
DIAGNOSTIC YIELD CHARACTERIZATION EXPERT (DYCE)
A Diagnostic Knowledge Based System Shell

for Automated Data Analysis

Donald D. Pierson
George J. Gallant

IBM Corporation
1000 River Road

Essex Junction, VT 05452
dpierson@btvlabvm.vnet.ibm.com
gallant @ btvlabvm.vnet .ibm.com

Abstract
Diagnostic Yield Characterization Expert
(DYCE) is a knowledge based system shell
used for automated data interpretation in
semiconductor manufacturing. Using a
combination of artificial intelligence tech-
niques , DYCE assists manufacturing and
development personnel to diagnose problems
by automatically interpreting hundreds of
pieces of data, just as a human expert would
do. Diagnosis time has been reduced from
several hours to minutes. DYCE’s inference
engine has generic meta-rules to represent
the heuristic problem-solving knowledge of
the experts; this permits the representation
of hundreds of traditional expert system
rules with a few dozen meta-rules. This
generic shell architecture has important ben-
efits in maintaining an expert system in a
dynamic environment without the need for a
knowledge engineer or AI training.

Task Description

Background
The introduction of a new generation of semicon-
ductor technology can cost hundreds of millions of
dollars and take three or more years to develop. The
detection and prevention of defects in the semicon-
ductor manufacturing and development processes are
critical to providing high yield and product reliability
within cost objectives. Information from many data
sources must be interpreted by numerous manufac-
turing personnel in order to understand the causes of
any process problems during production. As tech-
nology advances to yet higher and higher levels of
integration, the amount of data required for interpre-
tation increases dramatically.

It is typical to have manufacturing support groups
whose missions are to design appropriate testing and

152 IAAI

analyze the results to insure that product quality
goals are met. In reacting to yield loss situations
during the production process, manufacturing per-
sonnel study information from process tool moni-
tors, visual microscope inspections, product flow
information, and routine failure analysis evaluations.
Proper diagnosis and resolution of the process
defects require the cooperation of experts from
numerous manufacturing departments, as well as
from the data analysis (characterization) support
groups.

The use of knowledge based systems for semicon-
ductor process diagnosis is not new (Roundtree
1986) (Pan and Tenenbaum 1986). Methods ranging
from manual database queries (Sher, et al. 1990) to
automated discovery (Saxena 1993) have been used.
DYCE is a belief-based system using compiled
knowledge for automatically interpreting electrical
test data taken during semiconductor processing.
Compiled knowledge refers to knowledge that
experts acquire through experience (Punch 1992).

Goals
The primary objective of DYCE was to automate
the analysis of hundreds of electrical tests performed
during the manufacturing process. The motivation
was two-fold. (1) The support groups became over-
whelmed with data to the point of not being able to
react to all of it. Only critical data was being moni-
tored in real time, with the rest of the data stored for
later analysis. (2) Market pressures precluded the
addition of more human resource. Automated data
analysis was required to handle the increasing
amount of data and insure product quality without
adding people.

Another objective was the implementation of the
knowledge based system as an inclined shell, ena-
bling DYCE to be used in numerous manufacturing
areas without the need for customization. DYCE
also was required to function in a dynamic environ-
ment, where production rules, specifications, and
tests are constantly changing.

From: IAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved.

Application Description
There are two optional modes of operation of
DYCE, automatic and interactive. Users have the
option of deploying their DYCE applications in one
or both modes.

Automatic mode: The automatic mode can be trig-
gered each time the results of an electrical test is
loaded into the manufacturing database. In this
case, the knowledge base system is automatically
consulted and the conclusions are sent to a list of
subscribers (engineers and technicians) via electronic
mail (see Figure 1: Automatic DYCE Diagnosis).
Users have been delighted to have the computer send
them results through-the mail.

