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Abstract 
Diagnostic Yield Characterization Expert 
(DYCE) is a knowledge based system shell 
used for automated data interpretation in 
semiconductor manufacturing. Using a 
combination of artificial intelligence tech- 
niques , DYCE assists manufacturing and 
development personnel to diagnose problems 
by automatically interpreting hundreds of 
pieces of data, just as a human expert would 
do. Diagnosis time has been reduced from 
several hours to minutes. DYCE’s inference 
engine has generic meta-rules to represent 
the heuristic problem-solving knowledge of 
the experts; this permits the representation 
of hundreds of traditional expert system 
rules with a few dozen meta-rules. This 
generic shell architecture has important ben- 
efits in maintaining an expert system in a 
dynamic environment without the need for a 
knowledge engineer or AI training. 

Task Description 

Background 
The introduction of a new generation of semicon- 
ductor technology can cost hundreds of millions of 
dollars and take three or more years to develop. The 
detection and prevention of defects in the semicon- 
ductor manufacturing and development processes are 
critical to providing high yield and product reliability 
within cost objectives. Information from many data 
sources must be interpreted by numerous manufac- 
turing personnel in order to understand the causes of 
any process problems during production. As tech- 
nology advances to yet higher and higher levels of 
integration, the amount of data required for interpre- 
tation increases dramatically. 

It is typical to have manufacturing support groups 
whose missions are to design appropriate testing and 
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analyze the results to insure that product quality 
goals are met. In reacting to yield loss situations 
during the production process, manufacturing per- 
sonnel study information from process tool moni- 
tors, visual microscope inspections, product flow 
information, and routine failure analysis evaluations. 
Proper diagnosis and resolution of the process 
defects require the cooperation of experts from 
numerous manufacturing departments, as well as 
from the data analysis (characterization) support 
groups. 

The use of knowledge based systems for semicon- 
ductor process diagnosis is not new (Roundtree 
1986) (Pan and Tenenbaum 1986). Methods ranging 
from manual database queries (Sher, et al. 1990) to 
automated discovery (Saxena 1993) have been used. 
DYCE is a belief-based system using compiled 
knowledge for automatically interpreting electrical 
test data taken during semiconductor processing. 
Compiled knowledge refers to knowledge that 
experts acquire through experience (Punch 1992). 

Goals 
The primary objective of DYCE was to automate 
the analysis of hundreds of electrical tests performed 
during the manufacturing process. The motivation 
was two-fold. (1) The support groups became over- 
whelmed with data to the point of not being able to 
react to all of it. Only critical data was being moni- 
tored in real time, with the rest of the data stored for 
later analysis. (2) Market pressures precluded the 
addition of more human resource. Automated data 
analysis was required to handle the increasing 
amount of data and insure product quality without 
adding people. 

Another objective was the implementation of the 
knowledge based system as an inclined shell, ena- 
bling DYCE to be used in numerous manufacturing 
areas without the need for customization. DYCE 
also was required to function in a dynamic environ- 
ment, where production rules, specifications, and 
tests are constantly changing. 

From: IAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



Application Description 
There are two optional modes of operation of 
DYCE, automatic and interactive. Users have the 
option of deploying their DYCE applications in one 
or both modes. 

Automatic mode: The automatic mode can be trig- 
gered each time the results of an electrical test is 
loaded into the manufacturing database. In this 
case, the knowledge base system is automatically 
consulted and the conclusions are sent to a list of 
subscribers (engineers and technicians) via electronic 
mail (see Figure 1: Automatic DYCE Diagnosis). 
Users have been delighted to have the computer send 
them results through-the mail. 

SUBJECT: Lotname: K33802HOS18L (6301) 

The following problems were found by DYCE: 

WAFER ID 

ALL 
ALL 
MCC54VUQ 
MEA54SXQ 
MEA54SXQ 
MIC54WEQ 
MI C54WEQ 

Figure 1. Automatic DYCE Diagnosis via e-mail. 

