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Abstract 
An application shell is presented for symptom driven 
diagnostic applications that is designed to support 
multiple diagnostic paradigms and is used for several 
specific diagnostic applications. 

1. Introduction 

The United States Air Force deploys Peacekeeper 
missiles as part of its strategic forces. Guidance and 
control components are routinely tested at missile 
sites. If they fail these field tests they are sent to an 
Air Force repair facility (the Aerospace Guidance and 
Metrology Center). The components are electronic 
and electro mechanical in nature, and are 
manufactured by a number of different defense 
contractors. The repair facility must diagnose and 
then repair the problem. 

repair actions. Problems associated with such 
software, as explained below, have resulted in its 
general disuse, causing contractors to consider 
alternative means of replacing these programs. Since 
AI has produced many diagnostic systems, several 
contractors independently suggested building 
diagnostic expert systems. These suggestions led the 
Ballistic Missile Organization (BMO) to build the 
Guidance and Control Expert System Shell (GCESS). 

Problems with Existing Software 
As an example of existing software we examine the 
existing Inertial Measurement Unit (IMU) 
diagnostics, since the IMU was the first area we used 
to prototype a new diagnostic approach. 

Typically, faulty components arrive at the repair 
facility with little information about the faulty 
behavior. They are\ subjected to extended acceptance 
tests to verify that problems exist, and in some cases, 
to special purpose testing. Acceptance tests fail when 
parameters fall outside specified limits. Testing is 
performed on automatic test equipment (ATE) and 
may take many hours and, occasionally, days. It 
generates very large amounts of (sensor) data that 
must be examined to diagnose the failure. 

In many casea, the Air Force personnel must rely 
on the contractors’ experts to isolate the fault. This 
involves additional expense and delay. The Air Force 
would like to perform as much of the diagnosis itself 
as possible, and acquire the contractors’ expertise. 

Currently, much of the expert knowledge of the 
components is disappearing. This is to be expected 
in a long lived program, as the original designers and 
engineers retire or leave. It has been accelerated as 
political changes have impacted personnel levels. 

Some diagnostic programs exist on the ATEs that 
report anomalies and attempt to identify faults and 

The IMU for the Peacekeeper was developed by 
Northrop Corporation. Along with the IMU, 
Northrop was required to develop diagnostic software 
to analyze the acceptance test data. The software was 
designed along with the unit. While the purpose of 
the software was to assure ease of maintenance, it 
required Northrop to predict with certainty the 
behavior of a complex physical component, before 
acquiring actual experience using it. These 
predictions, although sound, were not absolutely 
correct and could not have been expected to be so. It 
is necessary to actually build and test a component in 
order to accurately understand its actual behavior. 
To build correct diagnostics, you must not only know 
the actual behavior of a correctly functioning unit, 
but also the actual behavior of a faulty unit. This 
requires real experience with functioning units. 

From a user perspective, the major failings of the 
diagnostic program were that it could take several 
hours to run, frequently indicated incorrect repair 
recommendations, and did not produce information 
that would permit technicians to evaluate the 
reasonableness of the recommendation. The program 
was also difficult and costly to maintain, and could 
only be updated infrequently. 
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The Northrop approach was to predict all failure 
signatures and then construct a program to search for 
all such signatures in the data, independent of the 
acceptance test failures (symptoms). The program 
halted after the first signature it found. As it turned 
out, some of the signatures could be triggered 
without affecting the basic performance, and without 
relationship to any true symptom. This could not 
have been predicted theoretically. 

Northrop engineers, in effect, used an informal 
causal mental model to predict the observable result 
of a given fault (a signature). They traced the causal 
network backward from effect to cause, and 
associated the faults as possible causes of a signature. 
This information was used as the specification for the 
diagnostic program that was produced by the 
programming staff. In disregarding the symptoms, 
the program behaved like a doctor performing a 
checkup. In principle, it should have always 
uncovered a fault, but in practice it did not. 

In the case of the IMU diagnostics, the program 
specifications developed by the engineering staff 
comprised several hundred pages. Many of the 
signatures used variables that represented 
intermediate calculations. It was clear that it would 
not be an easy task for an engineer to readily change 
the specification. Because of the use of intermediate 
calculations, it could be anticipated that even several 
minor specification changes could entail considerable 
maintenance programming costs, and involve 
extensive regression testing. 

It might seem as though the maintenance problems 
could be greatly ameliorated by the use of 
conventional software, a symptom driven method, 
and modem software engineering practices. Upon 
further analysis, it became clear that they were, in 
large part, a result of the conventional software 
block change maintenance cycle. 
The software maintenance problems are strongly 
related to the fact that the diagnostics execute on the 
ATE. The ATE is used for acceptance testing of 
nuclear missile parts, and its software is subjected to 
very rigorous testing and configuration control. 
Individual change requests are accumulated and 
performed as part of infrequent and costly block 
changes. This is dictated by the organizational 
process of changing ATE software, rather than the 
characteristics of the software or changes. 

