
Quality and Knowledge in Software Engineering

Mr. Stu Burton Mr. Kent Swanson

Celite Corporation Andersen Consulting
2500 Miguelito Canyon Road 717-17th Street Suite 1900
Lompoc, California 93436 Denver, Colorado 80202

Ms. Lisa Leonard

Andersen Consulting
100 S. Wacker Drive
Chicago, Illinois 60606

Abstract
Celite Corporation and Andersen Consulting have
developed an advanced approach to traditional software
development entitled the Application Software Factory
(ASF). The approach is an integration of technology and
Total Quality Management techniques which includes the
use of an expert system to guide module design and
perform module programming. The expert system
component is called the Knowledge Based Design
Assistant (KBDA) and its inclusion in the Application
Software Factory Methodology has significantly reduced
module development time, training time, and module and
communication errors.

Introduction
The Application Software Factory was initialed jointly by
Celite, a worldwide mining and process manufacturing
company, and Andersen Consulting. Their goal was to
increase development productivity and improve software
quality through reengineering of the software
development process and the selective application of
automation. The ASF was developed using Total Quality
Management concepts that stressed improving the design
and overall programming process, which would result in
higher quality finished modules.

After applying process simplifications techniques to
software engineering, the tasks that remained were still
complex and knowledge intensive. The simplified
strategy was inhibited by the lack of experience and
detailed understanding needed to take advantage of it.
Teaching people how to effectively and efficiently
develop systems using the new approach required a great
deal of training, documentation, and support. After the
first two application systems were developed using the
ASF, a knowledge based system was created to capture
development expertise and eliminate the majority of the
training and documentation. While first created as a tool
of the ASF, the Knowledge Based Design Assistant
(KBDA) quickly became a critical enabling component of
the entire approach.

Background
The ASF approach is based on utilizing reusable code,
the consistent application of standards, structured
database design and abstraction, and detailed project
coordination. It is intended to build large, integrated
custom applications with enterprise wide databases.
Necessary application features are bundled in reusable
modules, called shells, that are used to develop the
application system. Each shell encompasses all the
functionality and variability available for a type of
processing. There are shells for scrolling data display,
single screen data display, scrolling table maintenance,
single screen table maintenance, and background process
initiation. All the features provided by a shell may not
work together, some are required to be used together, and
each needs specific application information under
different circumstances.

Analysts specify high level module functional
requirements in a one or two page Functional
Specification document. This document includes
information about functional requirements, tables
accessed, access methods, elements accessed, and
element behavior, All information is conveyed in high
level, functional requirement terms. Each term or set of
terms implies a set of lower level actions. When analysts
did not have the KBDA, they were responsible for
specifying the requirements correctly and consistently
using these terms.

Before the KBDA was available, programmers had to
interpret the functional requirements and translate them
into parameters. Each parameter is derived from one or
more pieces of technical information and the functional
requirements. Technical information may be whether an
element is a primary key on a table and whether that
table is part of the SQL join. Functional requirements
include where an element appears on the screen, whether
it has a default value and what function it performs. The
parameters specify the necessary piece or pieces of code
within the shell. Specific module and database
information attached to the parameters customize the

Burton 3

From: IAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved.

code to work with other chosen pieces of code. The
parameters and their respective data are applied to the
shell with a set of edit subroutines in a specific order to
produce the desired custom module.

All chosen pieces of shell code, must be configured
correctly to work with other chosen pieces of code. The
features and their correspondent code are highly
interrelated. For example there are three options for
querying the database with information passed in a
conversation control record (CCR) between modules in a
conversation. One option is to query the database only if
certain data exists in the CCR. This is only available if
the data passed in the CCR is for a primary key on a table
in the query that is being used in a certain manner. If
this option is chosen, additional shell code is needed to
determine if a value exists in the CCR. The KBDA
chooses the correct syntax for the code as it varies by
element type such as alphanumeric, numeric, and date.

