors, operation devices, interlocks, and so on.
The other is control specification (figure 4), which sets out the operations
that the plant is required to perform.

In figure 4, a box represents an action, and a horizontal bar repre-
sents a transition. We set composite-action–level specifications as infor-
mal high-level specifications. Composite action is an abstract description
of possible machine actions or states that can be broken down into
some set of serial or parallel primitive actions or states. Detailed specifi-
cations, such as speed and subsidiary actions, are not described at this
level. For example, “move forward” can later be broken down into
“move forward at low speed until some conditions become true, and
then move forward at high speed.” This high-level specification brings
control design closer to the designers’ conceptual level, making design
more natural.

In the new automatic programming system, a generic model con-
structs a specific model by interpreting machine specifications. These
models are discussed later. The generic model determines a structural
representation using the general knowledge of the functional structure
of such plants. At the same time, it derives the detailed machine behav-
ior using the general knowledge about machine operations and trans-
lates incomplete and ambiguous control specifications into detailed
specifications.

Specification Validation Phase
The conventional testing method is based on a comparison of the actual
behavior of the programs with the user’s intent. It is carried out using a
special-purpose plant simulator after implementation is complete. If mis-
matches are detected, the implemented programs must be modified.

318 MIZUTANI, ET AL.

Figure 3. Example of Machine Specification.

In the new system, the plant model supports specification validation.
A symbolic simulation is performed using the detailed machine behav-
ior, as represented by transitional relations between machine actions
and states in the specific model.

Implementation Phase
Implementation is carried out by selecting suitable program parts and
modifying them according to the specifications. Sequences that cannot
be covered by program parts are refined using the program pattern in
a stepwise fashion to create detailed programs. The specific model pro-
vides the knowledge necessary for these refining processes.

Maintenance Phase
Maintenance should be implemented by modifying the specifications
and reimplementing them by replaying the development.

The plant must satisfy two requirements:
Task independent: The model must support the entire design pro-

cess previously mentioned. There are different kinds of tasks in the de-
sign process. General-purpose modeling techniques must be developed
to support every task. The knowledge-compilation technique (Chan-
drasekaran and Mittal 1983; Araya and Mittal 1987; Brown and Sloan
1987; Keller et al. 1989) was suggested based on a similar idea. Knowl-
edge compilers facilitate knowledge reuse, and the same knowledge
can be used for more than one purpose.

AUTOMATIC PROGRAMMING FOR SEQUENCE CONTROL 319

Figure 4. Example of Control Specification.

Application independent: The model must support general automat-
ic programming for plant control. A common problem exists in con-
ventional domain-specific expert systems: The knowledge base must be
revised for each application because most of these systems rely on a
large amount of ad hoc knowledge. To overcome this problem, model-
ing techniques must be developed that support every application in a
specific domain, such as plant control.

System Description
Under this paradigm, we built the automatic programming system
(Ono et al. 1988; Nakayama et al. 1990; Mizutani et al. 1991), as shown
in figure 5. It works on the AS4000 workstation. We developed and used
a knowledge description language in Lisp. It has facilities for frame
representation, rule representation, and object-oriented programming.
Program parts are stored in a relational database (RDB), and the
knowledge description language has an SQL interface. Designers input
specifications through a dedicated editor.

Model-Based Approach
We propose the modeling techniques that are outlined in the following
subsections.

320 MIZUTANI, ET AL.

Figure 5. CAD-PC/AI Flow Diagram.

Generic and Specific Models
The plant model is composed of two parts: One is a generic model that
contains knowledge used by system designers in the requirement analy-
sis phase of control systems for a particular class of plants. It includes
the functional structure of such installations, types of machine behav-
ior, and expertise about plant control. The generic model is construct-
ed by collecting the practical knowledge of experts and generalizing it.
The same model is applicable to all plants of the same type; for exam-
ple, the generic model of a steel plant is used for a hot-strip mill, a tan-
dem cold mill, a processing line, and so on.

The other part is a specific model that contains knowledge used in
the specification validation and implementation phases. This knowl-
edge includes the structure, machine behavior, and constraints of a sin-
gle target plant. This specific model is derived from the generic model
according to the specifications of the target plant.

