
Expanding the Utility of Legacy Systems

Joseph McManus
AT&T Network Systems

Dept. 40440,160O Osgood St.
North Andover, MA 01845

Abstract
Over time, the inflexibility of a large software system can
inhibit the growth of the business it supports. This paper
describes a situation encountered at AT&T’s Merrimack
Valley Manufacturing Plant. The problem domain is inventory
parts allocation in a complex environment. Two systems were
developed on PCs to provide front and back end processing of
customer order and inventory data stored in a mainframe. Data
driven rules access the user data via terminal emulation
software, and a rule-based program provides in-depth problem
analysis. The systems have been used successfully for eighteen
months.

Introduction
This paper discusses two inter-related systems with the
same technology approach. These systems are: MPSA -
The Master Production Scheduler’s Assistant, and
COLES - The Customer Order Loading Expert System,
both built for the Patriot Factory at AT&T’s Merrimack
Valley Works.

Inherent in these systems is a knowledge-based
solution to a problem common to many businesses -
how to prevent the large software systems that support
the business processes from actually inhibiting business
growth and evolution. Software is generally chosen or
built to match business needs at a specific moment in
time. Once deployed, these systems often develop an
inertia that tends to define how the business is run. The
system data entry requirements drive the day to day
processes, and the databases and data availability in
reports are used to monitor and control the day-to-day
operations.

This solution demonstrates how the addition of an
intelligent knowledge-based front-end running on a
Personal Computer significantly enhanced the utility of
a legacy COBOL program running on a mainframe, and
also established the capability to easily respond to
changing business needs. This solution enabled AT&T

Teresa Garland
Inference Corporation

4 Parkiane Blvd., Suite 470
Dearborn, MI 48126

to preserve the considerable investment already made in
the COBOL system, and to deploy a system that met all
requirements at a relatively low cost. The innovative
implementation of data-driven rule processing of IMS
screen data allowed the system to be built with no
involvement from the mainframe maintenance
programmers, or mainframe downtime.

Background
The Merrimack Valley Works in North Andover,
Massachusetts is one of AT&T’s largest manufacturing
sites. Like many large business operations, the plant
relies on an IBM mainframe and a set of COBOL
applications to support the business processes. The
applications include multiple Material Resource
Planning systems, a Part Purchasing system, and a
Customer Order Entry system. Some of these were
internally developed and maintained, others were
purchased and maintained externally. These systems
were implemented at a time when operations were
simpler than they are today, and it became apparent that
they could no longer effectively respond to more
complex business needs. Faced with the necessity of
enhancing these systems, AT&T decided to apply AI
techniques to the problem, for a number of reasons.

Traditional DP procedural code responses to the
changing needs of a business can be very expensive, or
even impossible to implement. Many companies employ
a large staff of maintenance programmers to extend
program functionality to meet changing requirements.
This approach can be ineffective for many reasons, as it
involves a trade-off between businesses’ very real need to
change and the ability to deliver the complexity of the
changes required, and issues such as the availability of
staff capable of making the changes, the age of the
system, or even the availability of the technology
required to support the system.

118 IAAI

From: IAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved.

A not uncommon situation is one in which a legacy
software system, designed to support now outdated
business practices, cannot be changed quickly enough to
meet the very different requirements of current
operations. Even if it can be modified to meet the needs
of the present, a system that is not flexible or easily
scalable will inevitably again fall short of the demands
imposed by a dynamically evolving business.

Another traditional, if expensive, approach may then
be suggested - that of replacing the old system with a
new one that more closely models how business is now
being conducted. Even less attractive approaches are to
continue to run the business in the ways required by the
old system, or to extend the functionality of the old
system with manual procedures.

All of these traditional solutions seem to share one
common feature: they are attempting to handle a basic
inflexibility in development techniques through the
application of those same techniques. AT&T recognized
this failing and decided instead to use AI techniques as
the approach to this large application system
maintenance problem. The solutions developed at
AT&T significantly enhanced an existing COBOL
application by broadening the scope of data retrieval,
processing, and presentation. This was accomplished by
augmenting the existing, and unmodified, application
with a cooperative process which does not reside on the
same mainframe computer.