In order to correctly relay module functionality without
a KBDA, analysts and programmers are required to have
a complete understanding of:

l Shell functionality and organization
l Shell rules and constraints
l Functional Requirement language
l Architecture constraints
l Project standards

Before development of the first ASF application
systems, all ASF processes were thoroughly documented
and training was conducted on application of the shells,
programming approach, and standards. The
documentation evolved into a four inch thick blue binder
filled with shell descriptions, standards, development
procedures, and validation rules. Known as the
Bluebook, it was an essential reference source for every
developer on the team, but it could not enforce the
standards and rules it contained.

In early 199 1, the ASF was used to develop a quality
control (QC) application for Celite and a warranty
tracking system for Celite’s parent company. These
systems were robust, production applications. The QC
system was comprised of sixty modules and
approximately 250,000 lines of COBOL code; the
warranty system contained fifty modules totaling
approximately 210,000 lines of COBOL code. While the
implementation of these systems using the ASF showed
increased productivity over traditional development
techniques, several opportunities for improvement were
apparent.

Business Challenge
The difficulties encountered in using the ASF in the QC
and warranty tracking systems can be categorized as
follows:

l Different interpretations and
misunderstanding of shell functionality

l Incomplete, invalid and misinterpreted
Functional Specifications

l Disregard for shell limitations
l Ignored or misapplied project standards
l Complex and confusing customization

rules and procedures

It was challenging and time consuming to
communicate common shell and Functional Specification
definitions to all the team members. Since analysts often
did not realize the functional implications of their
requests, they often did not recognize an error until
programming was complete. Even though the shells and
Functional Specifications were standardized, precise, and
very well documented, programmers complained that the
analysts’ compliance to the specification standards varied
greatly in detail and accuracy. Programmers needed
many informal sessions with the analysts to clarify
specific points about the action of a module.

Analysts also had a tendency to ignore the limitations
of the shells and request combinations of functions that
could not be implemented. The programmers did not
always recognize these as inappropriate requests and
would either spend time trying to accommodate the
feature, or would incorporate them incorrectly in the
module.

The application of standards is crucial in the ASF to
provide a consistent look and feel in the final product.
Even within a small team, however, it was difficult to
communicate and control the use of screen and
programming standards. Disregard for the standards and
human error required the analysts to review completed
modules in detail to ensure standards were followed.

Finally, the programmers were often confused about
the parameters and procedures needed to customize a
module . While fully documented, the instructions for
how and when to use the parameters and edit subroutines
were confusing and very complex when used in
combination with one another. New programmers
needed extensive training, and even more experienced
programmers could not apply complex combinations of
edit subroutines without help from the shell developers.

Despite the difficulties, the overall improvements in
development time and quality of the final product
demonstrated the benefits of using the ASF. One of the

4 IAAI

key concepts of the ASF philosophy, however, is constant
improvement of the process. In this light, the team was
challenged to find a way to automate the complex, high
level decision making tasks that were causing errors in
the first implementations. They needed to create an
“expert analyst” which understood the correct
interpretation of the shells, remained within the shell
constraints when specifying a module, consistently
applied standards, and could correctly apply the complex
parameters and edit subroutines.

Decision to use Artificial Intelligence
In response to these business challenges, the team
decided to implement a Knowledge Based System (KBS).

approach was a good fit for the following

The decision processes are complex,
highly interrelated, and difficult to
express in procedural code.
A wide variety of volatile data needs to
be considered in the decision process.
The ASF constraints, standards,
parameter selection, and use of edit
subroutines are rule-based in nature.
A descriptive repository of shell
knowledge is desirable.
The application needed to be developed
very quickly.

A procedural code and database solution were
considered and rejected because the problem was too
complex and volatile. Designing a database to account
for all the possible variations would be time consuming
and difficult to maintain. Procedural code would quickly
become far too complex. KBS tools simplified the
problem by:

Providing a rich and flexible data
representation environment,
Allowing for autonomous rule
declaration, and
Providing an integrated development
and deployment environment.

