
GCESS: A Symptom Driven’ Diagnostic Shell
and Related Applications

Peter Holtzman and Ray Fischer

Inference Corporation Northrop Corporation
550 North Continental Blvd 2301 West 120th St.

El Segundo, CA 90245 Hawthorne, CA 90251
e-mail: holtzman@inference.com

Abstract
An application shell is presented for symptom driven
diagnostic applications that is designed to support
multiple diagnostic paradigms and is used for several
specific diagnostic applications.

1. Introduction

The United States Air Force deploys Peacekeeper
missiles as part of its strategic forces. Guidance and
control components are routinely tested at missile
sites. If they fail these field tests they are sent to an
Air Force repair facility (the Aerospace Guidance and
Metrology Center). The components are electronic
and electro mechanical in nature, and are
manufactured by a number of different defense
contractors. The repair facility must diagnose and
then repair the problem.

repair actions. Problems associated with such
software, as explained below, have resulted in its
general disuse, causing contractors to consider
alternative means of replacing these programs. Since
AI has produced many diagnostic systems, several
contractors independently suggested building
diagnostic expert systems. These suggestions led the
Ballistic Missile Organization (BMO) to build the
Guidance and Control Expert System Shell (GCESS).

Problems with Existing Software
As an example of existing software we examine the
existing Inertial Measurement Unit (IMU)
diagnostics, since the IMU was the first area we used
to prototype a new diagnostic approach.

Typically, faulty components arrive at the repair
facility with little information about the faulty
behavior. They are\ subjected to extended acceptance
tests to verify that problems exist, and in some cases,
to special purpose testing. Acceptance tests fail when
parameters fall outside specified limits. Testing is
performed on automatic test equipment (ATE) and
may take many hours and, occasionally, days. It
generates very large amounts of (sensor) data that
must be examined to diagnose the failure.

In many casea, the Air Force personnel must rely
on the contractors’ experts to isolate the fault. This
involves additional expense and delay. The Air Force
would like to perform as much of the diagnosis itself
as possible, and acquire the contractors’ expertise.

Currently, much of the expert knowledge of the
components is disappearing. This is to be expected
in a long lived program, as the original designers and
engineers retire or leave. It has been accelerated as
political changes have impacted personnel levels.

Some diagnostic programs exist on the ATEs that
report anomalies and attempt to identify faults and

The IMU for the Peacekeeper was developed by
Northrop Corporation. Along with the IMU,
Northrop was required to develop diagnostic software
to analyze the acceptance test data. The software was
designed along with the unit. While the purpose of
the software was to assure ease of maintenance, it
required Northrop to predict with certainty the
behavior of a complex physical component, before
acquiring actual experience using it. These
predictions, although sound, were not absolutely
correct and could not have been expected to be so. It
is necessary to actually build and test a component in
order to accurately understand its actual behavior.
To build correct diagnostics, you must not only know
the actual behavior of a correctly functioning unit,
but also the actual behavior of a faulty unit. This
requires real experience with functioning units.

From a user perspective, the major failings of the
diagnostic program were that it could take several
hours to run, frequently indicated incorrect repair
recommendations, and did not produce information
that would permit technicians to evaluate the
reasonableness of the recommendation. The program
was also difficult and costly to maintain, and could
only be updated infrequently.

Holtzman 61

From: IAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved.

The Northrop approach was to predict all failure
signatures and then construct a program to search for
all such signatures in the data, independent of the
acceptance test failures (symptoms). The program
halted after the first signature it found. As it turned
out, some of the signatures could be triggered
without affecting the basic performance, and without
relationship to any true symptom. This could not
have been predicted theoretically.

Northrop engineers, in effect, used an informal
causal mental model to predict the observable result
of a given fault (a signature). They traced the causal
network backward from effect to cause, and
associated the faults as possible causes of a signature.
This information was used as the specification for the
diagnostic program that was produced by the
programming staff. In disregarding the symptoms,
the program behaved like a doctor performing a
checkup. In principle, it should have always
uncovered a fault, but in practice it did not.

In the case of the IMU diagnostics, the program
specifications developed by the engineering staff
comprised several hundred pages. Many of the
signatures used variables that represented
intermediate calculations. It was clear that it would
not be an easy task for an engineer to readily change
the specification. Because of the use of intermediate
calculations, it could be anticipated that even several
minor specification changes could entail considerable
maintenance programming costs, and involve
extensive regression testing.

It might seem as though the maintenance problems
could be greatly ameliorated by the use of
conventional software, a symptom driven method,
and modem software engineering practices. Upon
further analysis, it became clear that they were, in
large part, a result of the conventional software
block change maintenance cycle.
The software maintenance problems are strongly
related to the fact that the diagnostics execute on the
ATE. The ATE is used for acceptance testing of
nuclear missile parts, and its software is subjected to
very rigorous testing and configuration control.
Individual change requests are accumulated and
performed as part of infrequent and costly block
changes. This is dictated by the organizational
process of changing ATE software, rather than the
characteristics of the software or changes.