PROBLEM 

HIGH ACLV 
LOW POLY LWB 
HIGH ACLV 
HIGH ACLV 
LOW DEFECT PROBE YIELD 
LOW DEFECT PROBE YIELD 
LOW POLY LWB 

Interactive mode: The interactive mode is initiated 
by a user who is looking for diagnosis of electrical 
tests from a specific batch of product which has test 
results already in the manufacturing database. The 
KBS analysis is triggered by the user from menu- 
driven panels. Product name and test identification 
are input to start the process. The resulting diag 
noses are displayed on the DYCE Conclusion Panel, 
as shown in the bottom half of Figure 2. In the 
interactive mode, the DYCE inferencing defaults can 
be changed to do customized reasoning. In addition, 
supporting information in the form of exception 
reports, graphics, and explanations of DYCE conclu- 
sions are accessible during this mode (see the top 
half of Figure 2: DYCE Conclusion Panel). The 
exception reports show only data that is not ‘meeting 
specification as defined by the expert. Previously, 

the user had to sift through all the data, including 
acceptable results, in order to fmd the unacceptable 
results. Examples of graphic output are 3D maps of 
test values across entire product batches, contour 
charts showing patterns on individual wafers, and 
histograms of data distributions. Wafer maps are 
plots of test readings that were measured across each 
wafer. The wafer maps are used by the experts to 
study regionality problems. This supporting infor- 
mation is defmed by the expert to be pertinent to the 
problems concluded by DYCE. Typically, these 
charts are used for additional trouble-shooting or 
presentations. The user can choose from a list of 
charts and graphics to display the additional infor- 
mation. The advantage of having the knowledge 
based system generate the charts is that fewer 
unneeded reports are made. 

There is an option to review which rules fned 
during the consultation. This helps the user under- 
stand how DYCE came to the conclusions presented 
on the DYCE Conclusions Panel or in the electronic 
mail. 

_-_------_ DYCE CONCLUSIONS PANEL ---..------ 

-- SELECTION MENU --- 81:14 PM --- 3/83/15 -- 

DYCE Knowledge Based System conclusions. 

R - Displays the EXCEPTION REPORT 
S - Displays the SNAPSHOT REPORT 
A - Displays the ALL PARAMETERS REPORT 
M - Displays the ALL WAFER MAPS REPORT 
P - Display PICTURES of each choice 

PFl - HELP PF3 - Return 
PF7 - Scroll up PF8 - Scroll down 

t- PRESS 'ENTER' AFTER COMPLETING SELECTIONS -t 

----_------------------------------------------ 
KBS CONCLUSIONS LOT: K33882H8 PNPID 6381 
__--_----_---__---__--------------------------- 

Lot ID: K33882H8 
CONFIDENCE 

WAFER ID PROBLEM FACTOR 

ALL HIGH ACLV 0.94 
ALL LOW POLY LWB 8.98 
MCC54VUQ HIGH ACLV 8.94 
MEA54SXQ HIGH ACLV 0.94 
MEA54SXQ LOW DEFECT PROBE YIELD 0.96 
MIC54WEQ LOW DEFECT PROBE YIELD 0.96 
MIC54WEQ LOW POLY LWB 0.90 

Figure 2. DYCE Conclusions Panel (interactive mode) 
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Access another KBS 
Another helpful feature of DYCE is the ability for 
the user to seamlessly interact with another know- 
ledge based system called DEPICT (Digitized Expert 
PICTures)‘. The user does not need to exit the 
DYCE knowledge based system to initiate the 
DEPICT consultation. DEPICT contains digitized 
images of previously discovered semiconductor 
defects and textual information about how to elimi- 
nate them. This option allows the user direct access 
to the institutional knowledge about any product 
problems just diagnosed by DYCE. 

DYCE Architecture 
The architecture of DYCE is a unique combination 
of knowledge representation techniques which allows 
the domain expert to modify knowledge based 
system rules at run-time, without the need for a 
knowledge engineer to modify source code and 
recompile the knowledge base system. 