The Diagnostic Life Cycle and Decision to 
Build An AI Diagnostic Shell 
Given the problems with existing software, several 
contractors independently proposed building their 

own diagnostic program based upon AI technology. 
The Ballistic Missile Organization (BMO) decided 
instead to build a single symptom driven diagnostic 
shell to be used by all contractors. This shell would 
be tailored to construct diagnostic applications as 
distinguished from more general AI expert system 
shells. This was based partly on the desire to avoid 
duplication of effort and cost, and partly on the 
desire to deliver a single shell to the repair facility 
personnel with a consistent cognitive model and user 
interface, rather than disparate tools developed by 
each contractor. It also allowed BMO to redress the 
major failure of the conventional approach, and 
address the broader problem of establishing a 
repository of diagnostic knowledge that could be 
transferred from the contractors to the Air Force. 

BMO was keenly aware that the major failing of 
the conventional approach was in the area of ease of 
development and maintenance of diagnostic 
procedures. The Peacekeeper experience illustrated 
that in the beginning of the IMU production program 
there was a rapid evolution of diagnostic procedures, 
as experience accumulated about the actual behavior 
and problems with components in the field. It took 
some time for the diagnostics to “mature.” 

After that, diagnostics typically undergo a gradual 
development. These could be attributed to diagnostic 
discoveries, the appearance of new problems as 
components aged, and change in diagnostics as sub 
components were replaced with slightly different 
configurations. The changes need not impact the 
acceptance testing, so that the basic functions of the 
ATE programs did not need to be updated. 

Human technicians could easily accommodate the 
diagnostic life cycle of rapid change followed by 
much more gradual change, but the conventional 
software maintenance process could not implement 
changes in a timely manner. This led to major 
differences between the technicians practice and the 
diagnostic programs, which condemned to software 
to go unused. 

AI technology was viewed as potentially capable of 
supplying an easily maintainable shell that would 
allow engineers and technicians to maintain the 
diagnostics without programming staff and the delays 
and costs of the traditional software maintenance 
cycle. It would also provide a practical repository of 
diagnostic knowledge. 

BMO was interested in a shell to support its 
various components and component manufacturing 
contractors. It wanted the shell to be capable of 
incorporating multiple diagnostic paradigms that 
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might arise from the different contractors individual 
diagnostic approaches. 

The key organizational or process feature that 
would allow the development of this type of shell 
was the separation of acceptance testing from 
diagnosis, by hosting the diagnosis on a separate 
computer. This relieved the diagnostic software from 
the intensive and rigorous configuration control 
associated with acceptance testing. The PC was 
selected as the diagnostic hardware platform as a low 
cost delivery vehicle. 

A key technical feature would be to modularize 
diagnostic knowledge and make it directly available 
for the engineering staff to maintain. 

2. The GCESS System Overview 

Development History 
The Air Force contracted Northrop Corporation to 
build a prototype Guidance and Control Expert 
System Shell (GCESS) and to prototype the IMU 
diagnostic application. Northrop could not find an 
off-the-shelf shell that satisfied the Air Force 
requirements, selected ART-IM to construct the 
GCESS shell, and subcontracted Inference 
Corporation to build it. The diagnostic paradigm was 
developed jointly by Northrop and Inference. The 
selection of ART-IM was motivated by its extensive 
frame and rule system, availability on the PC 
platform, and ability to produce both development 
and deployed versions of expert systems. 

The prototype shell [3] required nine man months 
of effort to build. The prototype IMU application 
illustrated the feasibility of the approach, and the 
advantages of using a declarative representation. In 
the development mode, the updating of diagnostic 
knowledge was almost immediate, and the 
application could be immediately rerun. 

The Air Force contracted Northrop to build the 
actual shell, and a full IMU diagnostic system. 
Northrop subcontracted to Inference to develop 
diagnostic paradigms that would satisfy the 
Peacekeeper guidance and control community, 
including associated contractors. The GCESS shell 
required three man years of effort and was delivered 
at the end of 1991. Part of the work on the shell was 
to establish what diagnostic paradigms were needed 
by the contractors. The Northrop prototype 
application was expanded to a full IMU diagnostic 
system by Northrop engineers, and first deployed in 
June 1992. GCESS was developed as a Microsoft 
Windows application, to allow it to be run as one of 
several possible windowed processes. This allowed 

simuhaneous access to signal processing and 
networked data base applications. 

GCESS initially supported two distinct diagnostic 
paradigms. One was developed by Northrop and 
Inference, and a separate paradigm was developed by 
Rockwell International that was prototyping 
diagnostics for test stations themselves. 

The Air Force funded additional work on GCESS 
and a second version of the GCESS was delivered in 
December 1992. This version included an enhanced 
graphics browser, enhanced facilities to locate 
anomalous fault classes, and several other features, 
and was upgraded to use Microsoft Windows 3.1 
features. 

The second version does not include the paradigm 
developed for test station diagnostics, at the direction 
of the Air Force. However, both paradigms have 
been tested and the multiple diagnostic paradigm 
capability validated. 

The development of the GCESS involved 
production of a requirement, functional 
specifications, high level design, design, and test 
plan documents. These documents and their various 
traceability matrices ensured that the requirements 
were addressed and tested. 

The IMU application was tested against historical 
data on actual component failures, and correctly 
diagnosed all faults associated with those failures. 

Several other diagnostic applications have been 
developed using GCESS. They include a second IMU 
diagnostic application for field data, and the use of a 
GCESS application as a component in a fleet 
assessment tool developed by Rockwell International. 