The Diagnostic Life Cycle and Decision to
Build An AI Diagnostic Shell
Given the problems with existing software, several
contractors independently proposed building their

own diagnostic program based upon AI technology.
The Ballistic Missile Organization (BMO) decided
instead to build a single symptom driven diagnostic
shell to be used by all contractors. This shell would
be tailored to construct diagnostic applications as
distinguished from more general AI expert system
shells. This was based partly on the desire to avoid
duplication of effort and cost, and partly on the
desire to deliver a single shell to the repair facility
personnel with a consistent cognitive model and user
interface, rather than disparate tools developed by
each contractor. It also allowed BMO to redress the
major failure of the conventional approach, and
address the broader problem of establishing a
repository of diagnostic knowledge that could be
transferred from the contractors to the Air Force.

BMO was keenly aware that the major failing of
the conventional approach was in the area of ease of
development and maintenance of diagnostic
procedures. The Peacekeeper experience illustrated
that in the beginning of the IMU production program
there was a rapid evolution of diagnostic procedures,
as experience accumulated about the actual behavior
and problems with components in the field. It took
some time for the diagnostics to “mature.”

After that, diagnostics typically undergo a gradual
development. These could be attributed to diagnostic
discoveries, the appearance of new problems as
components aged, and change in diagnostics as sub
components were replaced with slightly different
configurations. The changes need not impact the
acceptance testing, so that the basic functions of the
ATE programs did not need to be updated.

Human technicians could easily accommodate the
diagnostic life cycle of rapid change followed by
much more gradual change, but the conventional
software maintenance process could not implement
changes in a timely manner. This led to major
differences between the technicians practice and the
diagnostic programs, which condemned to software
to go unused.

AI technology was viewed as potentially capable of
supplying an easily maintainable shell that would
allow engineers and technicians to maintain the
diagnostics without programming staff and the delays
and costs of the traditional software maintenance
cycle. It would also provide a practical repository of
diagnostic knowledge.

BMO was interested in a shell to support its
various components and component manufacturing
contractors. It wanted the shell to be capable of
incorporating multiple diagnostic paradigms that

62 IAAI

might arise from the different contractors individual
diagnostic approaches.

The key organizational or process feature that
would allow the development of this type of shell
was the separation of acceptance testing from
diagnosis, by hosting the diagnosis on a separate
computer. This relieved the diagnostic software from
the intensive and rigorous configuration control
associated with acceptance testing. The PC was
selected as the diagnostic hardware platform as a low
cost delivery vehicle.

A key technical feature would be to modularize
diagnostic knowledge and make it directly available
for the engineering staff to maintain.

2. The GCESS System Overview

Development History
The Air Force contracted Northrop Corporation to
build a prototype Guidance and Control Expert
System Shell (GCESS) and to prototype the IMU
diagnostic application. Northrop could not find an
off-the-shelf shell that satisfied the Air Force
requirements, selected ART-IM to construct the
GCESS shell, and subcontracted Inference
Corporation to build it. The diagnostic paradigm was
developed jointly by Northrop and Inference. The
selection of ART-IM was motivated by its extensive
frame and rule system, availability on the PC
platform, and ability to produce both development
and deployed versions of expert systems.

The prototype shell [3] required nine man months
of effort to build. The prototype IMU application
illustrated the feasibility of the approach, and the
advantages of using a declarative representation. In
the development mode, the updating of diagnostic
knowledge was almost immediate, and the
application could be immediately rerun.

The Air Force contracted Northrop to build the
actual shell, and a full IMU diagnostic system.
Northrop subcontracted to Inference to develop
diagnostic paradigms that would satisfy the
Peacekeeper guidance and control community,
including associated contractors. The GCESS shell
required three man years of effort and was delivered
at the end of 1991. Part of the work on the shell was
to establish what diagnostic paradigms were needed
by the contractors. The Northrop prototype
application was expanded to a full IMU diagnostic
system by Northrop engineers, and first deployed in
June 1992. GCESS was developed as a Microsoft
Windows application, to allow it to be run as one of
several possible windowed processes. This allowed

simuhaneous access to signal processing and
networked data base applications.

GCESS initially supported two distinct diagnostic
paradigms. One was developed by Northrop and
Inference, and a separate paradigm was developed by
Rockwell International that was prototyping
diagnostics for test stations themselves.

The Air Force funded additional work on GCESS
and a second version of the GCESS was delivered in
December 1992. This version included an enhanced
graphics browser, enhanced facilities to locate
anomalous fault classes, and several other features,
and was upgraded to use Microsoft Windows 3.1
features.

The second version does not include the paradigm
developed for test station diagnostics, at the direction
of the Air Force. However, both paradigms have
been tested and the multiple diagnostic paradigm
capability validated.

The development of the GCESS involved
production of a requirement, functional
specifications, high level design, design, and test
plan documents. These documents and their various
traceability matrices ensured that the requirements
were addressed and tested.

The IMU application was tested against historical
data on actual component failures, and correctly
diagnosed all faults associated with those failures.

Several other diagnostic applications have been
developed using GCESS. They include a second IMU
diagnostic application for field data, and the use of a
GCESS application as a component in a fleet
assessment tool developed by Rockwell International.