SUBJECT: Lotname: K33802HOS18L (6301)

The following problems were found by DYCE:

WAFER ID

ALL
ALL
MCC54VUQ
MEA54SXQ
MEA54SXQ
MIC54WEQ
MI C54WEQ

Figure 1. Automatic DYCE Diagnosis via e-mail.

PROBLEM

HIGH ACLV
LOW POLY LWB
HIGH ACLV
HIGH ACLV
LOW DEFECT PROBE YIELD
LOW DEFECT PROBE YIELD
LOW POLY LWB

Interactive mode: The interactive mode is initiated
by a user who is looking for diagnosis of electrical
tests from a specific batch of product which has test
results already in the manufacturing database. The
KBS analysis is triggered by the user from menu-
driven panels. Product name and test identification
are input to start the process. The resulting diag
noses are displayed on the DYCE Conclusion Panel,
as shown in the bottom half of Figure 2. In the
interactive mode, the DYCE inferencing defaults can
be changed to do customized reasoning. In addition,
supporting information in the form of exception
reports, graphics, and explanations of DYCE conclu-
sions are accessible during this mode (see the top
half of Figure 2: DYCE Conclusion Panel). The
exception reports show only data that is not ‘meeting
specification as defined by the expert. Previously,

the user had to sift through all the data, including
acceptable results, in order to fmd the unacceptable
results. Examples of graphic output are 3D maps of
test values across entire product batches, contour
charts showing patterns on individual wafers, and
histograms of data distributions. Wafer maps are
plots of test readings that were measured across each
wafer. The wafer maps are used by the experts to
study regionality problems. This supporting infor-
mation is defmed by the expert to be pertinent to the
problems concluded by DYCE. Typically, these
charts are used for additional trouble-shooting or
presentations. The user can choose from a list of
charts and graphics to display the additional infor-
mation. The advantage of having the knowledge
based system generate the charts is that fewer
unneeded reports are made.

There is an option to review which rules fned
during the consultation. This helps the user under-
stand how DYCE came to the conclusions presented
on the DYCE Conclusions Panel or in the electronic
mail.

-------_ DYCE CONCLUSIONS PANEL ---..------

-- SELECTION MENU --- 81:14 PM --- 3/83/15 --

DYCE Knowledge Based System conclusions.

R - Displays the EXCEPTION REPORT
S - Displays the SNAPSHOT REPORT
A - Displays the ALL PARAMETERS REPORT
M - Displays the ALL WAFER MAPS REPORT
P - Display PICTURES of each choice

PFl - HELP PF3 - Return
PF7 - Scroll up PF8 - Scroll down

t- PRESS 'ENTER' AFTER COMPLETING SELECTIONS -t

----_--
KBS CONCLUSIONS LOT: K33882H8 PNPID 6381
__--_----_---__---__---------------------------

Lot ID: K33882H8
CONFIDENCE

WAFER ID PROBLEM FACTOR

ALL HIGH ACLV 0.94
ALL LOW POLY LWB 8.98
MCC54VUQ HIGH ACLV 8.94
MEA54SXQ HIGH ACLV 0.94
MEA54SXQ LOW DEFECT PROBE YIELD 0.96
MIC54WEQ LOW DEFECT PROBE YIELD 0.96
MIC54WEQ LOW POLY LWB 0.90

Figure 2. DYCE Conclusions Panel (interactive mode)

Pierson 153

Access another KBS
Another helpful feature of DYCE is the ability for
the user to seamlessly interact with another know-
ledge based system called DEPICT (Digitized Expert
PICTures)‘. The user does not need to exit the
DYCE knowledge based system to initiate the
DEPICT consultation. DEPICT contains digitized
images of previously discovered semiconductor
defects and textual information about how to elimi-
nate them. This option allows the user direct access
to the institutional knowledge about any product
problems just diagnosed by DYCE.

DYCE Architecture
The architecture of DYCE is a unique combination
of knowledge representation techniques which allows
the domain expert to modify knowledge based
system rules at run-time, without the need for a
knowledge engineer to modify source code and
recompile the knowledge base system.