The artificial intelligence techniques combined in 
DYCE are pattern matching, fuzzy logic, certainty, 
and normalization. These enable the use of generic 
meta-rules in the inference engine and are described 
in subsequent sections of this paper. The use of 
pattern matching techniques allows heuristic know- 
ledge to be represented and processed by computers. 
Pattern matching is used to recognize important 
information in data in a relatively fast, efficient 
manner. Fuzzy logic techniques enable the inference 
engine to deal with missing or incomplete data. The 
knowledge base system can continue with its goals, 
rather than stop for lack of information. The final 
conclusions are based on the amount of evidence in 
the data. Confidence in the knowledge base system 
conclusions is measured with certainty factors. Cer- 
tainty factors represent a weighting technique that is 
applied to the data. Normalization techniques 
enables simplification of the pattern matching 
scheme. This allows minimization of the total 
number of rules required by the inference engine to 
represent application-independent knowledge. 

DYCE Software Shell 
A system overview is presented in the schematic rep- 
resentation in Figure 3. DYCE was developed using 

ISPF/PDF2 utilities, PC/I, ‘C’, and an object- 
oriented AI shell (ART-IM3). DYCE is currently 
deployed on an MVS4 mainframe environment. 
Access to DYCE is provided as an option on a 
ISPF/PDF menu. This deployment strategy enables 
users to access the system easily as part of their 
routine data analysis. 

Selecting the DYCE option invokes a TSO C-list. 
The C-list checks for database availability, allocates 
fdes, runs routines to test the terminal for graphics 
capability, allocates the external tables, and invokes 
the ART-IM AI shell. All routines use ISPF/PDF 
services to display menus and selection lists. The 
programs provide the graphics interface for the user 
with GDDM.5 

The automatic and interactive software routines 
enable the two modes of operation of DYCE. The 
automatic software portion essentially gathers the 
appropriate data from the database(s) and formats it 
into a repository for use by the inference engine. 
The inference engine’s meta-rules, which represent 
domain experience, match with speci& instances of 
patterns in the repository to formulate diagnoses. 

Knowledge Representation 
The knowledge engineering bottleneck of getting 
application knowledge into expert systems is well 
known. The DYCE shell was designed to minimize 
this problem. Application knowledge is input into 
DYCE by entering information in simple table 
format. This feature offers a practical method for 
easily modifying the system to meet changing 
requirements in continually evolving applications. 

Table Driven: There are three tables required for 
inputting knowledge into DYCE. One table 
describes the patterns to be recognized in the data. 
This table is called the expected data pattern table. 
An example of this table is shown in Table 1. The 
second table (example is shown in table 3) is used to 
input the specifications for each measurement or var- 
iable. A third table (not shown) represents the rules 
for automated generation of supporting information 
(graphics, trend charts, and wafer maps). It is 
similar in format to the expected data patterns table. 

* DEPICT is an internal IBM knowledge based system shell. 

2 ISPF/PDF (Interactive System Productivity Facility / Program Development Facility) is a trademark of IBM Corp. 

3 ART-IM (Automated Reasoning Tool for Information Management) is a trademark of Inference, Corp.) 

4 MVS (Multiple Virtual Systems) is a trademark of IBM Corp. 

5 Graphical Data Display Manager (GDDM) is a trademark of IBM Corp. 
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Interactive 
Display 

Optional 
Hardcopy 

L Interactive Software Routines 

Manufacturing 
Databases 

Figure 3. This figure is a schematic representation of the architecture of DYCE. 
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Table 1. Example of DYCE Rule Representation (Expected table). 