Extended Semantic Network
The generic model is represented in an extended semantic network
that contains conditional relations in addition to the conventional se-
mantic network. The conditional relations are associated with certain
conditions. When the conditions are valid with regard to the specifica-
tions, the relation is reflected in the specific model. This representa-
tion makes the model flexibly accessible.

Furthermore, it has an object-oriented facility. The model-derivation
procedures, mentioned previously, are represented as methods. Condi-
tional relations in the generic model are instances of classes and, as
such, are able to inherit the methods. As a result, appropriate specific
models are built by interpreting the generic model with regard to the
user-defined specifications of the target plant.

Model Transformation: The Design Process
The design process was considered as an iterative model transforma-
tion from abstract level to detailed description. In Gero (1990), a de-
sign prototype is a conceptual schema for representing a class of general-
ized functions, structures, behaviors, and relationships that are derived
from alike design cases. In addition, routine design is viewed as a de-
sign prototype instance refinement.

The sequence control program design described in this chapter is a
routine design, and the generic model can be considered one of the
design prototypes. Figure 6 shows the model transformation in CAD-
PC/AI. The refinement in the transformation is guided by input specifi-
cations. The generic model represents general knowledge about plant

AUTOMATIC PROGRAMMING FOR SEQUENCE CONTROL 321

functions, structures, behaviors, and relationships as well as expertise
about plant control. The general knowledge is independent of the in-
dividual target plant. Interpreting a machine specification, CAD-PC/AI

understands how the structure, represented in the generic model, is
implemented in a target plant. In other words, the functions, struc-
tures, and behaviors become associated with target plant machines in
the specific model 1 in figure 6, so that expertise about plant control
becomes applicable to the target plant.

322 MIZUTANI, ET AL.

Figure 6. Model Transformation and Refinement in CAD-PC/AI.

In the next step, specific model 1 is transformed into specific model
2 along a high-level control specification, that is, a composite-
action–level specification. Detailed machine behaviors, as represented
by transitional relations between machine actions and states, are speci-

AUTOMATIC PROGRAMMING FOR SEQUENCE CONTROL 323

Figure 7. The Plant Model.

fied and stored in specific model 2. They are further refined to the
program model (intermediate representation) using programming
knowledge and program parts.

Designers validate specific model 1 with views of a simulation and a
detailed specification format. If the transitional relations between ma-
chine actions and states are not just as the designers intended, higher-
level specifications are modified.

Plant Model
Figure 7 illustrates a portion of the model of a steel plant. The generic
model contains general knowledge concerning the class of a plant.
SteelPlant is shown as the composition of two machines, Carrier and
Uncoiler. Forward is one of several possible actions of Carrier. The re-
lation Qualify specifies the possible control speed for Forward, which
can be executed at either LowSpeed or HighSpeed. BackwardLimit,
MiddlePoint, and ForwardLimit are possible states of Carrier, with
After specifying transitional relations conditioned by Forward. For ex-
ample, a partial description of the class Forward is as follows:

[Forward
SUPER: MachineAction
OPPOSITE: Backward
ACTION-OF: Carrier
CONDITION-OF: After1, After 2, After 3
Qualified-by 1: LowSpeed
Qualified-by 2: HighSpeed
method: […]

] .

Qualify, After, and Has-condition are conditional relations. They are
defined as a class in terms of domain primitives, and they have condi-
tions and methods for constructing specific models. Qualify1 is one of
the instances of the conditional relation Qualify. Qualify and Qualify1
are as follows:

[Qualify
SUPER: Relation
ORIGIN: MachineAction
DESTINATION: MachineAction
Has-condition: Relation
method: […]

];

324 MIZUTANI, ET AL.

[Qualify1
INSTANCE-OF: Qualify
ORIGIN: LowSpeed
DESTINATION: Forward
Has-condition1: After1
Has-condition2: After3

] .
Qualify1 is related to After1 and After3 by the conditional relations Has-

condition1 and Has-condition2. Has-condition1 has the condition Load-
ed, and if Loaded is true, Has-condition1 is actual. Has-condition2 has the
condition AccuracyRequired, and if AccuracyRequired is true, Has-condi-
tion2 is actual. Thus, when a carrier is loaded at the beginning of an ac-
tion, or accuracy is required at the end of an action, it must be driven at
low speed. Loaded and AccuracyRequired are condition frames that have
methods to infer the actual states of the target plant. Thus, the generic
model has general knowledge that is independent of the target plant.

