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Abstract 

Identification and characterization of indications in 
eddy current (ET) signals can be highly subjective in 
nature, with varying diagnoses made by different 
analysts or by a single analyst at different times. 
Consistent analyses of an indication over time are 
required in order to accurately assess trends in material 
condition. A rule-based expert system, with a well 
designed set of interpretation guidelines, can provide 
the consistent and repeatable analysis that is desired. 
An expert system was developed that analyzes eddy 
current signals allowing interactive or unattended 
operation, or a mixture of the two. Measurements are 
derived from the data using automatic machine 
recognition of ET impedance plane patterns. Uncertain 
and conflicting measurements are treated in a rigorous, 
probabilistic manner using the Dempster-Shafer theory 
of evidence. The expert system identifies the nature of 
an indication and the confidence in that diagnosis. The 
system is also able to automatically reference past 
measurements of the same indication and analyze them 
using the same criteria. Finally, it determines the trend 
in the indication and allows the analyst to make an 
informed decision about its severity. This paper 
describes the expert system (Dodger) and its process of 
analyzing eddy current signals.’ 

Introduction 
Eddy current testing (ET) is a widely used non- 

destructive testing (NDT) method, particularly for 
inspection of tubing material. ET’s speed, 
sensitivity, and ease of use make it an ideal choice 
particularly for heat exchanger tubing which may be 
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non-ferromagnetic and thin-walled. For all its 
benefits, however, ET can also be among the most 
frustrating of NDT methods. Although the technique 
itself is simple and reliable, inspection data and 
results frequently are contradictory and misleading 
due to the many material variables which influence 
the ET measurements. Inspection results are often 
not consistent with prior inspections or are 
inconsistent among different analysts. As a result, 
confidence in the technique suffers. 

Most difficulties with ET arise from analysis of 
data. ET by its nature is sensitive to any change in 
the electrical or magnetic properties of the test part. 
For heat exchanger tubing, this includes not only 
defects, but also support structures, electrically 
conductive deposits, permeability variations, dents 
and bulges, roll expansions, and other phenomena. 
Indications from these other effects frequently 
combine with indications from defects such that both 
detection and sizing of flaws is compromised. 
Through the use of multiple frequency ET systems, 
modern equipment is capable of acquiring the 
necessary data to correctly diagnosis these 
indications. Application of consistent analysis 
techniques, however, is required to achieve 
improved test results. Human nature itself will cause 
some variance in analysis to occur. More important, 
the expertise to analyze data most proficiently is 
very often distributed among several individuals. 

To overcome these obstacles, an eddy current 
expert system has been developed. It is specifically 
designed to analyze bobbin probe data from heat 
exchanger tubing, although application to other 
areas is possible. The expert system was developed 
to satisfy the following functional requirements. 

1. Con&tencv of interpretatiow Given the same 
indication, the system should always arrive at the 
same diagnosis. Additionally, all indications should 
be evaluated thoroughly such that interpretation is 
consistent and repeatable. The system should also 
have access to a library of historical ET data to 
perform trend assessments using the same methods 
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of analysis. 
2.Comprehensive knowledge base: The system 

should contain a comprehensive knowledge base 
representing the accumulated expertise of several ET 
experts. This knowledge base would then allow an 
expert-level review for all diagnoses. 

Figure l-Dodger’s use of Al technologies in 
analyzing ET data. 

3. Flexibilitv for growth: The system should be 
designed such that as new knowledge is developed, 
it can be incorporated into the system without major 
changes to existing software. 

4. Decreased reliance on an onerator: The system 
should have as little reliance on an operator as 
possible. However, interaction with and 
consideration of an analyst’s opinion should be a part 
of the system. 

. 5. Quantifv uncertaxntv : The system should 
provide not only a diagnosis, but also quantify the 
degree of uncertainty in the diagnosis. 

A rule based expert system was selected to 
implement these objectives. This approach afforded 
the desired flexibility not inherent in traditionally 
coded systems, and also took advantage of existing 
expertise resident in several ET experts. This paper 
describes an expert system called Dodger. It includes 
the overall system design and operation, the 
application of various artificial intelligence 
technologies used in the implementation, and 
provides a summary of current system performance. 