GCESS Design Goals
The major GCESS design goals were to:

l Incorporate Multiple Symptom Driven
Paradigms.

l Allow Multiple Fault Diagnosis for Each
Symptom.

l Enable Declarative Representation of
Diagnostic Knowledge.

l Provide Rich Explanation Facilities.
l Simplify Ease of Maintenance and Incremental

Modification.
l Support a Deployment Mode which Inhibits

Modifications.
l Separate Acceptance Testing from Diagnosis.
l Separate Diagnostic Specification from Data

Specification and Retrieval.

Holtzman 63

The unsuccessful experience with the existing (non-

diagnostk engineers,

symptom driven) software resulted in the goals of

and reflects the diagnostic

establishing a symptom driven system, capable of
isolating multiple faults per symptom, and an
architecture capable of incorporating more than one
diagnostic paradigm. The use of declarative
knowledge and rich explanation facilities would
permit the development of diagnostics and aid the
ease of maintainability, by the engineers themselves
and also play a major role in the acceptance of the
software by the technicians. Equally importantly, it
would provide a repository of diagnostic knowledge
that could be easily transferred to the Air Force. Ease
of modification was an important goal. At the same
time, the Air Force wanted to provide a
“deployment” version of the software to be used by
the technicians on the floor and which could not be
modified, in order to provide adequate version
control. Separation of acceptance testing from
diagnosis has already been mentioned as a key
organizational feature. The last goal was to separate
the diagnostic specification, which is performed by

knowledge, from the data specification and retrieval
that is a programming task.

Paradigm Independent Design Concepts
GCESS was designed to implement multiple
symptom driven paradigms. The design envisioned
an abstract level of a symptom driven paradigm,
which could be specialized or instantiated to define a
particular diagnostic paradigm, which would then be
incorporated into GCESS. The design also envisioned
a general implementation strategy that used the
schema and rule system of the underlying tool.

illustrated in Figure 1,

The GCESS design abstracted the key elements of
generic symptom driven paradigms: symptoms,
measuremerrts (data), diagnostic steps, diagnostic
status, report generation. A control mechanism was
established called the agenda. Diagnostic steps would
be scheduled by placing them on the agenda. The
diagnostic status would contain the dynamic state of
the diagnosis after each step that would be visible to
the user in a status screen. A typical status screen for
the Fault Tree paradigm (to be discussed below) is

64 IAAI

rile Edit Yiew Gommands Qptions Yelp

Unit Id: MOTOR UNIT ID #12RTS?

Current symptom: 3 of 3

Name: TEMP-2

Value: 101.2 Source: DS5

Type: PDA

Time: 123

Last Fauft Class

Name: LUBRICANT,PRESSURE-LOW

Status: SUCCEEDED

Repair Recommendations Test Recommendations

Notes

No Initial Fault Class: Symptom: 1 PDA OS5 Hl
No Recommendation for Symptom: 1 PDA Hl DS5

Function Keys: Fl =HELP FI=Run F5=Step F8=Halt

Figure 1: Status Screen for Fault Tree Paradigm

A symptom driven diagnostic paradigm was
assumed to be a specialization of the following
generic algorithm which can be expressed in pseudo
codeas

while (there are symptoms remaining)
begin

select-next-symptom()
schedule-first-diagnostic-step0
while (agenda -not-empty)

begin
select-and-do-diagnostic-step0
modify-and-display-status()

end
end

generate-report0

Two important features of this description are that
is both vacuous (devoid of content) and procedural in
nature. A specific diagnostic paradigm, is a
particular. specialization of the generic procedure.
The individual paradigm defines conceptually how
symptoms and diagnostic steps are scheduled, and
how diagnostic steps are performed. This, in essence,
defines a user model of diagnosis and gives content
to the specific diagnostic paradigm. As a conceptual
description, a paradigm does not specify how
operations are accomplished at the iml)lementation
level.

The GCESS design assumes that a paradigm will
define diagnostic knowledge objects, at the
conceptual level, which will be used to schedule and
implement diagnostic steps. It further assumes that
these objects will possess a declarative form, that can
be easily defined and manipulated by the engineer. It
assumes they will be objects, in the sense that they
can be created, modified, destroyed, edited,
browsed, stored and retrieved by the user.

In the paradigms we implemented, the diagnostic
knowledge objects me conceptualized as diagrwstic
rules (as opposed to ART-IM rules at the
implementation level) which can be represented as /y
then statements

A particular diagnostic application, such as IMU
diagnostics, will consist of a knowledge base of
diagnostic knowledge objects, which direct a specific
diagnostic paradigm to diagnose a component,
together with a data server that will supply the
symptoms and data to be used for the diagnosis.

An example of a diagnostic rule is an instance of:

if a particular signature is satisfied,

then
recommend repairing the associated
fault(s) that cause(s) it

This type of rule was the basis of the existing IMU
software.

GCESS Implementation Strategy
The GCESS design envisions a generic
implementation strategy for implementing a
diagnostic paradigm.

The technical approach of a paradigm relies upon
the schema, fact and rule system of the underlying
tool. Symptoms, the diagnostic status, and the agenda
are represented as schemas. A particular paradigm
may add an additional status schema slot or define
additional agenda item fields.