GCESS Design Goals 
The major GCESS design goals were to: 

l Incorporate Multiple Symptom Driven 
Paradigms. 

l Allow Multiple Fault Diagnosis for Each 
Symptom. 

l Enable Declarative Representation of 
Diagnostic Knowledge. 

l Provide Rich Explanation Facilities. 
l Simplify Ease of Maintenance and Incremental 

Modification. 
l Support a Deployment Mode which Inhibits 

Modifications. 
l Separate Acceptance Testing from Diagnosis. 
l Separate Diagnostic Specification from Data 

Specification and Retrieval. 
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The unsuccessful experience with the existing (non- 

diagnostk engineers, 

symptom driven) software resulted in the goals of 

and reflects the diagnostic 

establishing a symptom driven system, capable of 
isolating multiple faults per symptom, and an 
architecture capable of incorporating more than one 
diagnostic paradigm. The use of declarative 
knowledge and rich explanation facilities would 
permit the development of diagnostics and aid the 
ease of maintainability, by the engineers themselves 
and also play a major role in the acceptance of the 
software by the technicians. Equally importantly, it 
would provide a repository of diagnostic knowledge 
that could be easily transferred to the Air Force. Ease 
of modification was an important goal. At the same 
time, the Air Force wanted to provide a 
“deployment” version of the software to be used by 
the technicians on the floor and which could not be 
modified, in order to provide adequate version 
control. Separation of acceptance testing from 
diagnosis has already been mentioned as a key 
organizational feature. The last goal was to separate 
the diagnostic specification, which is performed by 

knowledge, from the data specification and retrieval 
that is a programming task. 

Paradigm Independent Design Concepts 
GCESS was designed to implement multiple 
symptom driven paradigms. The design envisioned 
an abstract level of a symptom driven paradigm, 
which could be specialized or instantiated to define a 
particular diagnostic paradigm, which would then be 
incorporated into GCESS. The design also envisioned 
a general implementation strategy that used the 
schema and rule system of the underlying tool. 

illustrated in Figure 1, 

The GCESS design abstracted the key elements of 
generic symptom driven paradigms: symptoms, 
measuremerrts (data), diagnostic steps, diagnostic 
status, report generation. A control mechanism was 
established called the agenda. Diagnostic steps would 
be scheduled by placing them on the agenda. The 
diagnostic status would contain the dynamic state of 
the diagnosis after each step that would be visible to 
the user in a status screen. A typical status screen for 
the Fault Tree paradigm (to be discussed below) is 
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Unit Id: MOTOR UNIT ID #12RTS? 

Current symptom: 3 of 3 

Name: TEMP-2 

Value: 101.2 Source: DS5 

Type: PDA 

Time: 123 

Last Fauft Class 

Name: LUBRICANT,PRESSURE-LOW 

Status: SUCCEEDED 

Repair Recommendations Test Recommendations 

Notes 

No Initial Fault Class: Symptom: 1 PDA OS5 Hl 
No Recommendation for Symptom: 1 PDA Hl DS5 

Function Keys: Fl =HELP FI=Run F5=Step F8=Halt 

Figure 1: Status Screen for Fault Tree Paradigm 



A symptom driven diagnostic paradigm was 
assumed to be a specialization of the following 
generic algorithm which can be expressed in pseudo 
codeas 

while (there are symptoms remaining) 
begin 

select-next-symptom() 
schedule-first-diagnostic-step0 
while (agenda -not-empty) 

begin 
select-and-do-diagnostic-step0 
modify-and-display-status() 

end 
end 

generate-report0 

Two important features of this description are that 
is both vacuous (devoid of content) and procedural in 
nature. A specific diagnostic paradigm, is a 
particular. specialization of the generic procedure. 
The individual paradigm defines conceptually how 
symptoms and diagnostic steps are scheduled, and 
how diagnostic steps are performed. This, in essence, 
defines a user model of diagnosis and gives content 
to the specific diagnostic paradigm. As a conceptual 
description, a paradigm does not specify how 
operations are accomplished at the iml)lementation 
level. 

The GCESS design assumes that a paradigm will 
define diagnostic knowledge objects, at the 
conceptual level, which will be used to schedule and 
implement diagnostic steps. It further assumes that 
these objects will possess a declarative form, that can 
be easily defined and manipulated by the engineer. It 
assumes they will be objects, in the sense that they 
can be created, modified, destroyed, edited, 
browsed, stored and retrieved by the user. 

In the paradigms we implemented, the diagnostic 
knowledge objects me conceptualized as diagrwstic 
rules (as opposed to ART-IM rules at the 
implementation level) which can be represented as /y 
then statements 

A particular diagnostic application, such as IMU 
diagnostics, will consist of a knowledge base of 
diagnostic knowledge objects, which direct a specific 
diagnostic paradigm to diagnose a component, 
together with a data server that will supply the 
symptoms and data to be used for the diagnosis. 

An example of a diagnostic rule is an instance of: 

if a particular signature is satisfied, 

then 
recommend repairing the associated 
fault(s) that cause(s) it 

This type of rule was the basis of the existing IMU 
software. 

GCESS Implementation Strategy 
The GCESS design envisions a generic 
implementation strategy for implementing a 
diagnostic paradigm. 