The Dodger Expert System 

Expert System Design 
The design of the expert system is based on the 

premise that the best evaluation results from 
cooperation of a team of analysts with diverse 
knowledge. To achieve the performance objectives 
of an eddy current expert system as defined above, 
the experience and skills of the best evaluators and 
engineers should be incorporated. This knowledge is 
often lost when the experts leave their positions. It is 
desirable to emulate the capability of such a team. It 
is clear that successful evaluators depend on a 
mixture of empirical response to visual displays of 
impedance plots (Lissajous patterns) and knowledge 
of some properties of the heat exchanger under test. 
Some analysts are expert in evaluating some aspects 
of eddy current signals while others are skillful in 
other technical areas. The techniques common to 
most experts are incorporated into Dodger to 
capitalize on the existing ET evaluation language 
and culture. The system combines the specialized 
expertise of several evaluators. 

Three aspects of ET evaluation stand out as 
being important to the performance of experts and 
are therefore emulated in Dodger. First, ET 
evaluators recognize signal characteristics in terms 

Figure 2-Architecture of the Dodger expert 
system. 

of visual Lissajous pattern features. While many 
parameters are rarely articulated, the shape, size and 

10s IAAI 



orientation are certainly important. Lissajous 
parameters do not lead to clear-cut diagnoses of 
damage mechanisms, but rather suggest a number of 
possibilities. This is characteristic of what is known 
as a “fuzzy set.” This concept was employed in 
Dodger. 

Second, experts apply several different types of 
reasoning. They are able to weigh weak and strong 
evidence and recognize when there is insufficient 
information to make a diagnosis. In fat t 
contradictory evidence is common and must be 
resolved to understand the nature 
of an indication. They know, or 
have guidelines, as to what signals 
are useful to discriminate between 
certain defect causes. Evaluators 
rely on “rules of thumb” to guide 
them through a diagnosis, 
accumulating or rejecting 
evidence. These rules of thumb 
vary from person to person and an 
evaluator may use one rule in 
different ways at different times. 

Finally, calibrating the system 
is a primary concern since 
instrumentation drift during a test 
may otherwise introduce bias. This 
is especially important, when 
comparing results with previous 
inspections. Since calibration is a 
tedious process much effort was 
expended to make calibration a 
rigorous and automatic process. 

Several technologies used in 
artificial intelligence (AI) were 
integrated into Dodger to provide 
the required observational and 

Reasoning with Uncertainty 
Automatic Calibration 
Each of these components is briefly described 

below. 

Operator Interface 
The operator interface presents a graphical 

display of ET data, including time-based strip charts 
that show horizontal and vertical components of an 
ET signal separately, and Lissajous plots that 

r 

deductive capabilities. These 
include: pattern recognition of 

Figure 3-Dodger’s graphic display of ET data. On top are message windows; in the mddle are two 

Lissajous features in noisy data, 
time strip charts; on the bottle are Lissajous patterns of the indication highlighted in the time charts. 

combination of uncertain and 

based strategizing and reasoning. The relation of the 
contradictory evidence, and rule- 

component AI technologies to the steps in a 
diagnosis is shown in Fig. 1. 

System Overview 
The Dodger expert system is composed of the 

following major functional components, depicted in 
Fig. 2: 

Operator Interface 
Knowledge System (Rule + Knowledge Base) 
Machine Pattern Recognition 

The expert system supports a range of operation 
modes from interactive oneration to fully automated 

combine the corresponding horizontal and vertical 
components of a signal for each available frequency. 
See Fig. 3. 

(unattended) operation. *In interactive- mode, the 
operator selects the data to be analyzed and indicates 
phase and amplitude measurements on the graphics 
display. The system interprets the measurements and 
produces its diagnosis. In unattended mode, it reads 
a file that lists tubes and potential fault locations for 
each tube and analyzes -the indications identified, 
with no operator intervention. A number of features 
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can be set for interactive or automatic operation 
individually, depending on the degree of 
participation an operator wishes to have in the 
analysis. These include the calibration process, 
selection of an indication, phase and amplitude 
measurements from the pattern recognition system, 
and analysis of historical data. 

Knowledge System 
The knowledge system is composed of a 

knowledge base and a rule base. The knowledge base 
consists of a collection of facts and observations 
derived from the data being analyzed. The rule base 
consists of a set of rules that embody the 
interpretation guidelines and practical experience of 
several expert ET analysts. A rule defines the 
procedures to be performed when all the conditions 
required by the rule are true. The results generated 
by the pattern recognition, reasoning with 
uncertainty, and automatic calibration components 
are added to the knowledge base as facts when they 
are computed. The rule base follows a strategy and 
makes a diagnosis based on the data available in the 
knowledge base. 