Diagnostic knowledge objects (diagnostic rules)
are also represented as schemas. This gives them a
declarative syntax and facilitates both forms-based
editing and browsing, as well as object storage and
retrieval.

While diagnostic rules at the conceptual level are
represented as schemas, ART-IM rules at the
implementation level are used to schedule and
implement diagnostic steps.

These meta ART-IM rules can pattern match on
the stylized conceptual diagnostic rules to select and
schedule steps.

3. Developing and Implementing a
Specific Diagnostic Paradigm

GCESS is designed to incorporate multiple
diagnostic paradigms. In order to add a paradigm to
GCESS, the shell must be extended as described in
this section. This level of modification is extremely
infrequent and is not expected to be performed by
engineers or contractors.

Developing a diagnostic paradigm is a knowledge
engineering task that defines a cognitive model of
diagnosis that is close to the one actually used by
group of engineers and technicians to diagnose a type
of component. The model should be based upon rules
or objects that are clear to the engineers and can be
easily defined and understood in a declarative
fashion. The paradigm should use or process these
rules in a well defined manner that engineers and
technicians can understand, so that they can
manipulate the rules, and develop and maintain
diagnostic systems using the paradigm. An example

Holtzman 65

of such a paradigm is the Fault Tree paradigm
described below.

In order to implement a paradigm in GCESS, it is
necessary to develop:

l An ART-IM schema representation of the
diagnostic knowledge objects.

l Specializations of the agenda item and any
additional status slots.

l An ART-IM rule set (group of production
rules) to perform symptom and diagnostic step
scheduling and to execute diagnostic steps.

l User Interface editors and browsers for
maintenance of diagnostic knowledge object.

l A user Interface status screen and top level
menu to invoke editors and browsers.

l Functions to save and restore the state of the
current diagnosis.

Implementation of a particular diagnostic paradigm
consists of specifying the schema representation of
the diagnostic knowledge objects, and then
developing the rules and functions necessary for
symptom and diagnostic step scheduling, and
executing each diagnostic step. Scheduling is
performed by asserting and retracting from the
agenda. An agenda item has a flexible format but
must always include an (initial) paradigm
identification tag.

Applications with mixed paradigms were
considered but not implemented. Technically, this
would require each paradigm to include a paradigm
switching primitive, so that the UI display the correct
paradigm specific status and menu. This is very
simple to implement. However, mixed paradigms
were not implemented because they did not seem to
add any practical benefit to the two actual paradigms
we developed.

A specific application for a paradigm will consist
of a knowledge base containing the specific
diagnostic knowledge objects required to perform the
diagnosis within the paradigm. The knowledge base
can be stored and loaded in textual form in a
development environment. ART&l provides the
capability necessary to compile these objects into an
executable form, and to construct a deployed
application (executable image). Paradigm
applications also specify the name of a data server
that will supply the symptoms and data.

GCESS consists of the aggregate of the various
paradigm rule sets, and diagnostic knowledge object
editors and browsers, status screens and menus. Each
diagnostic knowledge base contains a paradigm

identification tag. When a knowledge base is loaded,
this tag can use to select the associated user interface
menu and status screen.

Developing and using a specific diagnostic
application consists of three steps:

l Develop the Diagnostic KB.
l Generate the Deployed Application Executable

Image.
l Perform Diagnosis.

GCESS supports opening the diagnostic knowledge
base, editing its objects, and saving the knowledge
base, as well as performing diagnosis in the
development mode to allow the engineer to develop
the KB.

GCESS will generate C files and a make script to
compile the knowledge base into a separate
executable image.

GCESS performs the identical diagnosis in the
development mode and the deployed image. It allows
the diagnostic state to be saved after any state, and
restored to resume diagnosis. The deployed image
provides browsers but no editing facilitates.

4. Fault Tree Paradigm

The Fault Tree paradigm was the first paradigm
incorporated into GCESS. This paradigm models a
diagnostic procedure of finer and finer fault isolation.

In its simplest form it resembles a left to right
depth first search tree, each node of which is a called
a fault class, and represents the class of texminal
nodes (faults) which can be reached from it.

Figure 2 is a simple fault tree that represents a
diagnostic procedure that says that if a motor is hot,
we should check to see if the current is high, if the
lubricant is low, and if the lubricant line is broken in
that order.

The fault tree paradigm uses two basic types of
diagnostic knowledge objects to control step
selection. The symptom/initial fault class map, is a
collection of diagnostic rules that selects the initial
fault class to explore based upon the symptom
features. It schedules the initial fault class on the
agenda. For example, the map may indicate that if
symptom name is “Motor-Temp-High” the
Motor-Hot fault class should be scheduled. These
diagnostic rules are used to implement the abstract
schedule-first-diagnostic-item-on-agenda function.

The ngen& items represent the fault classes that
are scheduled to be explored.