The KBS learning curve was not a consideration since
there were people with KBS skills on the ASF team.

Development and Deployment
The KBS solution, called the Knowledge Based Design
Assistant, was implemented during the design and
installation of a third ASF application. The application

being developed was a distribution system at Celite
consisting of production reporting. inventory control,
warehousing, customer service, order entry, traffic,
shipping, and billing functions. It was estimated to
contain approximately 2 million lines of COBOL source
code.

Inference’s expert system shell ART-IM (PC-DOS
version) was chosen to develop the Knowledge Based
Design Assistant. It best met the following selection
criteria identified by the team:

1. The shell must be rule based and
provide strong reasoning capabilities
such as conflict resolution strategies.

2. The shell must provide declarative
representation capabilities. supporting
objects as well as facts.

3. The shell must support portability
between the PC-DOS and VAXNMS
environments to facilitate direct
integration with the Rdb table
definitions in the future.

4. The shell must supply a simple
graphical user interface devcIopment
tool to eliminate the need to integrate
with a separate graphical user interface
package.

5. The tool vendor must be flexible
enough to allow the developers to
experiment with the application before
they make a monetary commitment.
(Some of the project team had to be
convinced of a Knowledge Based
System’s applicability and the
feasibility given the short time frame.)

The Celite distribution system dictated the architecture
under which the ASF and KBDA were developed. Its
components were:

Digital Equipment Corporation’s
(DEC) VAX hardware
DEC’s relational database Rdb
Andersen Consulting’s CASE toolset,
FOUNDATION, which includes the
PC-based design tool, DESIGN/l, and
the development and run-time
architecture INSTALL/l for the VAX
DEC’s EVE TPU edit subroutines

The KBDA interfaced directly with DESIGN/l and
created instructions and parameters for the edit
subroutines. These were ported to the VAX for

Burton 5

Application Software Factory
Architecture

PC-DOS Workstation VAX 4300 Mini

c= arameters
ustomizir

Complete
pecificatio s ,-:’

I

e. Inference
Engine 4 Design

Document
I Extractor

I I

Design/l
Repositoq

00 00

INSTALL/l

ASF
Shells

/
I

Repository
I

+ Custom
Modules

f-(+
4

End
Users

Figure 1. ASF architecture.

6 IAAI

Customer Order Lines
I vvvu Fields

by Ship Date and Product

0
Ship-to AC= ABCALCA Prom Shp Date>= 02/M/92 lnvt Pkg-Product: GRADE 6

PromShp Order Ordr Inventory Ordered Line
Date Num Line Pkg-Product Quantity stat

--

02/18/92 54009 001 GRADE 6 A4 420 S _
02/18/92 54009 002 GRADE 6 REG 420 S _
03/01/92 57211 001 GRADE 6 A4 840 0 _
04/15/92 63220 001 GRADE 6 TT 840 0 _

--

Figure 2. Example inquiry application screen.

application against the shells within INSTALL/l. (See
Figure 1).

To prove the feasibility and benefits of a Knowledge
Based System for this application, a pilot system for the
inquiry shell was designed and implemented by one
developer in two weeks. The productivity gains and
applicability were immediately apparent. In the QC
system, Functional Specification design for the inquiry
modules was completed in approximately four hours and
programming required an additional eight hours. The
same module, using the KBDA, was designed in
approximately forty-five minutes and programmed in
four hours.

The estimated time to incorporate the remaining shells
in the KBDA was approximately 700 hours. It was
mandatory that this time be recovered in time savings
from the elite distribution system. The distribution
system had over four hundred application modules
remaining, with completion estimates of twelve to forty
hours for each module. A savings of a least two hours
per module would provide tangible benefits. Since the

majority of modules fell within the twelve to sixteen hour
estimate range, and the KBDA had actually cut the
completion time of inquiry modules in half, the potential
benefits well exceeded the time invested in KBDA
development. Two full time designer/developers were
dedicated to KBDA creation for an elapsed development
time of approximately two months.