Machine Pattern Recognition 
The machine pattern recognition component 

emulates the visual skills of an analyst. It analyzes 
ET signals, in the form of impedance plots, to extract 
significant geometric characteristics such as phase 
and amplitude. It also supplies qualitative 
parameters such as the “fatness” of the figure and 
indications of how well-formed it is. 

Reasoning With Uncertainty 
The reasoning with uncertainty system gathers 

parameters representing phase and amplitude 
measurements from ET signals at several 
frequencies and combines them in order to develop a 
strategy for the expert system to follow in pursuing 
a diagnosis. Fuzzy set theory is used to associate the 
parameters with one or more possible material 
conditions. 

Automatic Calibration 
The automatic calibration system processes ET 

data from ASME standard tubes to calibrate the 
operation of the rest of the system. 

In addition, the expert system creates a report 
detailing all relevant information used in analyzing 
the identified indication(s). This includes details 
about the calibration tube that was used, signal 
mixing parameters, measurements made from the 
indication, input from the operator, and the system’s 
diagnosis. When historical data is also analyzed, 

significant details from that analysis are included in 
the report along with any trends identified. 

The Dodger system is implemented using the 
Automated Reasoning Tool (ART),’ a Lisp-based 
software toolkit for building expert systems. It also 
incorporates several analytical subsystems written in 
Fortran. 

Artificial Intelligence Technologies 
Applied In Dodger 

Machine Pattern Recognition 
Much of the information derived from eddy 

current measurements is obtained from visual 
inspection of Lissajous patterns in the impedance 
plane. The machine pattern recognition system was 
constructed to resemble the human visual system so 
that it can emulate what a human operator would do 
when analyzing ET patterns. An operator identifies a 
specific pattern class (e.g., a figure “8” class or a 
figure “V” class), sometimes making this 
identification from noisy data that to an untrained 
observer may appear unrecognizable (see Fig. 4a for 
an example). After determining class, the operator 
determines such features as pattern phase and 
amplitude, which for O.D. defects are the 
quantitative measure of defect depth. These tasks are 
not only difficult, but highly subjective, and hence 
prone to disagreement and error. 

In the machine visual system, impedance plane 
patterns are classified according to the sequence of 
significant curvature changes that occur along the 
figure’s arclength 3. For example a figure “V”, 
commonly encountered in absolute signal pattern 
analysis, is a one-curvature-change object, the 
change occurring at the vertex of the “V”. A figure 
“8”, commonly encountered in differential signal 
pattern analysis, is a two- curvature-change object. 
This classification was adopted mainly because it is 
insensitive to many pattern features (such as overall 
orientation or size) that are unimportant for 
identifying a pattern type. 

Determining “significant” curvature change 
implies that the analysis takes place at a certain level 
of resolution. Just as a human observer can change 
his resolution level to filter out unimportant detail - 
- which is done by ET operators almost without 
thought -- so the expert system can respond to 

1. Inference Corporation, 550 North Continental 
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differing levels of visual resolution. Indeed the 
machine analysis is carried out at multiple levels of 
resolution, from so-called fine to coarse levels in 
order to optimize detectability and localizability of 
significant curvature changes in a pattern4. 

After classifying a pattern, the system quantifies 
a number of pattern features, such as amplitude and 
phase. Two examples of this are shown in Fig. 5. 
Figure Sa shows a complicated figure “8” pattern to 
emphasize that Dodger is capable of treating 
difficult patterns -- often encountered in ET 
inspections -- as well as simpler ones. 

In addition to amplitude and phase, a human 
operator often makes a number of visual judgments 

concerning patterns -- sometimes not consciously -- 
such as a pattern’s “fatness” or “thinness”, or a 
pattern’s “distortion”; these features are then 
incorporated into his analysis. Many of these 
subjective terms have been quantified and 
incorporated into the expert system to provide its 
reasoning system with the same type of information 
that a human operator applies in the analysis. 

ET patterns are frequently replete with noise. 
Noise is defined as curvature changes that occur 
along a curve’s arclength that are unrelated to overall 
pat tern appearance. For instance, a curve may 
oscillate rapidly, tending to confound pattern 
analysis. Three different types of noise have been 

A B 

Figure &ET Lissajous pattern (a) before (b) after random noise smoothing. 

peak-to-peak vector 

transition vector 

Figure 54a) DiljCerential figure “8” Lissajous pattern; (b) absolute 

vertex-to-origin vector 

B 

figure “v” Lissajous pattern. 
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identified. The first type is random, which is a 
consequence of fluctuations that occur during the 
measurement process. This noise is removed by an 
iterative smoothing routine prior to pattern analysis. 
An extreme example of random noise, together with 
its smoothed pattern, is shown in Fig. 4. The second 
type, called endpoint noise, is the consequence of the 
imprecise determination of indication limits in the 
data; points not associated with the indication may 
be included at the ends of the curves. This noise is 
removed by imposing smoothness constraints on the 
curve ends. The third type may occur anywhere 
along a pattern curve where a small loop appears. 
These loops are believed to be unrelated to physical 
characteristics, but nonetheless display large 
curvature change at all levels of resolution. .These 
loops are identified and excised from the pattern. 
Pattern analysis begins after all three types of noise 
have been removed from the data. 