66 IAAI

MOTOR-HOT

CURRENT-HIGH LUWWANT-LOW LUBE-LINEJ3ROKEN

Figure 2: Simple Fault Tree Graph

The Lube-Line-Broken fault class above might
represent the rule:

if Lube-Line-Pressure < 0.2
then recommend Repair

Broken-Lube-Line

Fault Class Types
Each fault class is also a diagnostic rule, which

contains an ifpart and a then part.
The Motor-Hot fault class above might represent

the rule:

if Motor-Temp > 1 IO
then

explore Current-High,
Lubricant-Low, Lube-Line-Broken

The fault tree paradigm defines four subtypes of
fault classes. They are distinguished by their then or
action types. Two subtypes indicate different ways of
exploring other fault cl- (which are represented
graphically aa children). The other two make
different types of recommendations (repairs and
t&S).

The exploration types are called ONE-OF and
EACH-OF actions. A ONE-OF fault class explores
its child fault classes in left to right order until one of
them results in a repair recommendation. It is
roughly equivalent to saying “try this, and if that
doesn’t work then try this, etc.” ONE-OF fault
classes assume it is highly unlikely that more than
one of the faults they lead to will occur
simultaneously.

An EACH-OF fault class also explores its child
fault classes in left to right order, but the exploration
does not stop yhen one of them leads to a repair
recommendation. It always explores all its children.
It provides is a way of isolating multiple faults. This
may be used to check separate subsystems, or for
multiple faults within the same subsystem.

ONE-OF and EACH-OF fault classes are
represented graphically as nodes with arcs to
children. The fault class contains not only the node,
but also, in a sense, the arcs.

The two types of recommendation fault classes
recommend repairs and tests respectively. All
recommendations are accumulated and reported as the
result of the diagnostics.

Repair recommendations indicate a possible fault
and a repair procedure for the fault. Test
recommendations indicate that further tests may be
necessary to isolate the fault.

When a repair recommendation is encountered, all
fault classes that led to its exploration are notified.
This affects the ONE-OF fault classes that will not
explore any other children. Test recommendations do
not inform other fault classes. Using ONE-OF logic
at a node, a repair recommendation (isolating a fault)
will inhibit the search for further faults from that
node, but a test recommendation (which does not
isolate a fault) will not inhibit searching for faults.

Since ONE-OF and EACH-OF are specified by the
engineer for each fault class, he has great control
about where to search for multiple faults and where
not to do so.

Holtzman 67

Fault Class Conditions
Each fault class also contains an if part consisting of
a (possibly empty) set of conditions. These
conditions must be satisfied for the fault class and its
sub tree to be explored. For example, the Motor-Hot
fault class might be a sub tree of a more general
motor problem tree and contain the condition that the
motor temperature is greater than 110’. In that event,
the motor hot diagnostics would not be explored
unless the temperature indicated that this was a
possible problem. Initial fault classes for symptoms
generally have no conditions, since they are the
starting point for symptom diagnosis.

Unlike a decision tree, the conditions are not used
to determine which branch should be taken, but
rather whether the sub tree should be explored at all.
When viewed graphically, the conditions are used to

isolate the fault to a set or C&W of faults reachable
from the node. In reality, the fault tree is really a
search tree representation of a diagnostic procedure.

The conditions are organized into required and
optional conditions. All required conditions must be
satisfied, but only some of the optional conditions
may be needed for the if part to be satisfied. The
engineer can assign a condition threshold, and
weights associated with the group of all required
conditions, and with each optional condition. Once
the required conditions are satisfied, the optional
conditions are tested until the threshold is exceeded.
By adjusting the weights and threshold the engineer
might indicate, for example, that two required
conditions must be true and at least three of the five
optional conditions must be true.

-1 Edit Fault Class

Fault Class:

TYPE Clause Iwt1
^I Rtq wt: 50 “..”” “...“...” . *.* . “” I

Req VOLTAGE < 8.1
Opt TEMP > 98 30 T hresholck
Opt MOTOR-SPEED > 2000 30

1701

Action Type: REPAIR-RECOMMENDATION

Actions
100 REPAIRJdOTOR~CIRCUlT

partic IMOTOR i mm HOT

Figure 3: Fault Clw Top Level Editor Screen

68 IAAI

The conditions themselves are Boolean expressions
that generally involve measurements (often sensor
data) and ranges. This allows a simple mathematical
declarative syntax with a simple mechanism for
practical firzziness (optional conditions). There is a
well defined condition language including standard
mathematical functions.

The base ART-IM language may be used to define
additional functions. Conditions use a well defined
mathematical expression syntax like FORTRAN,

The engineer specifies fault class as coticlitiotr
action rules as illustrated by the Figure 3, which
shows the top level fault class editor screen for a
particular fault class.

Assumptions and Replicated Components might contain the parameter&d measurement name

When a ONE-OF or EACH-OF fault class schedules “Lube-Line-Pressure” and parameterized

it children to be explored, it may also specify a list of recommendation name “Repair Broken-Lube-Line”

assumptions to be used by each child. These are whose macro expansions depend on the value of the

specific variable. This mechanism is provided to
parameterize the logic and allow the same logic to be
applied to multiple instances of replicated objects.
The assumptions are accumulated dynamically, so
that each fault class inherits the assumptions of all
fault classes that led to its exploration. Measurement
names and recommendation names can be “macro
expanded” using the assumptions and a simple name
concatenation form specified by the engineer. For
example, the fault class Check-Lube-Line

if Lube-Line-Pressure < 0.2
then recommend Repair

Broken-Lube-Line ,

specified on a child by child basis and may differ
among children. Each assumption assigns a value to a

assumption variable Lube-Line Num.