To simplify the design, the KBDA was implemented in
five Knowledge Bases, each corresponding to one ASF
shell. The primary expert was the shell developer, but
application and database analysts outlined the data entry
features and functional validation they wanted the KBDA
to perform. The exercise proved highly beneficial to the
ASF because it explored new uses of the shells and
validated the functionality the shells provided.

Each KBDA knowledge base was iteratively tested
during development and sent through a series of test
cases when it was complete. The KBDA developers,
shell developer, and application analysts shared the task
of validating the test cases. When everyone was satisfied
with the results, the KBDA knowledge base was put into

Burton 7

Design State Modify Spec

Seed Element

[] Initial Cursor Position?

[] Foreign Key?

[] RLP?

[] SLP?

[] Primary Key?

[X] Link in Join?

[] Default Value?

In a join to link multiple tables

Figure 3. KBDA seed element information entry.

production under close observation.
The application analysts would review the output of

the first few modules created, and bring any
discrepancies to the attention of the KBDA and shell
developers. Required modifications were identified and
made in both the KE3DA and the shells. The testing
period ranged from one to three weeks per knowledge
base, depending on the shell complexity and
implementation order (the knowledge bases deployed
later were accepted more quickly).

Knowledge reuse between ASF shell knowledge bases
was extensive. This enabled subsequent knowledge bases
to be developed much more quickly than the first two,
even though the shells they were based on were more
difficult.

The KBDA has been in production at Celite since
June, 1991, and is instrumental in their custom systems
development process. During the six month completion
of the custom distribution system, a team of eight to
fourteen analysts and programmers used it daily. Even
end users such as the Shipping Ofllce Supervisory and
several Customer Service Coordinators used the KBDA
to custom design modules. Now that the distribution
system is complete, a team of four analysts use it for
enhancements and new system development.

KBDA Functionality
Application analysts employ the KBDA once they have
identified the need for a module, and its corresponding
development shell. The analyst provides the KBDA with
general information about the module such as module
name, screen name, SQL access type. and data passing
action. When all module information has been entered,
the analyst identifies the table(s) accessed and the
elements used from those tables in the module. One table
must be identified as the driving table in the SQL select
statement,

The behavior of every element in the module must be
described. Each element is classified by one of five
element types: seed, display, seed and display, seed
return, and invisible. Each of these types require
different element information, have different options. and
perform different functions. In a scrolling data display,
called an inquiry (see Figure 2), the user enters
information in the seed elements at the top of the screen.
This qualifies an SQL query over one or more database
tables. The data retrieved from the query is displayed on
the lower half of the screen in display elements. The
seed and dispfay type is for elements that appear in both
the seed and display areas. Seed returns display decode
fields from tables not in the SQL join. Invisible elements

8 IAAI

Intra-element Validation Rules

Example Rules

A “LIKE” SQL selection criteria may not be used with a numeric field.
A sort order of ascending or descending must be specified for each element

with a SQL sort order.
A primary key on the table being maintained should not be protected.
Only elements on the table being maintained should be protected.
Alphanumeric default values must be specified in quotes.
Numeric default values must be either the system timedate stamp or a

number without quotes.
The initial cursor cannot be placed on a protected field.

Inter-element Validation Rules

SQL join/link elements must be identified in valid pairs.
The sort order specified for each element in the SQL Select must be unique.
Sort order for all elements in the SELECT must be sequential.
WARNING: Multiple “LIKE” SQL selection criteria degrade performance.

Figure 3. Example KBDA rules.

do not appear on the screen but participate in a
background function such as the SQL join.

Based on the element type, analysts further define
approximately forty other element attributes such as
whether it is part of the module selection criteria,
processed upon module entry, passed to other modules in
a conversation, have default values and are part of the
display information sort (see Figure 3). The attributes
are limited by previously entered element information.
For example, in an inquiry module, only elements that
are part of the selection criteria can be processed upon
their entry.