The artificial intelligence techniques combined in
DYCE are pattern matching, fuzzy logic, certainty,
and normalization. These enable the use of generic
meta-rules in the inference engine and are described
in subsequent sections of this paper. The use of
pattern matching techniques allows heuristic know-
ledge to be represented and processed by computers.
Pattern matching is used to recognize important
information in data in a relatively fast, efficient
manner. Fuzzy logic techniques enable the inference
engine to deal with missing or incomplete data. The
knowledge base system can continue with its goals,
rather than stop for lack of information. The final
conclusions are based on the amount of evidence in
the data. Confidence in the knowledge base system
conclusions is measured with certainty factors. Cer-
tainty factors represent a weighting technique that is
applied to the data. Normalization techniques
enables simplification of the pattern matching
scheme. This allows minimization of the total
number of rules required by the inference engine to
represent application-independent knowledge.

DYCE Software Shell
A system overview is presented in the schematic rep-
resentation in Figure 3. DYCE was developed using

ISPF/PDF2 utilities, PC/I, ‘C’, and an object-
oriented AI shell (ART-IM3). DYCE is currently
deployed on an MVS4 mainframe environment.
Access to DYCE is provided as an option on a
ISPF/PDF menu. This deployment strategy enables
users to access the system easily as part of their
routine data analysis.

Selecting the DYCE option invokes a TSO C-list.
The C-list checks for database availability, allocates
fdes, runs routines to test the terminal for graphics
capability, allocates the external tables, and invokes
the ART-IM AI shell. All routines use ISPF/PDF
services to display menus and selection lists. The
programs provide the graphics interface for the user
with GDDM.5

The automatic and interactive software routines
enable the two modes of operation of DYCE. The
automatic software portion essentially gathers the
appropriate data from the database(s) and formats it
into a repository for use by the inference engine.
The inference engine’s meta-rules, which represent
domain experience, match with speci& instances of
patterns in the repository to formulate diagnoses.

Knowledge Representation
The knowledge engineering bottleneck of getting
application knowledge into expert systems is well
known. The DYCE shell was designed to minimize
this problem. Application knowledge is input into
DYCE by entering information in simple table
format. This feature offers a practical method for
easily modifying the system to meet changing
requirements in continually evolving applications.

Table Driven: There are three tables required for
inputting knowledge into DYCE. One table
describes the patterns to be recognized in the data.
This table is called the expected data pattern table.
An example of this table is shown in Table 1. The
second table (example is shown in table 3) is used to
input the specifications for each measurement or var-
iable. A third table (not shown) represents the rules
for automated generation of supporting information
(graphics, trend charts, and wafer maps). It is
similar in format to the expected data patterns table.

* DEPICT is an internal IBM knowledge based system shell.

2 ISPF/PDF (Interactive System Productivity Facility / Program Development Facility) is a trademark of IBM Corp.

3 ART-IM (Automated Reasoning Tool for Information Management) is a trademark of Inference, Corp.)

4 MVS (Multiple Virtual Systems) is a trademark of IBM Corp.

5 Graphical Data Display Manager (GDDM) is a trademark of IBM Corp.

1%4 IAAI

System Overview

I Electronic

I ‘,.
““‘.

Inference Engine
“’ :

: :_ ‘. 1 I ‘>

Automated
Diagnoses

-I
.,.: ,:: ,.I. ,.,‘: .‘.: ‘. :.: :: .._A: .;:,_..:.~.,. : ..::::’ ,. ,. ,._ ._ : ..::,::::: : :_::I :: . . .