Fault Class: !WDC~HARD~Z4JiEG~BAD

One Of -

Each Of ----

#Levels 1212

Figure 4: Graphic Browser

Holtzman 69

A more generaI fault class, Check-All-Lube-Lines
might specify the same child Check-Lube-Line three
times but with the different values of
Lube-Line-Num of 1, 2 and 3. This would apply
the same logic to the three separate lube lines, and
explore the same fault class three times, but using
different assumptions.

Fault Class Recommendations
Fault class recommendations may contain a
recommendation name and text, as well as
explanation, and links to hyper text files (such as a
Theory of Operations manual) and graphic images.
These are supplied by the engineer in the fault class.
Recommendations also contain the symptom that led
to the recommendation, the list of current
assumptions, and the fault classes that led to the
recommendation being made. Repair
recommendations are reviewed by technicians. They
have the ability to accept or reject them, and the
information necessary to make that decision. In this
sense, the diagnostic application is an advisor. This
kind of advisor allows the technician to both criticize
its results and suggest changes that can be rapidly
incorporated. It is easily viewed as a tool, rather than
as an adversary or inconvenience imposed from on
high. This produces a great advantage in gaining
organizational acceptance. In a sense it can co-opt its
strongest critics, by turning them into participants in
the development of diagnostics.

Fault Tree hs a Graph
The term “Fault Tree” is somewhat of a misnomer.
It need not be a “tree” in the topological sense. It is
actually a directed graph that may contain both cycles
and disconnected components. It is typical, though
not necessary, for individual symptoms to map to
disconnected graph components. The paradigm will
not explore the same fault class twice for the same
symptom under the same set of assumptions, but
static cycles in the graph are permitted.

The Fault Tree Paradigm UI
The fault tree paradigm contains a status screen

that displays status after each step, editors and
browsers for the initial fault class map that maps
symptoms to root fault classes, and the fault classes
themselves. It also provides a graphical browser to
view the network and edit fault classes. The browser
is illustrated in Figure 4. Fault class objects contain a
great deal of information and there are a variety of
screens used to support editing and browsing fault
class elements. In all, there are around 50 dialog

boxes and screens used by the fault class paradigm.
However, many screens have editor and browser
formats that are nearly identical.

The Importance of Explanation
A primary feature of the fault tree paradigm is its
ability to reduce the cognitive distance between the
way the diagnostic software diagnoses the data, and
the way in which the engineers diagnose the data.
The technicians can accept the diagnosis because they
can read and understand the fault class diagnostic
rules and explanations.

At the beginning of this paper, it was argued that
diagnostic rules are often derived from inverting
deductions in an informal mental causal model. Fault
classes express rules in a crisp mathematical manner.
However, they may not fully express physical and
engineering principles, or actual experience
represented by the mathematical forms. For this
reason, the fault class rules may be annotated with a
detailed explanation supporting the rule. The use of
hypertext and graphics links, allow the explanation to
refer to Principles of Operation manual and
diagrams.

In practice, these executable diagnostic rules,
annotated by supporting explanation, provide a
practical repository of diagnostic knowledge and
experience.

5. Separation of Data from Knowledge

GCESS applications can deal with very large amounts
of data. This data is fetched on demand. The data is
modeled as a measuremetrt that is identified by a
name, data source and time. Each GCESS knowledge
base must specify the name of a data server.

The data server is responsible for implementing the
retrieval of symptoms and measurements, and
performing application specific data processing. Data
servers may use flat files, data bases or any means
they want. GCESS specifies two generic functions to
get symptoms and measurements that must be
provided by a data server.

Data servers are implemented as Windows Dytlnmic
Litrk Libraries (DLLs). These are separate
executables that are developed on a per application
basis by programming staff. This ensures separation
of the specitication of the diagnostics by the
engineers using GCESS, from the programming tasks
associated with data retrieval and processing. The
DLL mechanism that resembles a remote procedure
call allows different applications to link to different
versions of the same function.

70 IAAI

6. Additional Diagnostic Paradigms

Several diagnostic paradigms were considered and
rejected for use in GCESS. These included model
based reasoning (Davis et al., 1982 , Hallanti, ,
Stafanini & Tomada 1989), use of traditional fuzzy
logic (Zadeh 1965), and a paradigm developed ,
internally at Inference for the integration of
separately developed component diagnostics. The
reasons they were rejected had to do with the fact
that they did not correspond to the way the actual
engineers conceptualized diagnosis, and consequently
could not be maintained or serve as a repository of
knowledge.

Some thought was given to using symptoms to
isolate the fault to a subsystem, which could then be
analyzed by model based reasoning. However, it was
unclear that his was actually the case. Furthermore,
this could result in merely transferring the software
maintenance problems to the process of modeling a
complex physical component.

Fuzzy set membership functions per se did not
seem to reflect the technicians point of view.
Recommendations generally list the measurements
used to arrive at them. Technicians can view these
values and can query for others to determine if the
conditions are really satisfied. For example, if a
condition of the form “temp > 100” were satisfied
and the value of temp were 1OO.OW1, the technician
might not accept the recommendation. They
definitely wanted to be “in the loop” in these sorts of
decisions, and wanted the leeway to exercise their
own judgment as opposed to relying on automatic
(fuzzy) techniques.