Once an element’s use has been defined, the interface
module retrieves element and screen characteristics from
DESIGN/l. This information is used to generate the
COBOL PIC clause and perform validation on an
element.

When the analyst is done. the module is validated to
check the compatibility of options associated with the
element and test its validity given the other elements in
the module. One example validation would be a check to
insure that an element that is specified as part of the SQL
join must be joined to another element that is also
specified as part of the SQL join. Other rules check
screen placement, sort order, processing upon entry of
multiple elements, decode fields, and primary key and

foreign key relationships (See Figure 4). In order to
allow the analyst to specify the elements in the order
most convenient to them, and allow for easy module
modification, some validation that could have been
performed during element entry is postponed until the
analyst indicates that the specification is complete. If an
error is found in validation, an error message is displayed
for the analyst and they are required to fix the problem
(See Figure 5).

Once the specification is designed and validated, the
analyst can save it and translate it into the edit subroutine
instructions that will customize the shell. The KBDA
has four outputs:

l The saved specification
l The DESIGN/l specification

documentation
l The edit subroutine customization

instructions
l The programmer instructions, which

highlight intricate specification details
and assist the programmer with screen
creation.

If there are any features of the module that require
programmer intervention, they are listed in the

Burton 9

1 Design State Modify Spec I

Spec
Ordr Element
..-.-mm ..~~~~~~.~.
1 ORHDOOI
2 SUPPOOl
3 IPTOOOl
4 S PST001

Your spec has an error. A linked element
must be linked with an element in the spec.

Figure 5. KBDA ljalidation error message window.

programmer instructions. The parameters and edit
subroutine customization instructions are ported from the
PC to the VAX and applied to the shell automatically by
the edit subroutine program. The output is an error-free
custom COBOL module. It requires no further testing
because the shell was extensively tested and the
customization was applied automatically.

Benefits
The KBDA provides a level of benefits above and beyond
those provided by the ASF approach alone. Its direct
contributions include:

l Drastic reduction in module
development time

l Significant reduction in rework caused
by functional or technical changes

l Iterative application development
l Consistently applied standards
l Elimination of virtually all defects

(bugs) in modules
l Elimination of the communication and

interpretation tasks that were causing
errors

l Reduced analyst training requirements

l Near elimination of the pure
programmer role

l Detailed end-user involvement with
module development

l Output of a Function Specification
document that is used strictly for
documentation

The KBDA has significantly reduced module
development time above the productivity improvements
of the Application Software Factory alone (see Figure 6).
One of the reasons for the improvement is the reduction
of rework. If a module needs additional functionality, the
analyst simply edits the specification and regenerates the
output. This is an automated procedure that takes from
one to fifteen minutes depending on the shell and greatly
facilitates iterative development. The same procedure
done by hand used to take one to five hours.
Additionally, modules generated by the KBDA are
virtually error free, so costly unit testing and bug fixes
are simplified or eliminated.

One of the greatest benefits of the KBDA is the capture
of the shell knowledge in one concise repository. While
analysts still require training in ASF Methodology,
database design, INSTALL/l, DESIGN/l, the KBDA

10 IAAI

Figure 6. KBDA productivity gains.

and other aspects of the architecture, they no longer are
required to have such a detailed, precise, and accurate
understanding of the shells, their limitations, and their
use. The benefits are realized up front when new
analysts are brought to the ASF, and when changes are
made to the shells or new shells are added. It is easier to
add new or more detailed knowledge to the KBDA than
it is to teach all the intricacies to the entire team.

Another benefit of the KBDA is the change of skills
mix required on a project. With the ASF and KBDA,
coding a module generally takes n,o longer than
designing one. Programmer tasks are comprised of
screen creation, testing and conversation creation. It is
quite feasible to have only analyst/programmers on the
team who develop their own specs and then “code” them.
As demonstrated at Celite, a system that traditionally
would require over 50 people can be developed by a team
of approximately 12 people in the same time frame. This
further reduces system development cost by reducing the
administration necessary for the project.