,,_ :,:,:_:... :. ,.: ._ 1.: : y 1. .: ::. _:.:.: .: ‘. Meta-Rules .. ; . . :..,:.; ,.:“;;:“.’ ,:.. .; ‘. I‘* .: :.:.:.: .’ :,. ; : ‘.,,. ;_: :,:: .,.., ,. .:.: :. ,,.:: :. ;:,;’ :. .’ ,_ ‘: :: :: _: ,:: ::. :.;: : :.:.: : : ::..::... :
.::: :. ‘? ._. . . ::. :., ..I., _::_.: .: :.:.: .‘... ‘.Z .,.,. :_:.:.:_:.:.:, ,_, ,.,., ., ,.~~,~~.~~~.,.‘~~.~~~.‘.‘~~.~~‘.~.~., : :.: :.:.:.:.:.,.:.:.,.:.:.~ .:_.: :::‘: : .; :_ ., ,. :: :.>: .,.,.,., ,._.,.,.;,. .,.,.,.,. .,... .,.,. . . _.: : ..:.: .:: _’ :::::,:._ :?: ,: ::.. ::.. .::.; :.:..::::::::::::::~~:.,. ,: .,:_ .+:.,,:: ..’ :, ., : ,.; ._:.,: .: :. 1. .:.,.: . . . :. :. ::..;.:.:.:.:.. ‘_ .,., . ,, __.l_.,.,_,._ .‘. .‘.’‘.‘.‘.::.. ‘.: ‘... . .,.,.,.,.,C.,.,C.,.,.~.,.~.,.,.,.,.,.~ ,,_ ,, : .. : ,: : :,:.:: _,:‘,‘.’ :, .:.:. ,.,.I ‘.:.: : .+:.:.:.:.: .,.,.,.,._.,.,.,.,. .,.,.,.,.,. ,.,., c ,. ,. ; .., . . : .: ” :.:./ : ..:,:_: _.. : .,. .; ,;,.

Interactive
Display

Optional
Hardcopy

L Interactive Software Routines

Manufacturing
Databases

Figure 3. This figure is a schematic representation of the architecture of DYCE.

Pierson 155

Table 1. Example of DYCE Rule Representation (Expected table).

PROBLEM TO VARIABLE VARIABLE NAME LOW HIGH CERTAINTY RULE
BE DIAGNOSED ID. LIMIT LIMIT FACTOR CODE

PROBE-FAIL 311 PROBE-TEST -5 -3 0.8 0
PROBE-FAIL 311 PROBE-TEST -3 -2 0.4 0

HIGH LWBIAS 311 PROBE-TEST -5 -2 -1 0
HIGH LWBIAS 312 POLYSILICON RS -2 2 0.9 A
HIGH LWBIAS 313 POLYSILICON BIAS 2 3 0.9 A

LOW LWBIAS 311 PROBE-TEST -5 -2 -1 0
LOW LWBIAS 312 POLYSILICON RS -2 2 0.9 B
LOW LWBIAS 313 POLYSILICON BIAS -3 -2 0.9 B

EACH RULE PATTERN IS ADDED IN AN ADDITIONAL ROW

Pattern matching: The expected data pattern table
essentially describes the rules (patterns) that DYCE
uses to determine conclusions about the data (see
Table 1: DYCE Rule Representation). These are
the application-specific patterns that are matched in
the meta-rules of the inference engine. The table is a
representation of how a human expert thinks when
determining conclusions from the values and
relationships of the data. The domain expert uses
this table to input knowledge about each problem to
be diagnosed, variables known to affect each
problem, and how much weight (certainty) is to be
applied to each piece of information that exists in
the database.

Normalization: Within DYCE, each variable’s value
is normalized with respect to its target value. The
normalization reduces the coding requirements of the
inference engine, simplifies end-user maintainability,
and allows DYCE to be implemented as an inclined
KBS shell. Without normalization, each variable
would need a rule associated with its range of real
values. In the semiconductor applications, that
means a 10X increase in the number of rules is
required to represent the knowledge. The basis of
the normalization method is similar to statistical
process control limits, as shown in Table 2. The
variable’s target or nominal specification is consid-
ered to be zero. Each variable’s values are normal-

ized over a range from ‘-5’ to ’ + 5’ with respect to
the target value. Values inclusive of ‘-2’ to ’ + 2’ are
“within speciJications.” There are low and high
control limits at ’ - 1’ and ’ + l’, respectively. Values
greater than ’ + 2’ are categorized (somewhat arbi-
trarily) into three levels of high and values less than
‘-2’ are classified into three levels of low. The
heuristic values as shown in Table 2 are also arbi-
trary. Actually, the whole normalization method is
arbitrary; any set of numbers and names would
suffice. These values were chosen to keep the table
representation scheme simple and related to the
semiconductor applications.