PROBLEM TO VARIABLE VARIABLE NAME LOW HIGH CERTAINTY RULE 
BE DIAGNOSED ID. LIMIT LIMIT FACTOR CODE 

PROBE-FAIL 311 PROBE-TEST -5 -3 0.8 0 
PROBE-FAIL 311 PROBE-TEST -3 -2 0.4 0 

HIGH LWBIAS 311 PROBE-TEST -5 -2 -1 0 
HIGH LWBIAS 312 POLYSILICON RS -2 2 0.9 A 
HIGH LWBIAS 313 POLYSILICON BIAS 2 3 0.9 A 

LOW LWBIAS 311 PROBE-TEST -5 -2 -1 0 
LOW LWBIAS 312 POLYSILICON RS -2 2 0.9 B 
LOW LWBIAS 313 POLYSILICON BIAS -3 -2 0.9 B 

EACH RULE PATTERN IS ADDED IN AN ADDITIONAL ROW 

Pattern matching: The expected data pattern table 
essentially describes the rules (patterns) that DYCE 
uses to determine conclusions about the data (see 
Table 1: DYCE Rule Representation). These are 
the application-specific patterns that are matched in 
the meta-rules of the inference engine. The table is a 
representation of how a human expert thinks when 
determining conclusions from the values and 
relationships of the data. The domain expert uses 
this table to input knowledge about each problem to 
be diagnosed, variables known to affect each 
problem, and how much weight (certainty) is to be 
applied to each piece of information that exists in 
the database. 

Normalization: Within DYCE, each variable’s value 
is normalized with respect to its target value. The 
normalization reduces the coding requirements of the 
inference engine, simplifies end-user maintainability, 
and allows DYCE to be implemented as an inclined 
KBS shell. Without normalization, each variable 
would need a rule associated with its range of real 
values. In the semiconductor applications, that 
means a 10X increase in the number of rules is 
required to represent the knowledge. The basis of 
the normalization method is similar to statistical 
process control limits, as shown in Table 2. The 
variable’s target or nominal specification is consid- 
ered to be zero. Each variable’s values are normal- 

ized over a range from ‘-5’ to ’ + 5’ with respect to 
the target value. Values inclusive of ‘-2’ to ’ + 2’ are 
“within speciJications.” There are low and high 
control limits at ’ - 1’ and ’ + l’, respectively. Values 
greater than ’ + 2’ are categorized (somewhat arbi- 
trarily) into three levels of high and values less than 
‘-2’ are classified into three levels of low. The 
heuristic values as shown in Table 2 are also arbi- 
trary. Actually, the whole normalization method is 
arbitrary; any set of numbers and names would 
suffice. These values were chosen to keep the table 
representation scheme simple and related to the 
semiconductor applications. 

Fuzzy logic: There are eleven membership sets, or 
categories for the semiconductor data analysis appli- 
cations. The number of fuzzy sets is arbitrary; more 
categories allow fmer granularity. However, this 
number adequately meets the requirements in these 
applications. The normalization function is a con- 
tinuous, but not necessarily linear, function of the 
variable’s possible values. Depending on the vari- 
able’s real value, the normalized value will cause the 
variable to be a member of one of the eleven catego- 
ries? In the example in Table 2, variable #3 12 is 
within specification for values between 20 ohrns/sq. 
and 60 ohms/sq. (‘-2’ and ‘+ 2’ for normalized 
values). 

6 The membership function for each category is a step function in these applications. 
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Table 2. 
Vari- 
able 

Normal- 
ization 

Heuristic 
Values 

311 
(“/o) 
312 
(ohmh) 
313 
(micron) 
Specifical 

Examnle of DYCE Data Snecifications Table. 