The result of operating on a pattern with 
Dodger’s machine pattern recognition system is a set 
of size and shape parameters. These parameters are 
incorporated into Dodger’s knowledge base in 
pursuit of a diagnosis of the indication. 

Reasoning with Uncertainty 
The phase angle and amplitude measurements 

from the pattern recognition system provide 
important evidence for the diagnosis of an ET 
indication. A single measurement however, may 
suggest more than one possible diagnosis. For 
example, a phase angle of 175 degrees from a low 
frequency signal suggests that both external deposit 
and manufacturing defect are possible diagnoses. 
Typically, signals from several frequencies must be 
evaluated in order to arrive at a diagnosis. The 
various frequencies are sensitive to different types 
of effects and will therefore have different value in 
a diagnosis. Two technologies - fuzzy sets and the 
Dempster-Shafer theory of evidence have been 
incorporated in Dodger to create a “reasoning with 
uncertainty” system to characterize and combine 
these diverse measurements. 

Fuzzy sets5v6 are used to quantify the degree of 
belief in various diagnoses for each eddy current 
measurement. In the conventional notion of a set 
(called a crisp set) an element is either completely 
contained in the set or completely outside of the set. 
A fuzzy set allows an element to have partial 
membership in a set. The degree of membership is 
measured on a scale of zero to one. For example, 
consider a fuzzy set that defines the notion of tall. A 
person who is 6’ 5” would certainly be considered 
tall and would therefore be assigned a membership 
value of 1.0, while a person who is 5’ 11” may be 
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considered somewhat tall and would be assigned a 
membership value of 0.8. In the context of eddy 
current analysis, a physical measurement will have a 
degree of membership in each of the possible 
diagnosis categories. For example, the phase angle 
of 175 degrees may be defined to have a membership 
of 0.8 in the manufacturing anomaly (e.g. ‘dent’) 
category as a possible diagnosis and a membership 
of 0.9 in the external deposit category as a diagnosis. 

The degree of membership in a possible 
diagnosis is expressed as a mathematical function 
called a membership function. The form of the 
membership function is shown in Fig. 6. There is a 
unique membership function for each indication type 
on each frequency. Membership functions for each 
measurement parameter and material condition were 
derived from fundamental eddy current 
relationships, laboratory results, and interviews with 
experienced ET analysts. 

Figure 6-Membership function used in 
Dodger. 

For a given measurement, the system considers 
its membership in all possible diagnoses 
simultaneously. This is illustrated in Fig. 7 for a 
phase angle of 175 degrees on a low frequency 
signal. For each physical measurement and 
frequency, the system evaluates a group of 
membership functions to obtain the memberships in 
each possible diagnosis. All of these memberships 
are used together as independent measures of belief 
in the possible diagnoses. They serve as input to an 
evidence combination algorithm that yields a 
composite measure of belief for each possible 
material condition. 

The belief values obtained from the physical 
measurements at all available frequencies often 
appear to be contradictory. This is inherent in eddy 
current analysis where specific frequencies are 
designed to be sensitive to particular flaw types. 
Two requirements were imposed on the reasoning 
with uncertainty system. First, a method is required 



that narrows the set of possible diagnoses as 
evidence is accumulated. This models how a human 
analyst arrives at a diagnosis. Second, the method 
must be able to discriminate between conflicting 
evidence and lack of information. 

After physical measurements are transformed 
into beliefs in each diagnostic category by the 
membership functions, they are combined using the 
Dempster-Shafer theory of evidence7v8 to obtain 
belief intervals. These intervals express the 
composite belief from all the available evidence for 
each particular material condition. Belief intervals 
are of the form [b,p], where b gives the total amount 
of belief in a diagnosis and p gives an upper bound 
on the belief; b is called belief and p is called 
“plausibility”. The width of the belief interval is a 
measure of the uncertainty in the diagnosis. 