Patriot’s Business Problem
The initial problem to be solved was that of managing
the planning process for product manufacturing. The
MVW plant builds various systems for communications
transmission, switching and networking products. The
building is internally divided into three logical factories
or shops. The Patriot Shop, one of these factories,
handles the more mature and stable systems. Patriot
products consist mainly of electronic circuit boards, also
called circuit packs. Product orders tend to be low
volume and quite variable, with a complex product mix.

Supporting the three factories is a common, internally
developed Material Resource Planning (MRP) system
called IMPAC. IMPAC is used to track customer orders
and inventory and to aid in planning and scheduling. It
handles each of the factories as separate business units,
monitoring the assembly parts needs for each. Materials
planners and analysts use IMPAC to ensure that all
critical parts are available when they are needed. Each
day, new customer orders are entered into IMPAC and
tentatively scheduled for production at some reasonable

future date. The orders specify quantities
packs or circuit pack sub-assemblies.

of circuit

Before an order can be firmly scheduled, missing
parts must be found and allocated from within the plant
or obtained from a supplier. The Master Production
Scheduler and his team of analysts and expediters have
the job of prioritizing orders and chasing short parts to
satisfy requirements. They locate parts using various
IMPAC screens to determine availability of parts,
projected future use of parts, and expected delivery of
parts. One week before an order is scheduled to be built,
IMPAC checks to see which (if any) circuit pack’s
components are missing and issues a report listing
orders and shortages.

The three factories manufacture different products,
often from common components. Ideally, IMPAC
should look across all three sets of customer orders to
determine the quantity of parts needed, and then check
all three inventory stores to see what is available. When
orders compete for parts, IMPAC should be used to
decide which factory gets precedence. Sometimes,
products created in one factory are sub components (i.e.
parts) for products in another factory, so IMPAC should
incorporate a representation of such relationships and be
able to use this to allocate components.

However, when IMPAC was developed, MVW was
run as a single factory and parts monitoring was much
simpler than it is today. Now, processes are more
complex than IMPAC can handle, and changes to the
system software have not been sufficient to enable
effective support of this activity. Since the three
factories are separate business units and IMPAC handles
them separately, the report on parts availability is not
necessarily accurate. For example, IMPAC looks only
in Patriot’s storeroom for parts to fill Patriot orders. In
fact, another factory unit may have the short parts in its
storeroom or shop. It may be that another factory uses
large quantities of these parts and so has agreed to
supply Patriot’s need.

To locate these parts, analysts must spend
considerable time searching through IMPAC inventory
screens for other factories, and also analyze storeroom
and shop inventory data. Once they locate the parts,
they can request that the parts be transferred to Patriot
so that the order can be scheduled and built. The process
is tedious, and analysts do not always have time to
perform complete searches. Thus, decisions that have a
critical impact on product scheduling, delivery,
profitability, and customer satisfaction, are made with
incomplete data.

McManus 119

Patriot’s Requirements
The high level recluirement was to create a system that
would perform thorough searches that were not limited
to one factory’s inventory or production schedule, make
decisions based upon findings and then use those
decisions to update program data and make
recommendations. This would reduce the workload of
the Master Production Scheduling Analysts.

A constraint on design was that the system had to
interact with IMPAC internals rather than simply with
the package’s data bases, as it needed derived data which
was displayed on the screens but not stored in the data
bases. One approach involved developing programmatic
hooks to enable the system to make use of the data.
However, the COBOL software developers already had
long lists of desired enhancements and were not able to
participate in the new system development. An
alternative solution was necessary for the Master
Production Scheduler’s Assistant (MPSA).