The technical approach of a paradigm relies upon 
the schema, fact and rule system of the underlying 
tool. Symptoms, the diagnostic status, and the agenda 
are represented as schemas. A particular paradigm 
may add an additional status schema slot or define 
additional agenda item fields. 

Diagnostic knowledge objects (diagnostic rules) 
are also represented as schemas. This gives them a 
declarative syntax and facilitates both forms-based 
editing and browsing, as well as object storage and 
retrieval. 

While diagnostic rules at the conceptual level are 
represented as schemas, ART-IM rules at the 
implementation level are used to schedule and 
implement diagnostic steps. 

These meta ART-IM rules can pattern match on 
the stylized conceptual diagnostic rules to select and 
schedule steps. 

3. Developing and Implementing a 
Specific Diagnostic Paradigm 

GCESS is designed to incorporate multiple 
diagnostic paradigms. In order to add a paradigm to 
GCESS, the shell must be extended as described in 
this section. This level of modification is extremely 
infrequent and is not expected to be performed by 
engineers or contractors. 

Developing a diagnostic paradigm is a knowledge 
engineering task that defines a cognitive model of 
diagnosis that is close to the one actually used by 
group of engineers and technicians to diagnose a type 
of component. The model should be based upon rules 
or objects that are clear to the engineers and can be 
easily defined and understood in a declarative 
fashion. The paradigm should use or process these 
rules in a well defined manner that engineers and 
technicians can understand, so that they can 
manipulate the rules, and develop and maintain 
diagnostic systems using the paradigm. An example 
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of such a paradigm is the Fault Tree paradigm 
described below. 

In order to implement a paradigm in GCESS, it is 
necessary to develop: 

l An ART-IM schema representation of the 
diagnostic knowledge objects. 

l Specializations of the agenda item and any 
additional status slots. 

l An ART-IM rule set (group of production 
rules) to perform symptom and diagnostic step 
scheduling and to execute diagnostic steps. 

l User Interface editors and browsers for 
maintenance of diagnostic knowledge object. 

l A user Interface status screen and top level 
menu to invoke editors and browsers. 

l Functions to save and restore the state of the 
current diagnosis. 

Implementation of a particular diagnostic paradigm 
consists of specifying the schema representation of 
the diagnostic knowledge objects, and then 
developing the rules and functions necessary for 
symptom and diagnostic step scheduling, and 
executing each diagnostic step. Scheduling is 
performed by asserting and retracting from the 
agenda. An agenda item has a flexible format but 
must always include an (initial) paradigm 
identification tag. 

Applications with mixed paradigms were 
considered but not implemented. Technically, this 
would require each paradigm to include a paradigm 
switching primitive, so that the UI display the correct 
paradigm specific status and menu. This is very 
simple to implement. However, mixed paradigms 
were not implemented because they did not seem to 
add any practical benefit to the two actual paradigms 
we developed. 

A specific application for a paradigm will consist 
of a knowledge base containing the specific 
diagnostic knowledge objects required to perform the 
diagnosis within the paradigm. The knowledge base 
can be stored and loaded in textual form in a 
development environment. ART&l provides the 
capability necessary to compile these objects into an 
executable form, and to construct a deployed 
application (executable image). Paradigm 
applications also specify the name of a data server 
that will supply the symptoms and data. 

GCESS consists of the aggregate of the various 
paradigm rule sets, and diagnostic knowledge object 
editors and browsers, status screens and menus. Each 
diagnostic knowledge base contains a paradigm 

identification tag. When a knowledge base is loaded, 
this tag can use to select the associated user interface 
menu and status screen. 

Developing and using a specific diagnostic 
application consists of three steps: 

l Develop the Diagnostic KB. 
l Generate the Deployed Application Executable 

Image. 
l Perform Diagnosis. 

GCESS supports opening the diagnostic knowledge 
base, editing its objects, and saving the knowledge 
base, as well as performing diagnosis in the 
development mode to allow the engineer to develop 
the KB. 

GCESS will generate C files and a make script to 
compile the knowledge base into a separate 
executable image. 

GCESS performs the identical diagnosis in the 
development mode and the deployed image. It allows 
the diagnostic state to be saved after any state, and 
restored to resume diagnosis. The deployed image 
provides browsers but no editing facilitates. 

4. Fault Tree Paradigm 

The Fault Tree paradigm was the first paradigm 
incorporated into GCESS. This paradigm models a 
diagnostic procedure of finer and finer fault isolation. 

In its simplest form it resembles a left to right 
depth first search tree, each node of which is a called 
a fault class, and represents the class of texminal 
nodes (faults) which can be reached from it. 

Figure 2 is a simple fault tree that represents a 
diagnostic procedure that says that if a motor is hot, 
we should check to see if the current is high, if the 
lubricant is low, and if the lubricant line is broken in 
that order. 

The fault tree paradigm uses two basic types of 
diagnostic knowledge objects to control step 
selection. The symptom/initial fault class map, is a 
collection of diagnostic rules that selects the initial 
fault class to explore based upon the symptom 
features. It schedules the initial fault class on the 
agenda. For example, the map may indicate that if 
symptom name is “Motor-Temp-High” the 
Motor-Hot fault class should be scheduled. These 
diagnostic rules are used to implement the abstract 
schedule-first-diagnostic-item-on-agenda function. 