An additional diagnostic paradigm for Circuit
Analysis was incorporated into GCESS. This
paradigm was developed by Rockwell for diagnosis
of test stations themselves. This paradigm was
eventually eliminated after the delivery of the
Rockwell prototype application, presumably for lack

. of funding to continue the development of this type
of diagnostic application (i.e., test station
diagnostics). It did, however, validate the concept of
a multiple paradigm shell.

The Rockwell paradigm was related to a model
based reasoning process. It required a very large
“hardware model” that needed to be separately
maintained and defined the diagnostics to a great
extent. This led to real concerns in terms of
maintenance, that we described above.

Case based reasoning methods (Hammond &
Hurwitz 1988) were considered but not included for

the applications considered. The feeling was that if a
diagnostic case were successfully analyzed and
understood, it could be expressed as a fault class.
Use of a case base search of similar problems was
thought to be of limited utility, and as a method of
last resort. We still have some interest in
incorporating a case based paradigm to broaden the
scope of the tool, provided additional funding can be
obtained.

Neural net methods were also considered to support
pattern recognition and discrimination tasks but
rejected for practical and economic reasons. Many
analysts compare the actual plot of data parameters
with nominal plots of normal and faulty components.
In the IMU case, there were hundreds of such plots
that might be considered. Although, using neural net
discrimination was attractive theoretically, it would
involve the preparation of a very large amount of
training data, and interfacing with other data analysis
programs. In the more general shell setting, it meant
that an engineer would have to train a net for each
discrimination, which presented ease of use
problems. It was far more practical to have the
engineer indicate the patterns and intent, and have the
technician make the discrimination when necessary.
Humans are obviously very good at this type of
pattern recognition, and the Windows environment
supports running other data analysis and plotting
programs simultaneously.

7. Fielded Applications

Several major applications have been developed
using GCESS. The IMU ADS application, developed
by Northrop, uses approximately 1400 fault classes
and was first deployed in June of 1992. It takes
under 2 minutes to run and dramatically increases the
fault coverage over the previous diagnostic software
(ATP). Maintenance technicians are satisfied that the
logic is correct. Creating or modifying a fault class is
essentially a text processing operation, and a new
deployment version can be created in under an hour.
There are four copies of the IMU diagnostics
currently deployed at three separate sites.

This application was created by starting with the
specifications for the original diagnostic program,
and conducting extensive knowledge engineering
interviews to incorporate current diagnostic
knowledge. The interviews were conducted by a
senior Northrop systems engineer, who was the
project leader and responsible for creating the
diagnostic rules. He first had to create the overall
diagnostic flow, and grouping of problems and sub

Holtzman 71

problem. He structured the overall problem so that
he was confident in the diagnostic coverage of the
many possible symptoms. The diagnostic problems
were grouped in about twenty broad categories. The
diagnostic rules cover a variety of ‘diagnostic tests
that are employed and use several different files of
time averaged data.

The interviews were conducted over many months
and were with other members of the engineering staff
who were expert analysts of the various subsystems.
While the interview process was progressing the lead
systems engineer wrote the diagnostic rules that form
the diagnostic application. He did not have to rely on
programming personnel or professional knowledge
engineers, and had complete control over the
diagnostics. He included the engineering explanations
as part of rules. The explanation is quite extensive.

A second IMU GCESS diagnostic system (FDS)
was constructed to analyze IMU field data (as
opposed to ATE data) at the repair facility. Field data
sometimes accompanies the components that arrive
for repair. This replaced a previously deployed
diagnostic program (FTP), and was constructed by
Northrop engineers.

A Stable Member diagnostic application has been
developed by the repair facility engineers . It uses
some of IMU rules and has a much larger interactive
components. It is on the order of 800 rules.

Rockwell International developed a Field Data
Advisor (FDA) which examines fleet status and uses
GCESS as the embedded diagnostic component.
Assessment experts track a variety of parameters and
anomalies at individual sites, as well as parameters
for the entire fleet. They are concerned with the
status at any given moment and how it evolves over
time. FDA is a tool to automate parts of the analysis.
FDA was tested and deployed at the end of 1992.
Three copies of FDA are currently deployed at three
separate sites.

The GCESS portion of FDA was constructed with
the involvement of the fleet assessment experts, who
are themselves engineers. It uses approximately 850

_ fault classes. The rules analyze data produced by
signal processors to diagnose on going problems and
trends. They both consult and maintain an historical
track list of the processed parameters and problems.

Select Item

Plot C -Turn On Fault

PI U5C
4 ’ 1 I . I I I 1

Z# 40 GO XII 11111 1 YII 140 I65
IlHl pnCJ

bOES YOUR PLOT LOOK LIKE THIS?

Figure 5: Interactive Question Displaying Graphic Image File

72 IAAI

A Spectrum Analyzer diagnostic application was
developed at the repair depot. This application is
smaller in size and is highly interactive. It contains
around 200 rules.