Approach - MPSA
The first problem was to design a system that could be

built without the participation of the mainframe
maintenance programmers, and would not create a need
for downtime on the mainframe in order to achieve
integration with IMPAC. The adopted solution focused
on the concept of user emulation. User emulation takes
the process of terminal emulation one step further by
creating an automated system which interacts with the
mainframe software screens in the same way that the
user does. The system reads the user reports, logs onto
the mainframe with a used-id, looks at the same screens,
makes the same decisions and enters the same data that
an experienced and conscientious user would. It does all
of this from an intelligent workstation, and never once
invades the non-public territory of the IMPAC software
package. Thus, it is a very clean solution.

Interface Issues
The original plan was to create a mainframe application
to look for parts problems and make recommendations
for resolving them. Initially it was expected that this
application would read a flat file for initial order input,
interact in real-time with IMPAC, and then output data
to RAMIS, a mainframe report writer.

However, when it was recognized that a PC based
system could interact more readily with IMPAC than a
mainframe system, all aspects of the system were
redefined. Principal issues were: when and how to
transmit bulk input data (the flat file) to the PC, where

MPSA output should go for reports, whether the user
interface should conform to PC or mainframe standards
(our users had not previously used PCs), and finally,
how to break up the series of tasks users wanted
performed.

System Components
MPSA is comprised of a number of modules:

Screen Access: Data driven rules request IMPAC
screens, recognize the screens when they appear, access
screen data and map the data into MPSA facts and
objects. There is a small set of rules for the logon
process and for each screen. A larger ruleset handles
errors and exceptions.

Input: This module reads the IMPAC flat file, order by
order. It then creates an object for each order and each
missing part.

Classify Orders This module is a reduction to 15
complex rules of the tortuous task of dynamically
determining status within the process. Allowable status
conditions include “Complete” (no missing parts),
“Short” (Missing Parts), and “Found” (Found Missing
Parts). The status is determined by pattern matching on
the order and parts objects. The Classify Module’s rule
set is activated twice for each order - first to determine if
parts need to be found, and then to determine if the
search for them was successful.

Parts Search This module activates the screen access
rules for the purpose of accessing IMPAC inventory
screens. It uses data from the screens to determine if
there are extra parts available.

MPSA enters the missing part number into an
inventory screen. IMPAC responds with a screen listing
all plant locations of that part, and the quantity
available. Other screens show the demands (there are
several types) already existing for that part. MPSA
analyses the demands and determines if there is an
excess. If there is, the parts are allocated within MPSA
to that order. If the parts are in a location controlled by
Patriot, they can be immediately assigned to this order.
If they are controlled by another shop, then IMPAC
sends a request to that shop. The part analysis is stored
in the missing part object, where the classify module can
use it to determine order status.

Parts Substitution This module accesses a small PC
based database of legal parts substitutes. It checks to

120 IAAI

determine whether the part has a substitute, and if so,
whether it is available. If more than one substitute is
listed in the database, MPSA will retrieve and allocate
substitutes in database order until the required quantity
is filled.

Book Keeping. This module provides internal
bookkeeping for MPSA, and its purpose is to prevent
parts from being allocated twice. Whenever a search for
a missing part is initiated, a record is kept of the number
found, and the number remaining.

Output. This module stores results for each order in a
flat file on the PC. The data includes the order input
information, a list of the parts missing, and those that
were located, along with their locations.

Control. This module contains the rules used to control
the flow of the program. The program passes through
seven sequential phases: Input, Classify, Parts Search,
Parts Substitution, Classily (again), Bookkeeping, and
Report. In addition, the Parts Search and Parts
Substitution modules each have their own control
sequencing.

A representation of MPSA processing and the inter-
relationship of the modules is shown in Figure 1.

At the start of each day, users obtain a report from
IMPAC showing its knowledge of parts availability for
each customer order. That report was a logical starting
point for MPSA. First, a small 4GL program was
written to create an edited, flat-file version of that report
and then a small PC batch file to transfer the file from
the mainframe to the PC.