The ngen& items represent the fault classes that 
are scheduled to be explored. 
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MOTOR-HOT 

CURRENT-HIGH LUWWANT-LOW LUBE-LINEJ3ROKEN 

Figure 2: Simple Fault Tree Graph 

The Lube-Line-Broken fault class above might 
represent the rule: 

if Lube-Line-Pressure < 0.2 
then recommend Repair 

Broken-Lube-Line 

Fault Class Types 
Each fault class is also a diagnostic rule, which 

contains an ifpart and a then part. 
The Motor-Hot fault class above might represent 

the rule: 

if Motor-Temp > 1 IO 
then 

explore Current-High, 
Lubricant-Low, Lube-Line-Broken 

The fault tree paradigm defines four subtypes of 
fault classes. They are distinguished by their then or 
action types. Two subtypes indicate different ways of 
exploring other fault cl- (which are represented 
graphically aa children). The other two make 
different types of recommendations (repairs and 
t&S). 

The exploration types are called ONE-OF and 
EACH-OF actions. A ONE-OF fault class explores 
its child fault classes in left to right order until one of 
them results in a repair recommendation. It is 
roughly equivalent to saying “try this, and if that 
doesn’t work then try this, etc.” ONE-OF fault 
classes assume it is highly unlikely that more than 
one of the faults they lead to will occur 
simultaneously. 

An EACH-OF fault class also explores its child 
fault classes in left to right order, but the exploration 
does not stop yhen one of them leads to a repair 
recommendation. It always explores all its children. 
It provides is a way of isolating multiple faults. This 
may be used to check separate subsystems, or for 
multiple faults within the same subsystem. 

ONE-OF and EACH-OF fault classes are 
represented graphically as nodes with arcs to 
children. The fault class contains not only the node, 
but also, in a sense, the arcs. 

The two types of recommendation fault classes 
recommend repairs and tests respectively. All 
recommendations are accumulated and reported as the 
result of the diagnostics. 

Repair recommendations indicate a possible fault 
and a repair procedure for the fault. Test 
recommendations indicate that further tests may be 
necessary to isolate the fault. 

When a repair recommendation is encountered, all 
fault classes that led to its exploration are notified. 
This affects the ONE-OF fault classes that will not 
explore any other children. Test recommendations do 
not inform other fault classes. Using ONE-OF logic 
at a node, a repair recommendation (isolating a fault) 
will inhibit the search for further faults from that 
node, but a test recommendation (which does not 
isolate a fault) will not inhibit searching for faults. 

Since ONE-OF and EACH-OF are specified by the 
engineer for each fault class, he has great control 
about where to search for multiple faults and where 
not to do so. 
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Fault Class Conditions 
Each fault class also contains an if part consisting of 
a (possibly empty) set of conditions. These 
conditions must be satisfied for the fault class and its 
sub tree to be explored. For example, the Motor-Hot 
fault class might be a sub tree of a more general 
motor problem tree and contain the condition that the 
motor temperature is greater than 110’. In that event, 
the motor hot diagnostics would not be explored 
unless the temperature indicated that this was a 
possible problem. Initial fault classes for symptoms 
generally have no conditions, since they are the 
starting point for symptom diagnosis. 

Unlike a decision tree, the conditions are not used 
to determine which branch should be taken, but 
rather whether the sub tree should be explored at all. 
When viewed graphically, the conditions are used to 

isolate the fault to a set or C&W of faults reachable 
from the node. In reality, the fault tree is really a 
search tree representation of a diagnostic procedure. 

The conditions are organized into required and 
optional conditions. All required conditions must be 
satisfied, but only some of the optional conditions 
may be needed for the if part to be satisfied. The 
engineer can assign a condition threshold, and 
weights associated with the group of all required 
conditions, and with each optional condition. Once 
the required conditions are satisfied, the optional 
conditions are tested until the threshold is exceeded. 
By adjusting the weights and threshold the engineer 
might indicate, for example, that two required 
conditions must be true and at least three of the five 
optional conditions must be true. 

-1 Edit Fault Class 

Fault Class: 

TYPE Clause Iwt1 
^I Rtq wt: 50 “..” . ...” . . . . “...“...” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *.* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “” . . . . . . I 

Req VOLTAGE < 8.1 
Opt TEMP > 98 30 T hresholck 
Opt MOTOR-SPEED > 2000 30 

1701 

Action Type: REPAIR-RECOMMENDATION 

Actions 
100 REPAIRJdOTOR~CIRCUlT 

partic IMOTOR i mm HOT 

Figure 3: Fault Clw Top Level Editor Screen 
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The conditions themselves are Boolean expressions 
that generally involve measurements (often sensor 
data) and ranges. This allows a simple mathematical 
declarative syntax with a simple mechanism for 
practical firzziness (optional conditions). There is a 
well defined condition language including standard 
mathematical functions. 

The base ART-IM language may be used to define 
additional functions. Conditions use a well defined 
mathematical expression syntax like FORTRAN, 

The engineer specifies fault class as coticlitiotr 
action rules as illustrated by the Figure 3, which 
shows the top level fault class editor screen for a 
particular fault class. 