To illustrate the various interpretations of belief 
intervals for four (of many) possible diagnoses, 
consider three indications shown in Table 1. 

Table 1: 

Diagnosis Indication 1 Indication 2 Indication 3 

Mfg. Defect [0.05,0.06] [O.OO,l.OO] [0.02,0.07] 

Ext. Deposit 

O.D. Flaw 

[0.03,0.03] [0.35,0.85] [0.45,0.48] 

[0.90,0.96] [0.27,0.96] [0.46,0.47] 

I I.D. Flaw ([0.00,0.00] ~[0.03,0.10] ~[0.05,0.10] 1 

Indication 1 shows the case where an outside 
diameter (O.D.) flaw has high belief and a small 
uncertainty in that belief with all other diagnoses 
having small belief and uncertainty. For Indication 2 
there is a complete lack of evidence (i.e., ignorance) 
with regard to a diagnosis of manufacturing defect, 
since there is no belief assigned to it but a potential 
for total belief (plausibility of one). In addition, 
Indication 2 shows external deposit and O.D. flaw to 
have small amounts of belief but with a fairly large 
uncertainty. This suggests that more evidence is 
needed to narrow the uncertainty in the diagnosis. 
Indication 3 shows how conflicting evidence is 
manifested in belief intervals. Both external deposit 
and O.D. flaw have nearly the same amount of belief 
and small uncertainty. The ability of the Dempster- 
Shafer method to model conflicting evidence and 
ignorance separately is an important characteristic. 
This is accomplished by collecting evidence that 
confirms and disconfirms a diagnosis separately. 

The Dempster-S hafer theory of evidence 

provides a probabilistic method for combining 
evidence which has several advantages compared to 
other probabilistic methods (e.g., Bayesian 
inferencing, Certainty Factor method) when applied 
to diagnostic expert systems. It is a rigorous method 
that allows an orderly degradation of the belief 
intervals as data/signal quality degrades. This 
method operates independently of the order in which 
evidence is collected. In Dodger, evidence is 
incrementally accumulated until there is sufficient 
certainty in a diagnosis or until all available 
frequencies have been analyzed. The measure of 
uncertainty contained in the belief intervals is an 
important consideration, as this may suggest the 
need for more detailed investigation. In addition, the 
width of the belief intervals are used to determine 
the strategy for selecting which additional 
frequencies to analyze. 

Representation of Expert Knowledge 
The expert system embodies knowledge 

associated with the interpretation of eddy current 
signals as rules. The use of rules to diagnose a 
situation given a set of observations is an effective 
way to simulate human deductive abilities. Rule- 
based systems have the property that each rule 
represents a small, self contained, deductive step. 
The logical process is simply: “If A is true, then 
assert that B is true. If B is true, then . ..” The 
symbols “A, B,” etc. are a pattern of facts that are 
created from ET data parameters. Each if-then step 
represents the execution of a rule. A sequence of 
rules are able to deduce a result by having each rule 
in the sequence perform a small step until a final 
diagnosis rule senses completion. While each rule 
codifies a simple, static module of logic, the 
sequence that is driven by the “if” part of the rule can 
be very complex. 

The problem of determining when individual 
rules should act (or be “activated”) is central to the 
effectiveness of the rule-based approach. The result 
of rule activation is often the assertion of newly 
deduced facts, which in turn may satisfy the fact 
requirements of other rules. The deductive process to 
diagnose an ET indication is completed when a line 
of reasoning meets certain criteria. These include: 
the belief in one diagnostic outcome is so high as to 
be absolutely certain, the set of beliefs is not 
changing or are degrading with the addition of new 
measured values, or the unassigned belief has 
become negligible. 

The rules were constructed by observing expert 
interpreters diagnose ET signals. Observations, 
expressed as facts, result mostly from operating on 
the ET signals with the pattern recognition and 
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Figure 8-Comparison of phase angle determinations, 
inspectors’ results vs. Dodger’s results. 

reasoning with uncertainty modules described 
above. The data-driven process relieves the system 
designer from the task of programming and verifying 
logical paths through a computer code. It is assumed 
that if small logical steps (rules) make sense then the 
system will make correct deductions. This 
assumption has been validated by observing the 
behavior of Dodger compared with a human 
evaluator on many real data cases. 

The expert system is comprised of sets of rules 
that focus on different facets of the evaluation 
process. Some rules determine a strategy used to 
pursue a diagnosis. The diagnosis indicates how 
extensive the indication is, and what its relations to 
other known indications are. In addition, rules 
manage the complex procedures required to perform 
intelligent manipulation of the data, such as 
calibrations and signal mixing. 