MPSA reads the report, performs its analysis and
then stores the results in a flat file. This file is read by
yet another 4GL program which merges it with data in a
large PC database and produces the final user reports.
(It was fortunate that the plant’s favorite mainframe
report writing tool, RAMIS, has a PC counterpart called
PC RAMIS. This removed report writing from the task
list.) Users immediately identified and created six
separate reports for daily and weekly use. They also
created new PC RAMIS data base files for storing and
reporting day to day part expediting information.

f 7
Read an Order

Make Order Object
Make missing Part Object(s)

\

7
‘Determine order ’

status:
- All parts found

* - Still missing parts
- Found parts but

need permission

f >
Create and store

) output data

\ /

f \
Search for) Look for legal

missing parts parts substitutions
in IMPAC 4 in PC Database

\ J \ /

f \
Allocate

pa*
if found

L J

/ \
Track remaining

parts
quantities

\ /

Figure I: MPSA Components

Technological Approach
An object-oriented solution was chosen as probably the
only way to handle the complexity of data. The variety
of parts situations suggested that a pattern-matching
rule-based approach was advisable.

Inference’s ART-IM was selected because its data
driven rules would pattern match on object information.
ART-SNA was chosen for its ability to access (read and
write) lMS screens, thus allowing access to the IMPAC
system internals as displayed on the screens. The MPSA
solution also includes a terminal emulation package and
a HLLAPI package.

The system configuration is as illustrated in Figure 2.

McManus 121

Hardware

Comm Port

IBM
Mainframe

Software Data Format Function

Comm Port

AT&T
PC

PC Data Comm Bytes Transfer Data

IRMA
I

Screen Buffer Terminal
Emulation

I HLLAPI
I Buffer in C I

Translate screen
to C code I

I ART*SNA I I Map C to ART I

ART-IM Objects & Facts

MPSAICOLES Program Data

Figure 2: MPSA Hardware/Software

The Master Production Scheduler’s Assistant (MPSA)
runs on a PC connected to the mainframe. MPSA logs
onto the mainframe, brings up the application package,
performs its user tasks, then logs off. In addition it
performs more traditional system tasks such as allowing
user input through a user interface, problem analysis
and report generation.

The HLLAPI package creates a bufher of the screen
data and ART*SNA maps lields from the screen (the
buffer) into ART-IM objects and facts, which in turn
then activate ART-IM rules.

The data-driven, rule-based approach was especially
effective for interacting with the real-time data access
from IMS database screens.

MPSA Rule and Object Architecture. The MPSA
Program rule base is segmented into logical sets of rules.
At the highest level are control rules used to sequentially
walk input orders through the necessary processing
steps. The sequencing steps vary from order to order
depending on whether or not there are short parts, and
whether or not those parts can be located or substituted.
The control is accomplished by means of phasing and
makes use of ART-IM facts.

The individual processing steps make up the second
layer of rules. These sets of rules handle such functions
as determining order status, enumerating still missing
parts, looking for spare parts, performing bookkeeping
for each order, and bookkeeping for parts. Within these
rules, objects are used to represent the customer orders,
each order’s short parts, and materials locations and

122 IAAI

substitutions. These objects are short lived; they are
deleted as soon as they are processed and reported.

Another use for objects within MPSA is as storage for
available part information. Once the search for a part is
completed, its inventory status (available quantities and
locations) is stored in bookkeeping objects. Other orders
requiring the part will bypass the screens, and get data
from the bookkeeping objects (and decrease the quantity
available). These objects last the duration of the
program.

Sets of task-specific rules dominate the bottom layers
of rules. These include the screen access rules,
reporting rules, and the like.

Communications and Interfaces. The configuration of
all the many pieces of the emulation hardware and
software was of major concern - it looked too complex to
actually work. But in fact the team was pleasantly
surprised by the amount of effort needed to make the
communications functional. The hardest part was
deciding which hardware and software to order!