Assumptions and Replicated Components might contain the parameter&d measurement name 

When a ONE-OF or EACH-OF fault class schedules “Lube-Line-Pressure” and parameterized 

it children to be explored, it may also specify a list of recommendation name “Repair Broken-Lube-Line” 

assumptions to be used by each child. These are whose macro expansions depend on the value of the 

specific variable. This mechanism is provided to 
parameterize the logic and allow the same logic to be 
applied to multiple instances of replicated objects. 
The assumptions are accumulated dynamically, so 
that each fault class inherits the assumptions of all 
fault classes that led to its exploration. Measurement 
names and recommendation names can be “macro 
expanded” using the assumptions and a simple name 
concatenation form specified by the engineer. For 
example, the fault class Check-Lube-Line 

if Lube-Line-Pressure < 0.2 
then recommend Repair 

Broken-Lube-Line , 

specified on a child by child basis and may differ 
among children. Each assumption assigns a value to a 

assumption variable Lube-Line Num. 

Fault Class: !WDC~HARD~Z4JiEG~BAD 

One Of - 

Each Of ---- 

#Levels 1212 

Figure 4: Graphic Browser 
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A more generaI fault class, Check-All-Lube-Lines 
might specify the same child Check-Lube-Line three 
times but with the different values of 
Lube-Line-Num of 1, 2 and 3. This would apply 
the same logic to the three separate lube lines, and 
explore the same fault class three times, but using 
different assumptions. 

Fault Class Recommendations 
Fault class recommendations may contain a 
recommendation name and text, as well as 
explanation, and links to hyper text files (such as a 
Theory of Operations manual) and graphic images. 
These are supplied by the engineer in the fault class. 
Recommendations also contain the symptom that led 
to the recommendation, the list of current 
assumptions, and the fault classes that led to the 
recommendation being made. Repair 
recommendations are reviewed by technicians. They 
have the ability to accept or reject them, and the 
information necessary to make that decision. In this 
sense, the diagnostic application is an advisor. This 
kind of advisor allows the technician to both criticize 
its results and suggest changes that can be rapidly 
incorporated. It is easily viewed as a tool, rather than 
as an adversary or inconvenience imposed from on 
high. This produces a great advantage in gaining 
organizational acceptance. In a sense it can co-opt its 
strongest critics, by turning them into participants in 
the development of diagnostics. 

Fault Tree hs a Graph 
The term “Fault Tree” is somewhat of a misnomer. 
It need not be a “tree” in the topological sense. It is 
actually a directed graph that may contain both cycles 
and disconnected components. It is typical, though 
not necessary, for individual symptoms to map to 
disconnected graph components. The paradigm will 
not explore the same fault class twice for the same 
symptom under the same set of assumptions, but 
static cycles in the graph are permitted. 

The Fault Tree Paradigm UI 
The fault tree paradigm contains a status screen 

that displays status after each step, editors and 
browsers for the initial fault class map that maps 
symptoms to root fault classes, and the fault classes 
themselves. It also provides a graphical browser to 
view the network and edit fault classes. The browser 
is illustrated in Figure 4. Fault class objects contain a 
great deal of information and there are a variety of 
screens used to support editing and browsing fault 
class elements. In all, there are around 50 dialog 

boxes and screens used by the fault class paradigm. 
However, many screens have editor and browser 
formats that are nearly identical. 

The Importance of Explanation 
A primary feature of the fault tree paradigm is its 
ability to reduce the cognitive distance between the 
way the diagnostic software diagnoses the data, and 
the way in which the engineers diagnose the data. 
The technicians can accept the diagnosis because they 
can read and understand the fault class diagnostic 
rules and explanations. 

At the beginning of this paper, it was argued that 
diagnostic rules are often derived from inverting 
deductions in an informal mental causal model. Fault 
classes express rules in a crisp mathematical manner. 
However, they may not fully express physical and 
engineering principles, or actual experience 
represented by the mathematical forms. For this 
reason, the fault class rules may be annotated with a 
detailed explanation supporting the rule. The use of 
hypertext and graphics links, allow the explanation to 
refer to Principles of Operation manual and 
diagrams. 

In practice, these executable diagnostic rules, 
annotated by supporting explanation, provide a 
practical repository of diagnostic knowledge and 
experience. 

5. Separation of Data from Knowledge 

GCESS applications can deal with very large amounts 
of data. This data is fetched on demand. The data is 
modeled as a measuremetrt that is identified by a 
name, data source and time. Each GCESS knowledge 
base must specify the name of a data server. 

The data server is responsible for implementing the 
retrieval of symptoms and measurements, and 
performing application specific data processing. Data 
servers may use flat files, data bases or any means 
they want. GCESS specifies two generic functions to 
get symptoms and measurements that must be 
provided by a data server. 

Data servers are implemented as Windows Dytlnmic 
Litrk Libraries (DLLs). These are separate 
executables that are developed on a per application 
basis by programming staff. This ensures separation 
of the specitication of the diagnostics by the 
engineers using GCESS, from the programming tasks 
associated with data retrieval and processing. The 
DLL mechanism that resembles a remote procedure 
call allows different applications to link to different 
versions of the same function. 
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6. Additional Diagnostic Paradigms 

Several diagnostic paradigms were considered and 
rejected for use in GCESS. These included model 
based reasoning (Davis et al., 1982 , Hallanti, , 
Stafanini & Tomada 1989), use of traditional fuzzy 
logic (Zadeh 1965), and a paradigm developed , 
internally at Inference for the integration of 
separately developed component diagnostics. The 
reasons they were rejected had to do with the fact 
that they did not correspond to the way the actual 
engineers conceptualized diagnosis, and consequently 
could not be maintained or serve as a repository of 
knowledge. 