Reasoning about the nature of an indication is 
done by creating a hypothesis (e.g., O.D. flaw, 
external deposit) for each diagnostic outcome. Each 
hypothesis retains information such as its prevailing 
believability as the diagnostics proceed. The system 

retains the essential information about a heat 
exchanger including all hypotheses during the 
course of an inspection. As the analysis of a heat 
exchanger progresses, more and more becomes 
known about its global condition and the indication 
locations. 

The perception of the belief in each of the 
hypotheses is refined as each new parameter is 
evaluated. These parameters include phase, 
amplitude and several shape descriptors of the 
Lissajous pattern of each signal of the multi- 
frequency data. Selecting the most effective signal to 
evaluate is part of the diagnosis strategy. The 
strategy is adjusted dynamically to pursue the most 
likely hypothesis. It is equally important to exclude 
extraneous information resulting from evaluating an 
“uninvolved” signal. This is unlikely to enhance the 
belief but might otherwise add “noise” to the 
aggregate information. For instance, it is unlikely 
that a very high-frequency absolute signal will add 
meaningful information to a diagnosis of O.D. 
defects. Including that piece of information too early 
might add unnecessary confusion to the 
determination. 
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Not all diagnostic belief results from 
measurement parameters. Human operators develop 
an understanding of the inspection from knowledge 
about the material type and manufacturer, the 
geometry of the heat exchanger and the position of 
the fault indication under evaluation, as well as other 
distinguishing circumstances. Dodger emulates this 
experience in a set of constraint rules that assign 
belief and disbelief in the same way as the human 
operators might if they were so disciplined. In the 
interactive mode, the operator may “converse” with 
Dodger to express constraints that the operator 
perceives. This action may add belief or disbelief to 
certain diagnostic outcomes. Operator supplied 
constraints are retained and included as part of the 
printed report. 

Indications that result from the cumulative effect 
of more than one mechanism are particularly 
difficult to analyze. The expert system has rules that 
detect the possibility of multiple-cause interactions 
and responds accordingly. It is difficult to deduce 
the identity and interaction of multiple physical 
anomalies at one tube location; while the system 
attempts to deduce the composition, the belief is 
often low. This may reflect limits in the value of the 
ET data for such situations. 

To accommodate independence from an 
operator, the system must control all facets of the 
evaluation process, including judgements of data 
quality or insufficient observable parameters. This 
includes all operations associated with calibrations. 
In order to provide valid calibration at all times, the 
most appropriate calibration pull for a given tube is 
selected. Each tube measurement has a calibration 
associated with it and a new one is done whenever 
necessary. This is especially important when the 
system selects a history pull from the data library to 
perform a trend analysis. Older history data is 
evaluated with exactly the same criteria as current 
data, using valid history calibrations as well as 
diagnostic pursuit. Rules control all facets of 
rotation, normalization and signal mixing. Dodger is 
able to accommodate the variabilities experienced in 
producing calibration pulls and is able to distinguish 
hopelessly bad data from that which is salvageable. 

The expert system correlates measurements 
made on a single tube in a number of ways. As each 
evaluation of an indication is completed, a database 
search is made for a comparable pull of the same 
tube on all prior inspections. Any indications on the 
history data in the same location are calibrated, 
evaluated, and compared to the current assessment. 
Another type of correlation involves coupled 
phenomena. An indication in a single tube may 
involve neighboring tubes. The concept of 

neighboring tubes is used 
about external deposi ss. 

within Dodger to reason 

External deposit is a particularly complex 
physical mechanism. It differs from the rest of the 
diagnostic outcomes in that it frequently 
encompasses several adjacent tubes. Information 
about the macroscopic structure of these deposits is 
deduced from the set of facts known about all tubes. 
As an inspection progresses, and as Dodger’s 
awareness of the location of deposits is updated, 
fault indications may be reevaluated. The expert 
system attempts to recognize deposits on clusters of 
tubes by a number of observable clues, including the 
geometric relationship of indications. Different 
deposit configurations are reasoned about, including 
various types of gaps and pockets. The rule set that 
deduces external deposits attempts to understand 
subtle effects and is an area of continuing 
development. 