Fuzzy logic: There are eleven membership sets, or
categories for the semiconductor data analysis appli-
cations. The number of fuzzy sets is arbitrary; more
categories allow fmer granularity. However, this
number adequately meets the requirements in these
applications. The normalization function is a con-
tinuous, but not necessarily linear, function of the
variable’s possible values. Depending on the vari-
able’s real value, the normalized value will cause the
variable to be a member of one of the eleven catego-
ries? In the example in Table 2, variable #3 12 is
within specification for values between 20 ohrns/sq.
and 60 ohms/sq. (‘-2’ and ‘+ 2’ for normalized
values).

6 The membership function for each category is a step function in these applications.

156 IAAI

Table 2.
Vari-
able

Normal-
ization

Heuristic
Values

311
(“/o)
312
(ohmh)
313
(micron)
Specifical

Examnle of DYCE Data Snecifications Table.

-5 1 -4 1 -3 (-2 1 -1

O I 25 I 5o I 75 I 8o
0 I .l I 1 I 20 I 25

0 1 .Ol I .02 I -03 I .04

ons for each variable are defined in separate rows

0 1 +1 1 +2 1 +3 1 +4 I +5

on
target

in within high mediun- very
control spec high high

85 1 90 1 94 1 96 1 98 1 100

40 1 55 1 60 1 100 1 400 1 999

.05 1 .06 1 .07 1 .08 1 .09 1 1

Meta-rules: The meta-rules in the inference engine
are made up of generic premises and associated
actions. Think of this as:

WHENEVER < SOMETHING IS MATCHED > ,
THEN DO <WHATEVER THE ACTION IS. >

This is represented in ART-IM by asserting
instances of schemas’ using rows from the expected
data patterns and matching them against schemas
populated by actual data patterns from the reposi-
tory. When a variable’s normalized value (from the
repository) is within the range the domain expert
listed in the expected data patterns table, the
schemas are considered to be matched. The generic
premise is satisfied for this instance. This causes the
rule to fire and carry out the action, which is also
part of the expected data pattern. Typically, the
action is to apply additional certainty to a specific
diagnosis.

Example:
Assume that the real value from the semi-
conductor electrical testing for variable #3 11
is found to be 30%. The software takes this
value from the database, normalizes it using
Table 2 (DYCE Data Specifications Table),
and puts it in the repository. In this case,
the normalized value is -3.6 and it becomes
a member of the fuzzy set with the heuristic
value of “medium low.” The variable and its
normalized value make up part of the infor-
mation that gets loaded into an actual
schema from information in the repository.
The expert put a data pattern into the

expected data patterns table that deals with
variable #3 11 (see the frost row of Table 1).
Therefore, there is an expected schema that
will potentially match with the actual
schema. Since the normalized value (-3.6) of
variable #3 11 is with in the specified range
(between ‘-5’ and ‘-3’) in Table 1, the meta-
rule’s generic premise is matched and the
rule fires the action.

The frost line (pattern) in table 1 is:

PROBE-FAIL 311 PROBE-TEST -5 -3 0.8 0

The meta-rule in DYCE’s inference engine inter-
prets this first pattern in a way similar to the fol-
lowing syntax:

“Whenever the yield of variable #311
(PROBE-TEST) is between the values of
0% and SO%, then there is probably (0.8
evidence) of the PROBE-FAIL problem.”