The specific model consists of two consecutive models. The first spe-
cific model (Specific model 1 in figure 6) contains concrete descrip-
tions of the target plant structure. After the environment of the target
plant is specified, the specific model is constructed and is referred to
in all subsequent phases of the software life cycle. The basic struc-
ture—for example, the physical construction, control relations, and in-
terlocks—is generated by interpreting machine specifications using a
dictionary that contains the basic vocabulary of plant control. The ma-
chine Conveyor is an instance of Carrier, and UncoilerClamp is an in-
stance of MaterialFastener. The machine Conveyor has the action Con-
veyorForward driven by the actuator Sve01. The states
ConveyorBackwardLimit, ConveyorPoint1, and so on, are detected by
the sensors Nle01, Nle02, and so on. A partial description of Conveyor-
Forward is as follows:

[ConveyorForward
INSTANCE-OF: Forward
ACTION-OF: Conveyor
ACTUATED-BY: Sve01
HAS-SUB-ACTIONS: ConveyorForwardLow

ConveyorForwardHigh
START-INTERLOCK: UncoilerStop
RUN-INTERLOCK: (AND ConveyorLowerLimit

(OR (NOT ConveyorCoil Touch)
(AND ConveyorCoil Touch

Uncoilerclamp CloseLimit)))
MUTUAL-INTERLOCK:ConveyorBackward

] .

AUTOMATIC PROGRAMMING FOR SEQUENCE CONTROL 325

The second specific model (specific model 2 in figure 6) contains a
transitional relationship between actions and states of machines in the
target plant. Relations between actions and states are constructed by in-
terpreting and refining a control specification using a dictionary and
expertise about plant control. ConveyorForwardLow and ConveyorFor-
wardHigh are concrete actions of Conveyor. The relations cause and
enable specify the transitional relationship between actions and states
of Conveyor. The cause links an action to a state. It specifies that the
execution of a specified action results in a specified state. The enable
links a state to an action. It specifies that a specified state enables a
specified action.

Specification Validation
The symbolic simulation (Fox 1987; Reddy and Fox 1986) enables de-
signers to validate specifications by testing for errors or omissions. The
description of the machine action, the machine state, and the transi-
tional relations between them in the specific model represent the de-
tailed machine behavior of the target plant. The system simulates an
expected machine behavior by tracing these transitional relations, that
is, cause and enable relations.

Stepwise Refinement
The action-level specifications are refined into programs by referring
to programming knowledge. The programming knowledge is imple-
mented in an object-oriented style of programming, with objects repre-
senting a particular piece of programming knowledge. The program-
ming knowledge for a machine operation sequence is:

[MachineOperation
SUPER: ProgrammingKnowledge
PATTERN: (BETWEEN

StartOrderAcceptance
< StopSensor
: (AND RunInterlock

MutualInterlock))
-> (ON MachineOperation)

] .

It has a program pattern that means “in a period between accepting
a start order and detecting a stop sensor, provided the interlock condi-

326 MIZUTANI, ET AL.

tions hold, output an on signal to the actuator that drives the target
machine.” The object sends a message to lower-level objects that pos-
sess their own programming knowledge (StartOrderAcceptance,
StopSensor, RunInterlock, and MutualInterlock) until an intermediate
representation is obtained. The intermediate representation of a part
of a program is as follows:

[ConveyorForward
(BETWEEN (AND StartOrder UncoilerStop) ; StartOrderAcceptance

< ConveyorForwardLimit ; StopSensor
: (AND(AND ConveyorLowerLimit

(OR (NOT ConveyorCoilTouch)
(AND ConveyorCoilTouch

UncoilerclampCloseLimit))) ; RunInterlock
(NOT ConveyorBackward)) ; MutualInterlock

)
-> (ON ConveyorForward)

] .

Each element is replaced by controller I-O signals, and finally, the
fragment is converted to a target LADDER DIAGRAM and SEQUENTIAL FUNC-
TION CHART, established languages for writing control programs.