The communications hardware chosen was DCA’s
IRMA 3270 terminal emulator board for the PC. It is
installed in a 25MHz, 80386 PC (AT&T 6386/25 WGS)
with a co-axial connection to the IBM cluster controller.
A LAN gateway has been tested, and it is probable that
the system will be moved to that configuration soon.

DCA was also chosen for the emulation and HLLAPI
protocol software. The HLLAPI is used to make
mainframe data packets available to a high level
language (like C) on the PC. It consists of high level
function calls to read and write mainframe screen data.

ART*SNA is the highest level of the communications
link. It informs the data driven ART-IM code when
new screens are present, and provides a simple rule-
based, object-oriented programming interface between
the screens and ART-IM.

Developing the screen access rules took much less
time than was originally anticipated. After the first
screen was coded, rules to process a non-trivial
application screen were written in just a few hours.

It is worth describing the data-driven process which
recognizes and handles the mainframe screens. Each
screen is identified to ART-IM by its name and
recognized by a unique set of characters on the screen -
such as a screen ID. Whenever there is a screen change,
it is announced (via a fact) to the inference engine. So,
for example, when MPSA first connects to the
mainframe, a fact is asserted in MPSA that the logon
screen is currently active and displayed. Within that
announcement is a pointer to a buffer containing the
screen text and data. The announcement triggers any
waiting logon specific rules so that the appropriate
action can be taken. For example, MPSA has a rule that
says, “If we are sitting at the logon screen and we want
to start a session, then send the logon text and an ‘enter’
key”. This action produces a new screen, which in turn
activates other rules. In this manner, system logon,
application logon, and then access of the inventory
screens is accomplished. Simple mapping functions are
available to pull interesting screen data from the screen
buffer and store them into objects or facts.

Before discussing MPSA’s deployment and benefits, the
next section of this paper gives a brief overview of a
second AT&T Patriot application which built upon
MPSA’s design and philosophy. It also fulfilled the goal
of extending the utility of a legacy system.

The Customer Order Loading Expert
System (COLES)

After MPSA was completed, the team turned its
attention to another problem - one which could be
solved using the same technological approach. The
problem to be addressed was error handling in a
Customer Order Entry system. The COBOL system
maintainers were unable to implement effective error
recovery procedures for many of the same reasons that
the IMPAC system could not be upgraded. The system’s
inability to deal effectively with errors negatively
impacted customer order processing. For various
reasons, a percentage of orders would be rejected as
errors. A clerk would then spend, on average, an hour a
day re-entering these orders into the system. This
problem was solved by introducing an intelligent error
handler that enhanced departmental processes and saved
significant amounts of manual input. COLES reads the
error reports, determines the cause of the problem, and
automatically enters the corrected order into the system.
It eliminates the need to manually re-enter customer
orders.

The system can be represented as below in Figure 3 :

pi%-+-] [-iyF
f \ f ‘5

Determine Correct
Problem Entry

\ / \ J
A

f \
Access

- Order Screen

Figure 3 : COLES processing

The COLES system is a relatively simple application of
rules that analyze customer order entry error conditions.
On determining the cause of the error it then writes the
correct data to the order forms on IMS screens via PC
terminal emulation

McManus 123

The Development Team
A noteworthy aspect of the project was the degree of
successful technology transfer accomplished. The
development team consisted of three AT&T engineers
each of whom had little or no rule-based programming
experience, and an Inference Consultant who headed the
project and trained the others. The AT&T team
members included a mechanical engineer, an
experienced COBOL programmer who knew IMPAC,
and a PC “systems” programmer. The Consultant’s
responsibilities included designing the system, training
the team and transferring ownership of the system to
AT&T. At the end of the project, one team member was
comfortably maintaining the system and all team
members were actively pursuing other rule-based
projects.

The largest factor in the technology transfer success
was the freedom from rigid deadlines. The system could
have been built more quickly, but AT&T management,
committed to having a staff trained in the use of the
ART application development tools, agreed to extend
the project’s time span to accommodate the technology
transfer learning curve.