After the generic meta-rule fries, the problem
“PROBE-FAIL” is given a certainty of 0.8. The
“rule code” at the end of all the expected data pat-
terns allows single or double premise patterns. A
rule code ‘0’ tells the inference engine to treat that
row as a single premise pattern. Rows with the
same rule code other than ‘0’ are combined as
double premise patterns and are matched only if
both patterns are true. See Table 1 for more exam-
ples.

Certainty factors: For diagnoses involving several
variables, the evidence needs to be tallied for all the
matched patterns. The resulting certainty factor is

7 Schemas are hierarchical representations of information about objec:ts used in ART-IM.

Pierson 157

determined by the MYCIN8 algorithm for combining
certainty factors. If the final certainty exceeds the
certainty threshold specified in DYCE (either by
default values or input by the user during an interac-
tive session), then the problem is output as a DYCE
diagnosis.

It is important to point out that DYCE matches
problems only when the real data is in the appro-
priate range. This is similar to a human expert
recognizing that data is “within-sped’ or “out-of-spec.”

Knowledge about new problems can simply be
added as a new line in the DYCE expected patterns
table. New variables, or changes to a variable’s spec-
ification limits are updated in the DYCE data spec-
ifications table. In this manner, the knowledge based
system is easily kept current without the need of an
AI specialist.

Why multiple AI techniques?
Earlier experience with conventional data analysis
software showed us that methods for processing the
raw data into meaningful information were popular
with our users. For example, statistical information
in appropriate columnar formats helped the experts
recognize problems more quickly. Many of the
popular routines eventually became menu selections
for ease of use.

As the amount of data increased, the amount of
human resources usually remained constant (or
sometimes decreased). Critical data was prioritized
for real time analysis, with less important data
reviewed as time permitted or if the key indicators
could not explain processing problems. It was
recognized that artificial intelligence techniques could
help automate some of the interpretation effort and
help decrease the risk of missing important diag-
noses.

Our first attempt using a traditional rule-based
only approach taught us that hundreds of rules were
needed to make a useful system. Further, we
noticed that constant rule modification was required
to keep pace with the dynamic environment of man-
ufacturing process improvements. We realized that
expert systems that were brittle, hard to maintain,
and required constant knowledge engineering
resource were likely to become obsolete. After all,
why not just apply the resource involved in devel-
oping the knowledge based system (expert, know-
ledge engineer, and programmer) directly to the
manufacturing diagnosis task? The answer was to
provide knowledge based system shells that the
domain expert can easily modify without AI training
or programming skills.

The combination of the techniques described in
earlier sections allowed us to successfully develop
DYCE as an application specific shell. The infer-
ence engine architecture is implemented using the
procedural programming, pattern matching, and
object oriented features in ART-IM. We found
these features to be very useful attaining our archi-
tectural goals for DYCE. The rest of the
input/output functions use procedural techniques.

Application Use and Benefits
DYCE is being used internally in IBM’s develop-
ment and manufacturing facilities in Essex Junction,
Vermont. Primary users of the system are the char-
acterization support groups whose jobs are to deter-
mine any manufacturing problems by reviewing the
electrical test results. It has become a popular anal-
ysis tool used by the domain experts themselves to
alleviate the data explosion brought on by advancing
technology. This is in contrast to most traditional
expert systems, which are built primarily for other
(non-expert) users. The obvious advantage DYCE
holds for the experts is several orders of magnitude
increase in speed.

There are over four dozen DYCE applications in
these areas; it has become standard business practice.
For example, users have developed application-
specific expected pattern tables dealing with three
types of automated analyses using the DYCE shell.
(1) product dispositioning, (2) quality screening, and
(3) data interpretation. Product dispositioning is
used to scrap defective product or ship acceptable
product on to the next step. Quality screening is a
method to categorize estimated product reliability by
analyzing special electrical testing as the product is
being processed. Data interpretation is key to
detecting process defects in the manufacturing and
development areas.