Part-Retrieval Method

Program parts are retrieved by keys that consist of the operation device
type, the machine type, the actuator type, and the sensor type. The re-
trieval function is implemented by the production system, which uses
rules in the programming knowledge base. Retrieved parts are cus-
tomized in accordance with the combination of operation devices and
the number of actuators.

Program parts are designed to be as small as possible, basically so
that they can be widely applicable. Furthermore, macrodescriptions
are provided in the program parts to enhance their flexibility.

Programmable controller languages usually use static storage alloca-
tion, and most of their variables are global. Variables in different re-
trieved program parts are required to be appropriately identified. This
automatic programming system attaches attributes, such as machine
names and operation names, to each newly created variable for main-
taining identity.

AUTOMATIC PROGRAMMING FOR SEQUENCE CONTROL 327

Discussion
CAD-PC/AI has been in practical use since October 1990 in the sequence
control program design divisions in the Toshiba Corporation. Pro-
grammable controllers are being applied to a wider range of work, and
their functions are being upgraded and diversified. Thus, a design sup-
port system was strongly required in these divisions. During the first
stage of development, we decided that the design processes using CAD-
PC/AI should be close to the conventional ones. The sequence control
program design process was considerably analyzed, and the life cycle
discussed previously was established. We then decided what activities in
the life cycle could be supported by AI technology. This policy was one
reason that the system was deployed smoothly.

We used CAD-PC/AI to generate sequence control programs for steel
plants as follows:

Wire and rod mill plant 2.5K program steps
Continuous pickling line 6.5K program steps
Continuous galvanization line 90K program steps
Continuous galvanization line 15K program steps

The first case was for validating the CAD-PC/AI prototype. The quality
of generated programs was compared with those designed manually.
Some problems were found with the knowledge bases, the lack of pro-
gram parts, and the inconvenient human interface. After these prob-
lems were altered, three practical jobs were implemented using CAD-
PC/AI. The generated programs are now running in a real plant control
situation in Japan. For example, the third case breaks down as follows:

System size
Number of frames 2900 frames
Number of program parts 190 parts
Number of part-retrieval rules 320 rules

Specification
Number of records (machine specifications) 17K records
Number of steps (control specifications) 5.5K steps

Target program
Target plant Continuous galvanization line
Programmable controller PCS-5000 (4 sets)
Program size 90K steps

It would have taken about 100 person-months to complete the target
program using the conventional technique. The total cost for software

328 MIZUTANI, ET AL.

development, including specifications and testing, was reduced by half
using this system. The generated program was checked by both design
experts and a plant simulator. The achieved quality was satisfactory.
The reasons for these advantages are as follows:

First, the plant model enables designers to easily describe machine
actions and states for specifying control programs.

Second, the plant model supports specification validation by explain-
ing the expected machine behavior represented in the specific model,
helping the designers notice mistakes in earlier design stages.

Third, maintenance activity much more closely parallels the original
development. In this domain, plant operations are sometimes
changed, which, in turn, affects the control program specifications.
When machine specifications are altered, the specific model is con-
structed again. When control specifications are altered, the resulting
programs are regenerated by replaying the development process.
Thus, maintenance is performed by altering the specifications and re-
peating the original development process, not by patching programs.

The generic model represents general knowledge about a class of
plants, and it can be used for several different applications. A single
generic model was shared between the last three applications. This ap-
plicability is important for widespread use of the system.

CAD-PC/AI doubled design productivity. It took about 20 person-years
to develop CAD-PC/AI: 3 person-years by the experts, 10 person-years by
the system engineers, and 7 person-years by researchers. At the first
stage of the development, three researchers were apprenticed to a de-
sign division for a few months to learn the design skill by themselves. It
helped these researchers to communicate with the experts throughout
CAD-PC/AI research and development.

The system made the quality of programs generated by the experts
and others relatively uniform. However, it cannot be said that a system-
atic accumulation of design knowledge was accomplished because only
the original developers can maintain the knowledge bases consistently.
Maintenance has been continued by the original developers (re-
searchers and system engineers) in accordance with the designers’ re-
quirements. Enabling designers to easily extend knowledge bases is the
basis for further work.