Another factor in this success was the structuring of
the task assignments. Each person leveraged what they
knew within their assignment. For example, the PC
systems programmer, who loved tinkering with new and
unusual PC products, learned to write rules by coding
the ART-IM screen access. The COBOL programmer
created rules to set up IMPAC parameters for nightly
production processing. Each member of the team had a
stable base of his/her own expertise to work from. This
kept the frustration of learning a new technology lower,
and the interest higher.

Deployment
The MPSA project was deployed within nine months of
the initial scoping effort. The actual programming
effort took six months.

The following serves as a testimony to the flexibility
of the knowledge-based approach to MPSA. Just as the
system was nearing completion, departmental processes
shifted and the business problem changed. Several
pieces deemed mandatory at the outset were suddenly
unnecessary. The application was refocused in order to
ensure it was not obsolete before it was completed. The
front and back-ends to MPSA were re-designed and
coded, and new layers of rules added to accommodate
the data needs. Within 30 days, the system was in
operation.

124 IAAI

The program was tested and validated using
traditional software practices: unit test and system test
on standard, exception and boundary-condition data.
The user performed the acceptance testing by hand
checking MPSA results.

The initially delivered system required two hours of
an operator’s attention before reports were finally
produced. Once MPSA was functionally correct, this
aspect was automated. Batch commands were set up to
logon to TSO, run a database query to create a flat file
and then download the flat file to the PC where it is used
as program input. MPSA output was then funneled to a
PC-based data base for input to a report generation
program. The operator now spends two minutes
initiating the process, and then picks up the reports in
45 minutes.

The COLES project required just three months effort
from concept to deployment, since much of the design
and code was borrowed from MPSA.

Project Status
MPSA has been in daily use since June, 199 1. COLES
has been in use since November, 1991. The systems
service two separate departments. The system operator
is a senior clerk in the scheduling department. Reports
are used by the Patriot shop management, and by the
material planners.

System Maintenance
Most maintenance thus far has been minor:
modification of input or report data, and an occasional
addition of an order processing condition. The system is
maintained by one of the original team members, who is
currently in the process of handing off this task to the
system user. Maintenance complexity has been
minimized by using the same general rule and object
architecture, control structure, input and output
methods, and screen handling rules in all of the
programs.

Benefits
MPSA has been an extremely successful application for
AT&T in a number of ways. It was probably the only
means by which this very necessary additional
functionality could have been achieved within a
reasonable time frame and cost. The original COBOL
system, IMPAC, was built to satisfy the needs of a
business very different to the one it is supporting today.
MPSA was able not only to deliver expanded
functionality to meet the requirements of today, but also,
through its design and technology selection, to provide
the flexibility to respond to future business evolution.

Acknowledgments
We would like to thank co-team members Jonathan
Lofton and Arjun Harpalani, AT&T management:
Maurice Henderson, Bob Menard and Mike Jones for
their support, users Kyle Lynch, Ken Back and Sue
Meyer for their constructive criticism and Norbert
DeAmato, Glenn Coffin, Bill Steele and Don
Bohnwanger for mainframe programming assistance.

The system was built without using the time of busy
maintenance programmers, and deploying MPSA on a
PC platform allowed the system to be developed without
tying up valuable mainframe time.

It has been calculated that, overall, savings of more
than 200,000 dollars per annum have been made in
personnel costs, product sales attributed to increased
customer satisfaction, and better inventory utilization.

The quality of work produced and the level of job
satisfaction have both increased. MPSA has helped to
switch analysts from reactive to pro-active mode in
doing their jobs. Several tedious work assignments in
the planning and scheduling departments have been
made obsolete. The quality of scheduling plans is far
superior and more useful data is available. Several
departments use the reports as the basis for their weekly
meetings. The reports achieve an accuracy of data that
was not available from IMPAC. The reports are also
presented in a more useful form than previously.

The application development process provided the
context for a very effective technology transfer to AT&T
employees. This laid the foundation for the development
of other applications without the involvement of outside
consultants.

McManus 125