-5 1 -4 1 -3 ( -2 1 -1 

O I 25 I 5o I 75 I 8o 
0 I .l I 1 I 20 I 25 

0 1 .Ol I .02 I -03 I .04 

ons for each variable are defined in separate rows 

0 1 +1 1 +2 1 +3 1 +4 I +5 

on 
target 

in within high mediun- very 
control spec high high 

85 1 90 1 94 1 96 1 98 1 100 

40 1 55 1 60 1 100 1 400 1 999 

.05 1 .06 1 .07 1 .08 1 .09 1 1 

Meta-rules: The meta-rules in the inference engine 
are made up of generic premises and associated 
actions. Think of this as: 

WHENEVER < SOMETHING IS MATCHED > , 
THEN DO <WHATEVER THE ACTION IS. > 

This is represented in ART-IM by asserting 
instances of schemas’ using rows from the expected 
data patterns and matching them against schemas 
populated by actual data patterns from the reposi- 
tory. When a variable’s normalized value (from the 
repository) is within the range the domain expert 
listed in the expected data patterns table, the 
schemas are considered to be matched. The generic 
premise is satisfied for this instance. This causes the 
rule to fire and carry out the action, which is also 
part of the expected data pattern. Typically, the 
action is to apply additional certainty to a specific 
diagnosis. 

Example: 
Assume that the real value from the semi- 
conductor electrical testing for variable #3 11 
is found to be 30%. The software takes this 
value from the database, normalizes it using 
Table 2 (DYCE Data Specifications Table), 
and puts it in the repository. In this case, 
the normalized value is -3.6 and it becomes 
a member of the fuzzy set with the heuristic 
value of “medium low.” The variable and its 
normalized value make up part of the infor- 
mation that gets loaded into an actual 
schema from information in the repository. 
The expert put a data pattern into the 

expected data patterns table that deals with 
variable #3 11 (see the frost row of Table 1). 
Therefore, there is an expected schema that 
will potentially match with the actual 
schema. Since the normalized value (-3.6) of 
variable #3 11 is with in the specified range 
(between ‘-5’ and ‘-3’) in Table 1, the meta- 
rule’s generic premise is matched and the 
rule fires the action. 

The frost line (pattern) in table 1 is: 

PROBE-FAIL 311 PROBE-TEST -5 -3 0.8 0 

The meta-rule in DYCE’s inference engine inter- 
prets this first pattern in a way similar to the fol- 
lowing syntax: 

“Whenever the yield of variable #311 
(PROBE-TEST) is between the values of 
0% and SO%, then there is probably (0.8 
evidence) of the PROBE-FAIL problem.” 

After the generic meta-rule fries, the problem 
“PROBE-FAIL” is given a certainty of 0.8. The 
“rule code” at the end of all the expected data pat- 
terns allows single or double premise patterns. A 
rule code ‘0’ tells the inference engine to treat that 
row as a single premise pattern. Rows with the 
same rule code other than ‘0’ are combined as 
double premise patterns and are matched only if 
both patterns are true. See Table 1 for more exam- 
ples. 

Certainty factors: For diagnoses involving several 
variables, the evidence needs to be tallied for all the 
matched patterns. The resulting certainty factor is 

7 Schemas are hierarchical representations of information about objec:ts used in ART-IM. 
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determined by the MYCIN8 algorithm for combining 
certainty factors. If the final certainty exceeds the 
certainty threshold specified in DYCE (either by 
default values or input by the user during an interac- 
tive session), then the problem is output as a DYCE 
diagnosis. 

It is important to point out that DYCE matches 
problems only when the real data is in the appro- 
priate range. This is similar to a human expert 
recognizing that data is “within-sped’ or “out-of-spec.” 

Knowledge about new problems can simply be 
added as a new line in the DYCE expected patterns 
table. New variables, or changes to a variable’s spec- 
ification limits are updated in the DYCE data spec- 
ifications table. In this manner, the knowledge based 
system is easily kept current without the need of an 
AI specialist. 

Why multiple AI techniques? 
Earlier experience with conventional data analysis 
software showed us that methods for processing the 
raw data into meaningful information were popular 
with our users. For example, statistical information 
in appropriate columnar formats helped the experts 
recognize problems more quickly. Many of the 
popular routines eventually became menu selections 
for ease of use. 

As the amount of data increased, the amount of 
human resources usually remained constant (or 
sometimes decreased). Critical data was prioritized 
for real time analysis, with less important data 
reviewed as time permitted or if the key indicators 
could not explain processing problems. It was 
recognized that artificial intelligence techniques could 
help automate some of the interpretation effort and 
help decrease the risk of missing important diag- 
noses. 