For many applications, each time a batch of
product is tested, the automatic DYCE mode is
invoked to determine one or more of these tasks.
This frees the user from mundane data collection
and interpretation activities and allows more time for
important engineering efforts. From a business per-
spective, this means that more time is spent on crit-
ical tasks of determining the root cause of the
problems. When the electronic mail indicates prob-
lems, users consult the knowledge based system in
the interactive mode to efficiently review the sup-
porting information.

DYC13 is performing the equivalent work of
dozens of engineers and technicians. The average
time to determine results from the electrical tests
have been reduced from hours to seconds (minutes if

8 “MYCIN” is a knowledge based system for medical diagnosis developed at Stanford University, CA.

158 IAAI

there is heavy processor contention). It is estimated
that hundreds of hours a month are being saved rela-
tive to manual diagnosis of production problems.
Off-shift analysis is consistent and available at the
expert level whenever needed. The ability to auto-
matically review all the data has resulted in the early
detection of manufacturing defects. Early detection,
in turn, has saved additional product from less than
optimum manufacturing processes. The cost of a
missed problem approaches several million dollars in
a large semiconductor fabrication facility.

Limitations: The shell architecture of DYCE, in
conjunction with the use of multiple AI techniques,
has important benefits to the successful implementa-
tion and continued use of these applications.
Ilowever, awareness of DYCE’s limitations is impor-
tant. The architecture of DYCE, as presently
deployed, has no learning ability. Experts must
“teach” DYCE all application knowledge in the
table-driven environment. New problems, not previ-
ously known to DYCE, will not be output in the
conclusions. Care must be taken NOT to infer that
product is completely free of problems even if
DYCE concludes there are no problems diagnosed.
This simply means that there is no evidence of
“known” problems. Additionally, DYCE does not
know if the expert has left out important rules
needed to correctly determine diagnoses. There is no
automated verification for application knowledge.
Experts must also carefully review any table editing
for inadvertent deletions or incorrect format during
maintenance. Finally, for complex applications, the
table-driven environment becomes difficult to
manage without the use of a knowledge editor.

Application Development and Deployment
Approximately 16 person-months were needed to
design and develop DYCE to the production version
released in January 1992. The development team
consisted of one part-time knowledge engineer and
one part-time mainframe applications development
programmer over a two year period. The responsi-
bility of the programmer included database access,
input and output functions, and integration of the
inference engine. The knowledge engineer designed
and developed the inference engine, developed the
overall knowledge based system architecture, and
performed the knowledge engineering responsibilities.

It is the implementation of generic meta-rules that
allows the application-specific rules to be external to
the inference engine. Therefore, validation is simpli-
fied into two parts. One part deals with the correct-
ness of the meta-rules, which is independent of any
application. The second part begins to look more
like a database question, where validation deals with
the completeness of the application knowledge. For
example, a change to the application knowledge

(expected data patterns tables) does not affect the
underlying inference engine. This is not the case for
a traditional rule-based expert system.

Validation of the generic meta-rules was accom-
plished by running hundreds of production patterns
and checking DYCE output against expected
(known) conclusions. Further, by knowing which
rules are expected to fire, an accounting of the
resultant certainty factors can be done to cross-check
the DYCE diagnosis for accuracy. Domain experts
for each application were responsible for validation
of application knowledge. This includes specifica-
tions, application rules for each diagnosis, and asso-
ciated certainty factors for each rule.

The mainframe deployment of DYCE effectively
allows the users access to automated data interpreta-
tion as part of their daily tasks. DYCE is an exten-
sion of the existing business practices and represents
an advanced software diagnostic tool used in con-
junction with existing analysis systems. Training
activities are minimized because programming, AI,
and knowledge engineering skills are not required for
maintaining the application-specific knowledge repre-
sentation tables. User interaction is relatively simple,
since all of the analysis is performed by DYCE.
Access to the interactive mode is by selection from
familiar analysis menus. The interactive mode is
menu-driven for ease of use. The automatic mode
issues electronic mail; no daily user interaction is
necessary.