Dodger contains rules that recognize an external 
deposit indication that is authentic but is related to a 
physical deposit on an adjacent tube. This may 
happen when the response signal is sensed in a non- 
involved tube over the space between tubes. The 
non-procedural nature of Dodger enables it to 
maintain an awareness of potential cases of this sort 
long after a particular tube has been evaluated. If a 
neighboring tube exhibits specific characteristics 
upon subsequent tube evaluations, Dodger will 
return to the former tube and update its diagnosis. 
This capability would be difficult to construct 
without the use of rules. 

Results 
Dodger was used to analyze actual eddy current 

data to compare the performance of the expert 
system with that of a team of trained human 
inspectors. In both instances, Dodger was run in its 
completely automated mode, and two aspects of its 
performance were evaluated separately: 1) its 
automation robustness, including its ability to 
develop data parameters and to determine indication 
locations, and 2) its diagnostic capabilities. 

Dodger considered 252 indications, accepting 
181 cases for analysis and rejecting the rest. The 
rejected cases are due to failure of the “total 
automation” process for a variety of reasons. A 
number of these would have succeeded in an 
operator-assisted mode. Out of the 181 analyzed 
cases, 12 were determined to have low belief due to 
internally conflicting evidence. In these cases, 
Dodger returned an informed warning statement 
about the confusion. Belief in each of these cases 
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was less than 0.3, and these were excluded from the 
comparative statis tical analysis. 

The remaining 169 indications turned out to be 
primarily O.D. defects. Table 2 shows the 
differences between Dodger’s and the inspectors’ 
evaluations of pattern amplitude and phase, as well 
as computed depth of penetration (for the O.D. 
defects) in the primary differential signal. 

Table 2: 

Phase [Degrees] 3.09 4.13 0.94 

Depth [%] -3.86 4.35 0.92 

This table provides mean differences, standard 
deviations, and correlations. It should be noted that 
these statistics represent the combined variations of 
the Dodger- and analyst-generated results. Fig. 8 
shows in more detail the results of phase angle 
comparison. 

The distribution of belief for the Dodger results 
showed that 88% of the cases analyzed had beliefs 
exceeding 0.9, meaning that for the preponderance 
of indications (primarily for O.D. defects), the 
different ET signals contain little conflicting 
evidence. A conclusion such as this is the 
consequence of the objectivity of an expert system 
analysis together with a quantitative method of 
combining evidence. 

In general, the results obtained from these two 
combined inspections demonstrate a close agreement 
between the diagnostic results obtained by Dodger 
and those obtained by trained inspectors. Confidence 
in the Dodger system is, thus, greatly enhanced. 
Modifications in the totally-unattended mode of 
operation are being made to improve robustness. 

Deployrnent And Maintainability 
The Dodger expert system is being used by a 

project engineering team. It is used for the complete 
analysis of heat exchanger eddy current inspection 
data. Each inspection is a large data acquisition and 
evaluation undertaking, probing heat exchanger 
tubing with the resolution of one part in several 
million. The enormous quantities of data require 
meticulous examination and evaluation. The 
inspection requires system shutdown and a dedicated 
maintenance team to provide access and inspection 

services. Primary and overcheck analyses are 
performed by a team of evaluators. Primary analyses 
are conducted in parallel with data acquisition, so 
that results can be used to adjust the data acquisition 
strategy. The expert system, running on a 
VAXstation, is capable of “real time” operation by 
deploying it on several workstations simultaneously 
under the direction of a single user. 

The current production deployment of Dodger is 
used to overcheck a primary evaluation. Independent 
overchecks of data have always been used to assure 
the accuracy of the analysis. Before the deployment 
of the expert system, less than 5% of the data were 
overchecked. The use of the experts system enables 
100% overcheck to be performed in a timely, cost 
effective manner supporting facility schedules and 
restart of operations. Human evaluators are now free 
to interpret the most difficult cases in greater detail. 

The environment in which these inspections are 
done is one where errors in interpretation are not 
tolerated. This requires that all indications must be 
fully evaluated while the heat exchanger is 
accessible and that zero evaluation errors must be 
assured at the conclusion of the inspection. The 
payoff from using Dodger is that it maximizes 
assurance that data has been interpreted thoroughly, 
that trends are evaluated consistently, and if 
necessary, corrective actions are taken. This 100% 
overcheck precludes redeployment of the 
maintenance team with the associated facility 
downtime and cost of an unplanned reinspection. 

The integration of machine pattern recognition, 
reasoning with uncertainty, and automatic 
calibration as independent subsystems requires a 
design that can be easily maintained and expanded. 
The functions to be performed by each subsystem 
were clearly defined along with it’s interface to the 
expert system. This allowed each subsystem to be 
developed and tested independently prior to 
incorporation into the system. Any enhancements 
that are made to a subsystem are tested 
independently before integration into the system. 