Although GCESS was originally developed to
primarily support diagnosis based upon the results of
prior extensive testing, it can be used in an
interactive fashion as well. It contains functions to
ask yes or no questions, list selection questions and
questions for values. These question functions
display graphic image files. This means it easy to
indicate a question like “does the oscilloscope pattern
look like this?“, and attach a graphics image of the
nominal pattern, as illustrated in the Figure 5. These
are used in place of a more elegant pattern analysis as
discussed above.

There are currently twelve copies of GCESS which
are used at 6 sites, in order to run five distinct
applications. Northrop, Rockwell and TRW have
copies of GCESS. The Air Force has copies of
GCESS at two of its logistics sites.

8. Success and Benefits

success
GCESS has been successful in developing diagnostic
applications that are actually being used by AGMC
repair technicians to diagnose missile components.
Five separate deployed applications have been built.

The IMU diagnostic applications, unlike their
conventional software counterparts, are in active use.
We consider both IMU applications to be major
successes, because they perform well and achieve
their goals of producing accurate diagnosis, and
valuable explanations.

One interesting point is that much of the diagnostic
knowledge from the original applications was used in
building the new ones. The modularization of this
knowledge, in fault class rules, and the ease in which
it can be specified and modified by engineers alone,
are major factors of the success of these applications,
and indicates the success of the shell itself.

While the IMU applications were seen to redress
the problems with the existing software, they also
addressed the deeper problems of creating a
repository of diagnostic knowledge. This knowledge,
embodied in fault class rules, has been successfully
transferred from Northrop to the Air Force. In this
sense both the applications and the shell have been
successful. This is a major benefit, although it is
difficult to quantify.

After about a half day’s informal training in
GCESS at the repair facility, the repair facility

engineers began developing and deploying several
diagnostic systems of their own, without extensive
training or defense contractor involvement. This
demonstrated their confidence in the system and its
ability to serve as a repository of their diagnostic
knowledge. They obviously felt they could express
and maintain this knowledge using the GCESS
formalism and that it would be accepted by
technicians because it could be understood. We
consider this a measure of the success of the shell in
achieving its objectives.

Cost Benefit Analysis
Guidance and control components are produced in

small numbers and require expert engineering
diagnosticians at both the contractor and repair
facilities. The maintenance of the components is
extremely costly, especially on a per unit basis. The
development of new diagnostic support was viewed
as an operational necessity, and no formal cost
benefit analysis was performed as part of the
justification for this work.

However, informal analysis indicates that the
combi~~ed cost of developing the diagnostic shell and
the first major IMU application was competitive with
the expected cost of development of a new
conventional software version alone. From a return
on investment point of view, the investment in the
shell is returned in the reduced cost of its first major
application. This is an extremely favorable break
even point, and can be used in an informal cost
benefit analysis of the shell, as opposed to the
specific applications.

Since the cost of the shell is paid for by the first
application, its financial benefits are realized by
subsequent applications and maintenance phases.

The reductions in costs of subsequent applications,
such as the IMU field data application (FDS), occur
because the work necessary to construct diagnostic
rules must be done anyway as part of the
conventional software life cycle. The engineers must
analyze the problem and come up with diagnostic
procedures in order to write the conventional
software specifications. The shell approach saves the
cost of implementing the specification in procedural
code. This is a major financial benefit of the shell.

The second major financial benefit is that it reduces
the cost of software maintenance dramatically.

As previously mentioned, the actual applications
are *justified on the basis of operational necessity
rather than cost/benefit.

Holtzman 73

9. Innovative Aspects

The use of AI diagnostics in the real life diagnosis of
guidance components is new in the Air Force missile
realm. It represents a dramatically different approach
than the traditional highly controlled conventional
diagnostic software. It has shown that it is possible to
provide diagnostic software that is maintainable by
the engineers and keeps abreast of the diagnostic life
cycle.

The development of an architecture for hosting
multiple diagnostic paradigms is another of the
innovations of GCESS.

Acknowledgments

The development of GCESS and its applications
required the assistance of many people within the
Peacekeeper community . We would like to
acknowledge the help of Nevin Colwell of TRW,
Chris Grau of Inference, Bill Hutton of Inference ,
Clay Pinkerton of Rockwell, Dave Reed of
Northrop, Diana Rice of TRW, Jeff Royle of
Northrop and Capt. Terry Sirbough of the U.S. Air
Force.

References

Davis, R., et al. Diagnosis based on description of
structure and function. Proceedings of the National
Conference on Artificial Intelligence Applications,
AAAI, 1982.

Grau, G. , Holtzman, P. GCESS: An Expert
Diagnostic Shell, Proceedings Test Engineering
Conference, 199 1.

Hallanti, M. ,Stafa&i, A. Tomada, L. ODES: a
diagnostic system based on qualitative modeling
techniques. Proceedings of the Fifth Conference on
Artificial Intelligence Applications, IEEE, 1989.

Hammond, K. , Hurwitz, N. Extracting Diagnostic
Features from Explanations. Proceedings of a
Workshop on Case Based Reasoning, DARPA, 1988.

Zadeh, L.A. , Fuzzy Sets, Information and Control
8, 1965.

74 IAAI