Our first attempt using a traditional rule-based 
only approach taught us that hundreds of rules were 
needed to make a useful system. Further, we 
noticed that constant rule modification was required 
to keep pace with the dynamic environment of man- 
ufacturing process improvements. We realized that 
expert systems that were brittle, hard to maintain, 
and required constant knowledge engineering 
resource were likely to become obsolete. After all, 
why not just apply the resource involved in devel- 
oping the knowledge based system (expert, know- 
ledge engineer, and programmer) directly to the 
manufacturing diagnosis task? The answer was to 
provide knowledge based system shells that the 
domain expert can easily modify without AI training 
or programming skills. 

The combination of the techniques described in 
earlier sections allowed us to successfully develop 
DYCE as an application specific shell. The infer- 
ence engine architecture is implemented using the 
procedural programming, pattern matching, and 
object oriented features in ART-IM. We found 
these features to be very useful attaining our archi- 
tectural goals for DYCE. The rest of the 
input/output functions use procedural techniques. 

Application Use and Benefits 
DYCE is being used internally in IBM’s develop- 
ment and manufacturing facilities in Essex Junction, 
Vermont. Primary users of the system are the char- 
acterization support groups whose jobs are to deter- 
mine any manufacturing problems by reviewing the 
electrical test results. It has become a popular anal- 
ysis tool used by the domain experts themselves to 
alleviate the data explosion brought on by advancing 
technology. This is in contrast to most traditional 
expert systems, which are built primarily for other 
(non-expert) users. The obvious advantage DYCE 
holds for the experts is several orders of magnitude 
increase in speed. 

There are over four dozen DYCE applications in 
these areas; it has become standard business practice. 
For example, users have developed application- 
specific expected pattern tables dealing with three 
types of automated analyses using the DYCE shell. 
(1) product dispositioning, (2) quality screening, and 
(3) data interpretation. Product dispositioning is 
used to scrap defective product or ship acceptable 
product on to the next step. Quality screening is a 
method to categorize estimated product reliability by 
analyzing special electrical testing as the product is 
being processed. Data interpretation is key to 
detecting process defects in the manufacturing and 
development areas. 

For many applications, each time a batch of 
product is tested, the automatic DYCE mode is 
invoked to determine one or more of these tasks. 
This frees the user from mundane data collection 
and interpretation activities and allows more time for 
important engineering efforts. From a business per- 
spective, this means that more time is spent on crit- 
ical tasks of determining the root cause of the 
problems. When the electronic mail indicates prob- 
lems, users consult the knowledge based system in 
the interactive mode to efficiently review the sup- 
porting information. 

DYC13 is performing the equivalent work of 
dozens of engineers and technicians. The average 
time to determine results from the electrical tests 
have been reduced from hours to seconds (minutes if 

8 “MYCIN” is a knowledge based system for medical diagnosis developed at Stanford University, CA. 
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there is heavy processor contention). It is estimated 
that hundreds of hours a month are being saved rela- 
tive to manual diagnosis of production problems. 
Off-shift analysis is consistent and available at the 
expert level whenever needed. The ability to auto- 
matically review all the data has resulted in the early 
detection of manufacturing defects. Early detection, 
in turn, has saved additional product from less than 
optimum manufacturing processes. The cost of a 
missed problem approaches several million dollars in 
a large semiconductor fabrication facility. 