References
Araya, A., and Mittal, S. 1987. Compiling Design Plans from Descrip-
tions of Artifacts and Problem-Solving Heuristics. In Proceedings of the
Tenth International Joint Conference on Artificial Intelligence,

AUTOMATIC PROGRAMMING FOR SEQUENCE CONTROL 329

552–558. Menlo Park, Calif.: International Joint Conferences on Artifi-
cial Intelligence.

Barstow, D. R. 1985. Domain-Specific Automatic Programming. IEEE
Transactions on Software Engineering SE-11(11): 1321–1336.

Brown, D. C., and Sloan, W. N. 1987. Compilation of Design Knowl-
edge for Routine Design Expert Systems: An Initial View. In Proceed-
ings of the ASME International Computers in Engineering Confer-
ence, 131–136. Fairfield, N.J.: American Society of Mechanical
Engineers.

Chandrasekaran, B., and Mittal, S. 1983. Deep Versus Compiled Knowl-
edge Approaches to Diagnostic Problem Solving. International Journal
of Man-Machine Studies 19:425–436.

Darington, J. 1981. An Experimental Program Transformation and Syn-
thesis System. Artificial Intelligence 16:1–46.

Fickas, S. F. 1985. Automating the Transformational Development of
Software. IEEE Transactions on Software Engineering SE-11(11):
1268–1277.

Fox, M. S. 1987. Constraint-Directed Search: A Case Study of Job-Shop
Scheduling. San Mateo, Calif.: Morgan Kaufmann.

Gero, J. S. 1990. Design Prototypes: A Knowledge Representation
Schema for Design. AI Magazine 11(4): 26–36.

Green, C., and Westfold, S. J. 1982. Knowledge-Based Programming
Self-Applied. Machine Intelligence 10.

Keller, R. M.; Baudin, C.; Iwasaki, Y.; Nayak, P.; and Tanaka, K. 1989.
Compiling Special-Purpose Rules from General-Purpose Device Mod-
els, Technical Report, KSL-89-49, Knowledge Systems Laboratory, Dept.
of Computer Science, Stanford Univ.

Lubars, M. D., and Harandi, M. T. 1987. Knowledge-Based Software De-
sign Using Design Schemas. In Proceedings of the International Con-
ference on Software Engineering, 253—262. Los Alamitos, Calif.: IEEE
Computer Society.

Manna, Z., and Waldinger, R. 1980. A Deductive Approach to Program
Synthesis. ACM Transactions on Programming Languages and Systems 2(1):
90–121.

Mizutani, H.; Nakayama, Y.; Sadashige, K.; and Matsudaira, T. 1991. A
Knowledge Representation for Model-Based High-Level Specification.
In Proceedings of the IEEE Conference on Artificial Intelligence Ap-
plications, 124–128. Los Alamitos, Calif.: IEEE Computer Society.

Nakayama, Y.; Mizutani, H.; Sadashige, K.; and Matsudaira, T. 1990.

330 MIZUTANI, ET AL.

Model-Based Automatic Programming for Plant Control. In Proceed-
ings of the IEEE Conference on Artificial Intelligence Applications,
281–287. Los Alamitos, Calif.: IEEE Computer Society.

Neighbors, J. M. 1984. The Draco Approach to Constructing Software
from Reusable Components. IEEE Transactions on Software Engineering
SE-10(5): 564–574.

Ono, Y.; Tanimoto, I.; Matsudaira, T.; and Takeuchi, Y. 1988. Artificial
Intelligence–Based Programmable Controller Software Designing. In
IEEE AI’88 Proceedings of the International Workshop on AI for In-
dustrial Applications, 85–90. Los Alamitos, Calif.: IEEE Computer Soci-
ety.

Ramana-Reddy, Y. V., and Fox, M. S. 1986. The Knowledge-Based Simu-
lation System. IEEE Software 3(2): 26–37.

Smith, D. R.; Kotik, G. B.; and Westfold, S. J. 1985. Research on Knowl-
edge-Based Software Environments at Kestrel Institute. IEEE Transac-
tions on Software Engineering SE-11(11): 1278–1295.

AUTOMATIC PROGRAMMING FOR SEQUENCE CONTROL 331