Maintenance
Our observation is that a traditional expert system’s
inference engine of several hundred rules can be
represented by tens of generic meta-rules in DYCE’s
architecture. This greatly simplifies the maintenance
of the inference engine. The only need for changes
to the inference engine deal with adding advanced
reasoning ability and are separated from application-
specific modifications, such as specification changes.
The shell architecture and meta-rules segment the
traditional knowledge engineering effort required to
maintain the system. Application-specific knowledge
is handled independently by the domain expert in a
table-driven environment. The inference engine is
modified by the developers without worrying about
the specifics of each application. However, our
experience with the table-driven environment has
shown that for complex applications, the tables can
become very large and difficult to manage. Users
are required to verify the completeness and accuracy
of application knowledge manually. Even though
the tables are straight-forward, a software system for
table management is seen to be extremely beneficial
in helping maintain complex applications. We plan
to add a knowledge editor function to assist users
with application table development and mainte-
nance.

Pierson 159

Conclusions
In the 12 months that DYCE has been deployed, we
have found that this architecture has some important
benefits concerning the use and maintenance of
knowledge based systems in dynamic environments.

The combination of a fast-paced industry and the
explosion in available data may contribute directly to
the reason that DYCE is used both by the domain
experts and by non-experts as a tool for increased
productivity. Virtually all of our users like to have
the computer send them “diagnoses by wire” and
have an integrated system for their data analysis and
interpretation requirements.

Even for table-driven applications, a knowledge
editor is desirable to manage the dynamic
application-specific patterns. Manual verification
techniques are cumbersome in continuously
changing applications.

We have observed that a few, but powerful meta-
rules can be used to represent the heuristics used by
the experts for problem-solving in this class (data
interpretation) of applications. This has encouraged
us to plan to add more meta-rules to the inference
engine to increase the reasoning ability of DYCE.
The aim is to allow the computer to reason with
other aspects of semiconductor process diagnosis.
The goal is to eventually automate root-cause anal-
ysis.

ACKNOWLEDGEMENTS
The participation of the many experts and users who
have encouraged the development of this application
is greatly appreciated. Special thanks goes to Mike
Marceau, Mary Brooks, and Bob Desmarais for
helping to shape the system and to integrate it into
the development and manufacturing areas. Thanks
also goes to the IBM Corporate Manufacturing
Expert System Productivity Center in San Jose, CA.

for (assistance and training. A special note of
acknowledgement goes to Michael Potter, whose
management vision has empowered us to succeed.

REFERENCES
Roundtree, R. 1986. Software Defect Analysis for
Memory Products, Texas Instruments Engineering
Journal 3(1):46-50.

Pan, J., and Tenenbaum, J. 1986. PIES: An Engi-
neer’s Do-it-yourself Knowledge System for Interpre-
tation of Parametric Test Data. AI Magazine
7:62-69.

Sher, G.; Eaton, D.; Fernelius, B.; Sorenson, J.; and
Akers, J. 1993. In-line Statistical Process Control
and Feedback for VLSI Integrated Circuit Manufac-
turing. IEEE Transactions on Components, Hybrids,
and Manufacturing Technology 13(3):484-489.

Saxena, S. 1993. Fault Isolation during Semicon-
ductor Manufacturing using Automated Discovery
from Wafer Tracking Databases. In Proceedings of
the Ninth Conference on Artificial Intelligence for
Applications, 3 13-320. Orlando, FL.: Institute of
Electrical and Electronics Engineers, Inc.

Punch, W. 1992. Large Inteactions of Compiled and
Causal Reasoning in Diagnosis. dEEE Expert
7(1):28-35.

Gallant, G., and Thygesen, J. 1993. DEPICT,
Digitized Expert PICTures, Forthcoming.

Buchanan, G., and Shortliffe, E. eds. 1984. Rule-
Based Expert Systems: The MYCIN Experiments of
the Stanford IIeuristic Programming Project.
Reading, MA.: Addison-Wesley.

160 IAAI