Dodger has been designed to allow the 
incremental addition of new application knowledge 
and diagnostic categories. This is possible because 
the evidence accumulation process is separate from 
evidence combination. A single list of possible 
diagnoses guides the evidence combination process. 
The addition of a new diagnosis requires adding that 
diagnosis to the list. In addition, new membership 
functions may be added for those measurements that 
provide information about the new diagnosis. The 
rules responsible for producing a final diagnosis 
examine the same list of possible diagnoses in light 
of the combined evidence for each one, in order to 
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select the best diagnosis. 
Dodger is currently maintained by the 

developers. The current thrust is to redeploy the 
system on a UNIX workstation as well as provide 
maintenance for the original VAXstation platform. 
Periodic updates to the knowledge base are 
anticipated as eddy current technology continues to 
develop. 

Conclusions 
The application of expert system technology to 

eddy current interpretation has provided distinct 
advantages in achieving the objectives set forth. 
Eddy current analysts could be included in all stages 
of development because close correlation was 
maintained between rule formulations and ET 
methodology. In addition, it was easy to ascertain 
the effect of including new guidelines to an 
operational system. 

The expert system described here demonstrates 
the desired consistency of interpretation. Given an 
indication represented by repeated data sets, the 
system has provided uniform diagnoses. This 
enables more precise growth assessments. The 
system is sufficiently stable to yield similar 
diagnoses even as the data exhibits small variations. 
Dodger has demonstrated robustness in gradually 
reducing belief in an outcome as input data quality 
degrades. Historical data, when they exist, are 
analyzed in the same manner as current data, thereby 
providing consistent trend assessments. 

It has been possible to embody much of the 
aggregate experience of the experts in a 
comprehensive knowledge base. Since the inception 
of this effort a number of the experts have left the 
NDT working groups; yet their expertise has been 
retained in a functional form. 

The use of modular systems has resulted in an 
expert system that is extremely maintainable. Much 
new information was learned and was incorporated 
into Dodger’s body of knowledge with only minor 
modifications. 

Although the system can operate in a fully 
automated mode, it is not a “black box” type of 
operation. It provides a comprehensive trace of its 
reasoning to justify its conclusions. The complete 
report of analysis for all indications and calibrations 
was useful in understanding reasons for those cases 
where diagnoses were uncertain. Human operators 
overchecked the small number of cases where 
conclusions were in doubt. 

The analysis presented by Dodger provided a 

well-defined quantitative measure of belief and 
confidence in the diagnoses, even in those cases 
where the data contained conflicting evidence. In 
contrast to other statistical methods, the methods 
used here distinguished between ignorance and 
disagreement in evaluating the data. 

Many tee hnical hurdles are involved in 
modelling the expertise of a qualified ET analyst. 
The most important of these have been addressed in 
the development of Dodger. The results achieved to 
date encourage further development in treating 
increasingly complex indications. 

References 
i Clayton, Bruce D., “ART Programming 

Tutorial”, Vols 1,3,4., 1987 Inference Corp., Los 
Angeles, CA. 

2 Marr, D., w.1982, W.H.Freeman, San 
Francisco, CA; Richter, J., and S. Ullman, “Non- 
Linearities in Cortical Simple Cells and the Possible 
Detection of Zero-Crossings”, Biological 
Cvbernetics, Vol. 53, 1986, pp. 195202. 

3 Asada, H., and M. Brady, “The Curvature 
Primal Sketch”, IEEE Transactions on Patte n, . . achxne Intellrgence , Vol. 8, No. ‘1, 

4 Canny, J.F., “Finding Edges and Lines in 
Images”, MIT AI Laboratorv Renort No. 720, June, 
1983. 

. 5 Zadah, L.A., “Fuzzy Sets,” ,Inform@on and 
Control, Vol. 8, 1965, pp 338-353. 

6 Klir, G.J. and T.A. Folger, Fuzzv Sets, 
Uncertaintv. and Information, 1988, Prentice-Hall, 
Englewood Cliffs, NJ. 

7 Shafer, G., A Mathematical Theorv of 
Evidence, 1976, Princeton University Press, 
Princeton, NJ. 

* Barnett, J.A., “Computational Methods for a 
Mathematical Theory of Evidence,” In Proceedin= . . of the 7th Inter- Joint Conference on 

cral Intelligence, Vancouver, B.C., 1981, pp 
868-875. 

Levy 117 