Some thought was given to using symptoms to 
isolate the fault to a subsystem, which could then be 
analyzed by model based reasoning. However, it was 
unclear that his was actually the case. Furthermore, 
this could result in merely transferring the software 
maintenance problems to the process of modeling a 
complex physical component. 

Fuzzy set membership functions per se did not 
seem to reflect the technicians point of view. 
Recommendations generally list the measurements 
used to arrive at them. Technicians can view these 
values and can query for others to determine if the 
conditions are really satisfied. For example, if a 
condition of the form “temp > 100” were satisfied 
and the value of temp were 1OO.OW1, the technician 
might not accept the recommendation. They 
definitely wanted to be “in the loop” in these sorts of 
decisions, and wanted the leeway to exercise their 
own judgment as opposed to relying on automatic 
(fuzzy) techniques. 

An additional diagnostic paradigm for Circuit 
Analysis was incorporated into GCESS. This 
paradigm was developed by Rockwell for diagnosis 
of test stations themselves. This paradigm was 
eventually eliminated after the delivery of the 
Rockwell prototype application, presumably for lack 

. of funding to continue the development of this type 
of diagnostic application (i.e., test station 
diagnostics). It did, however, validate the concept of 
a multiple paradigm shell. 

The Rockwell paradigm was related to a model 
based reasoning process. It required a very large 
“hardware model” that needed to be separately 
maintained and defined the diagnostics to a great 
extent. This led to real concerns in terms of 
maintenance, that we described above. 

Case based reasoning methods (Hammond & 
Hurwitz 1988) were considered but not included for 

the applications considered. The feeling was that if a 
diagnostic case were successfully analyzed and 
understood, it could be expressed as a fault class. 
Use of a case base search of similar problems was 
thought to be of limited utility, and as a method of 
last resort. We still have some interest in 
incorporating a case based paradigm to broaden the 
scope of the tool, provided additional funding can be 
obtained. 

Neural net methods were also considered to support 
pattern recognition and discrimination tasks but 
rejected for practical and economic reasons. Many 
analysts compare the actual plot of data parameters 
with nominal plots of normal and faulty components. 
In the IMU case, there were hundreds of such plots 
that might be considered. Although, using neural net 
discrimination was attractive theoretically, it would 
involve the preparation of a very large amount of 
training data, and interfacing with other data analysis 
programs. In the more general shell setting, it meant 
that an engineer would have to train a net for each 
discrimination, which presented ease of use 
problems. It was far more practical to have the 
engineer indicate the patterns and intent, and have the 
technician make the discrimination when necessary. 
Humans are obviously very good at this type of 
pattern recognition, and the Windows environment 
supports running other data analysis and plotting 
programs simultaneously. 

7. Fielded Applications 

Several major applications have been developed 
using GCESS. The IMU ADS application, developed 
by Northrop, uses approximately 1400 fault classes 
and was first deployed in June of 1992. It takes 
under 2 minutes to run and dramatically increases the 
fault coverage over the previous diagnostic software 
(ATP). Maintenance technicians are satisfied that the 
logic is correct. Creating or modifying a fault class is 
essentially a text processing operation, and a new 
deployment version can be created in under an hour. 
There are four copies of the IMU diagnostics 
currently deployed at three separate sites. 

This application was created by starting with the 
specifications for the original diagnostic program, 
and conducting extensive knowledge engineering 
interviews to incorporate current diagnostic 
knowledge. The interviews were conducted by a 
senior Northrop systems engineer, who was the 
project leader and responsible for creating the 
diagnostic rules. He first had to create the overall 
diagnostic flow, and grouping of problems and sub 
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problem. He structured the overall problem so that 
he was confident in the diagnostic coverage of the 
many possible symptoms. The diagnostic problems 
were grouped in about twenty broad categories. The 
diagnostic rules cover a variety of ‘diagnostic tests 
that are employed and use several different files of 
time averaged data. 

The interviews were conducted over many months 
and were with other members of the engineering staff 
who were expert analysts of the various subsystems. 
While the interview process was progressing the lead 
systems engineer wrote the diagnostic rules that form 
the diagnostic application. He did not have to rely on 
programming personnel or professional knowledge 
engineers, and had complete control over the 
diagnostics. He included the engineering explanations 
as part of rules. The explanation is quite extensive. 

A second IMU GCESS diagnostic system (FDS) 
was constructed to analyze IMU field data (as 
opposed to ATE data) at the repair facility. Field data 
sometimes accompanies the components that arrive 
for repair. This replaced a previously deployed 
diagnostic program (FTP), and was constructed by 
Northrop engineers. 

A Stable Member diagnostic application has been 
developed by the repair facility engineers . It uses 
some of IMU rules and has a much larger interactive 
components. It is on the order of 800 rules. 