One unexpected benefit from the KBDA arose from
the ease and speed at which an analyst could develop a
module. At Celite, end users from outside the data
processing arena (such as the Shipping Office Supervisor

and several Customer Service Coordinators) are able to
use the KBDA to design custom modules to be included
in the system. They appear to understand and accept
standards and constraints much more easily when they
are restricted by a tool. The users also like the fact they
can design what they want, and if it is accepted by the
KBDA, they know they will get it in their system and it
will work with the other modules in the system.
Bringing users this close to development helps the
application development team satisfy user requirements,
and lays the groundwork for a positive system
enhancement cycle. If the users know which
enhancements are simple and which are difficult, they
are more likely to request, and receive, the simple
enhancements.

Maintenance and Enhancements
The knowledge base within the KBDA is specific to the
ASF shells. It will not change unless the shells do. After
the inquiry ASF shell was first implemented using the
KBDA, several enhancements to the shell were identified
and approved. The enhancement time for the KBDA was
much less than the enhancement time necessary for the

Burton 11

Figure 7. KBDA for the AS/400 ASF user interface

shell code itself. As new shells are defined by the
analysts, it is expected that the expert system’s iterative
nature will augment the development process. However,
since completion of the Celite distribution system, no
additions or modifications to the ASF shells or the
KBDA have been made.

A second implementation of the ASF and KBDA is
also now in production on the AS/400. The AS/400
version architecture consists of:

l IBM AS/400 hardware
l IBM AS/400 relational database
l LANSA CASE tool and run-time

architecture for the AS/400
. RDML, LANSA’s 4GL
l Andersen Consulting’s PC-based CASE

design tool. DESIGN/l
l Custom b&directional bridge between

DESIGN/l and LANSA
l Hypertext ASF Methodology

Documentation System
l ART*Enterprise on Windows for the

KBDA

Building on what was learned in the first
implementation, the shell and KBDA architectures have
been improved. The KBDA user interface has been
redesigned to take advantage of Windows and ART*
Enterprise’s object approach (see Figure 7). It creates the
module’s screen and will draw an example screen
(following all LANSA and project standards) for the
analyst before any code is generated (see Figure 8).
Shells are now only conceptual models of how small
pieces of code, called subshells, can be customized and
placed together. Each subshell performs certain
functions requested by the analyst for a specific module.
The KBDA has become a true configurator that knows
how to bring objects of code together to support
functional requirements. One of the benefits from the
new approach is that new and modified subshells and
conceptual shells can be implemented without changes to
the knowledge base.

12 IAAI

Figure 8. Example screen druw bwy KBD.4.

Conclusion
The use of Artificial Intelligence technology was a
critical success factor in the implementation and
maintenance of the complex application of guiding
design and coding modules in the Application Software
Factory. The KBDA understands the compound,
intricate Application Software Factory shell knowledge
that has proved difficult for people to assimilate. Its
inclusion in the ASF process has greatly increased the
value of the entire ASF Methodology.

Acknowledgments
The authors wish to gratefully acknowledge the
contribution of the entire team for their dedicated effort
and hard work. We especially want to thank Dave
McComb of First Principles, Inc., for his vision and
insight, Steve McMillian of Celite for his support and
encouragement, Mike Dalke of Andersen Consulting for
his espertise and patience, Mark Carpenter of Celite for

his technical wizardry, Derek Dalpiaz of Manville
Corporation for designing the edit subroutine applicator.
and Jane Rolston of Andersen Consulting who helped
code the Knowledge Based Design Assistant.

References
Swanson, K.; McComb, D.; Smith, J.; and McCubbrey,
D. 1991. The Application Software Factory: Applying
Total Quality Techniques to Systems Development. MIS
Quarterly 15(d): 567-579.

Burton 13