Rockwell International developed a Field Data 
Advisor (FDA) which examines fleet status and uses 
GCESS as the embedded diagnostic component. 
Assessment experts track a variety of parameters and 
anomalies at individual sites, as well as parameters 
for the entire fleet. They are concerned with the 
status at any given moment and how it evolves over 
time. FDA is a tool to automate parts of the analysis. 
FDA was tested and deployed at the end of 1992. 
Three copies of FDA are currently deployed at three 
separate sites. 

The GCESS portion of FDA was constructed with 
the involvement of the fleet assessment experts, who 
are themselves engineers. It uses approximately 850 

_ fault classes. The rules analyze data produced by 
signal processors to diagnose on going problems and 
trends. They both consult and maintain an historical 
track list of the processed parameters and problems. 

Select Item 

Plot C -Turn On Fault 
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bOES YOUR PLOT LOOK LIKE THIS? 

Figure 5: Interactive Question Displaying Graphic Image File 
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A Spectrum Analyzer diagnostic application was 
developed at the repair depot. This application is 
smaller in size and is highly interactive. It contains 
around 200 rules. 

Although GCESS was originally developed to 
primarily support diagnosis based upon the results of 
prior extensive testing, it can be used in an 
interactive fashion as well. It contains functions to 
ask yes or no questions, list selection questions and 
questions for values. These question functions 
display graphic image files. This means it easy to 
indicate a question like “does the oscilloscope pattern 
look like this?“, and attach a graphics image of the 
nominal pattern, as illustrated in the Figure 5. These 
are used in place of a more elegant pattern analysis as 
discussed above. 

There are currently twelve copies of GCESS which 
are used at 6 sites, in order to run five distinct 
applications. Northrop, Rockwell and TRW have 
copies of GCESS. The Air Force has copies of 
GCESS at two of its logistics sites. 

8. Success and Benefits 

success 
GCESS has been successful in developing diagnostic 
applications that are actually being used by AGMC 
repair technicians to diagnose missile components. 
Five separate deployed applications have been built. 

The IMU diagnostic applications, unlike their 
conventional software counterparts, are in active use. 
We consider both IMU applications to be major 
successes, because they perform well and achieve 
their goals of producing accurate diagnosis, and 
valuable explanations. 

One interesting point is that much of the diagnostic 
knowledge from the original applications was used in 
building the new ones. The modularization of this 
knowledge, in fault class rules, and the ease in which 
it can be specified and modified by engineers alone, 
are major factors of the success of these applications, 
and indicates the success of the shell itself. 

While the IMU applications were seen to redress 
the problems with the existing software, they also 
addressed the deeper problems of creating a 
repository of diagnostic knowledge. This knowledge, 
embodied in fault class rules, has been successfully 
transferred from Northrop to the Air Force. In this 
sense both the applications and the shell have been 
successful. This is a major benefit, although it is 
difficult to quantify. 

After about a half day’s informal training in 
GCESS at the repair facility, the repair facility 

engineers began developing and deploying several 
diagnostic systems of their own, without extensive 
training or defense contractor involvement. This 
demonstrated their confidence in the system and its 
ability to serve as a repository of their diagnostic 
knowledge. They obviously felt they could express 
and maintain this knowledge using the GCESS 
formalism and that it would be accepted by 
technicians because it could be understood. We 
consider this a measure of the success of the shell in 
achieving its objectives. 

Cost Benefit Analysis 
Guidance and control components are produced in 

small numbers and require expert engineering 
diagnosticians at both the contractor and repair 
facilities. The maintenance of the components is 
extremely costly, especially on a per unit basis. The 
development of new diagnostic support was viewed 
as an operational necessity, and no formal cost 
benefit analysis was performed as part of the 
justification for this work. 

However, informal analysis indicates that the 
combi~~ed cost of developing the diagnostic shell and 
the first major IMU application was competitive with 
the expected cost of development of a new 
conventional software version alone. From a return 
on investment point of view, the investment in the 
shell is returned in the reduced cost of its first major 
application. This is an extremely favorable break 
even point, and can be used in an informal cost 
benefit analysis of the shell, as opposed to the 
specific applications. 

Since the cost of the shell is paid for by the first 
application, its financial benefits are realized by 
subsequent applications and maintenance phases. 

The reductions in costs of subsequent applications, 
such as the IMU field data application (FDS), occur 
because the work necessary to construct diagnostic 
rules must be done anyway as part of the 
conventional software life cycle. The engineers must 
analyze the problem and come up with diagnostic 
procedures in order to write the conventional 
software specifications. The shell approach saves the 
cost of implementing the specification in procedural 
code. This is a major financial benefit of the shell. 

The second major financial benefit is that it reduces 
the cost of software maintenance dramatically. 

As previously mentioned, the actual applications 
are *justified on the basis of operational necessity 
rather than cost/benefit. 
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9. Innovative Aspects 

The use of AI diagnostics in the real life diagnosis of 
guidance components is new in the Air Force missile 
realm. It represents a dramatically different approach 
than the traditional highly controlled conventional 
diagnostic software. It has shown that it is possible to 
provide diagnostic software that is maintainable by 
the engineers and keeps abreast of the diagnostic life 
cycle. 

The development of an architecture for hosting 
multiple diagnostic paradigms is another of the 
innovations of GCESS. 
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