Limitations: The shell architecture of DYCE, in 
conjunction with the use of multiple AI techniques, 
has important benefits to the successful implementa- 
tion and continued use of these applications. 
Ilowever, awareness of DYCE’s limitations is impor- 
tant. The architecture of DYCE, as presently 
deployed, has no learning ability. Experts must 
“teach” DYCE all application knowledge in the 
table-driven environment. New problems, not previ- 
ously known to DYCE, will not be output in the 
conclusions. Care must be taken NOT to infer that 
product is completely free of problems even if 
DYCE concludes there are no problems diagnosed. 
This simply means that there is no evidence of 
“known” problems. Additionally, DYCE does not 
know if the expert has left out important rules 
needed to correctly determine diagnoses. There is no 
automated verification for application knowledge. 
Experts must also carefully review any table editing 
for inadvertent deletions or incorrect format during 
maintenance. Finally, for complex applications, the 
table-driven environment becomes difficult to 
manage without the use of a knowledge editor. 

Application Development and Deployment 
Approximately 16 person-months were needed to 
design and develop DYCE to the production version 
released in January 1992. The development team 
consisted of one part-time knowledge engineer and 
one part-time mainframe applications development 
programmer over a two year period. The responsi- 
bility of the programmer included database access, 
input and output functions, and integration of the 
inference engine. The knowledge engineer designed 
and developed the inference engine, developed the 
overall knowledge based system architecture, and 
performed the knowledge engineering responsibilities. 

It is the implementation of generic meta-rules that 
allows the application-specific rules to be external to 
the inference engine. Therefore, validation is simpli- 
fied into two parts. One part deals with the correct- 
ness of the meta-rules, which is independent of any 
application. The second part begins to look more 
like a database question, where validation deals with 
the completeness of the application knowledge. For 
example, a change to the application knowledge 

(expected data patterns tables) does not affect the 
underlying inference engine. This is not the case for 
a traditional rule-based expert system. 

Validation of the generic meta-rules was accom- 
plished by running hundreds of production patterns 
and checking DYCE output against expected 
(known) conclusions. Further, by knowing which 
rules are expected to fire, an accounting of the 
resultant certainty factors can be done to cross-check 
the DYCE diagnosis for accuracy. Domain experts 
for each application were responsible for validation 
of application knowledge. This includes specifica- 
tions, application rules for each diagnosis, and asso- 
ciated certainty factors for each rule. 

The mainframe deployment of DYCE effectively 
allows the users access to automated data interpreta- 
tion as part of their daily tasks. DYCE is an exten- 
sion of the existing business practices and represents 
an advanced software diagnostic tool used in con- 
junction with existing analysis systems. Training 
activities are minimized because programming, AI, 
and knowledge engineering skills are not required for 
maintaining the application-specific knowledge repre- 
sentation tables. User interaction is relatively simple, 
since all of the analysis is performed by DYCE. 
Access to the interactive mode is by selection from 
familiar analysis menus. The interactive mode is 
menu-driven for ease of use. The automatic mode 
issues electronic mail; no daily user interaction is 
necessary. 

Maintenance 
Our observation is that a traditional expert system’s 
inference engine of several hundred rules can be 
represented by tens of generic meta-rules in DYCE’s 
architecture. This greatly simplifies the maintenance 
of the inference engine. The only need for changes 
to the inference engine deal with adding advanced 
reasoning ability and are separated from application- 
specific modifications, such as specification changes. 
The shell architecture and meta-rules segment the 
traditional knowledge engineering effort required to 
maintain the system. Application-specific knowledge 
is handled independently by the domain expert in a 
table-driven environment. The inference engine is 
modified by the developers without worrying about 
the specifics of each application. However, our 
experience with the table-driven environment has 
shown that for complex applications, the tables can 
become very large and difficult to manage. Users 
are required to verify the completeness and accuracy 
of application knowledge manually. Even though 
the tables are straight-forward, a software system for 
table management is seen to be extremely beneficial 
in helping maintain complex applications. We plan 
to add a knowledge editor function to assist users 
with application table development and mainte- 
nance. 
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Conclusions 
In the 12 months that DYCE has been deployed, we 
have found that this architecture has some important 
benefits concerning the use and maintenance of 
knowledge based systems in dynamic environments. 

The combination of a fast-paced industry and the 
explosion in available data may contribute directly to 
the reason that DYCE is used both by the domain 
experts and by non-experts as a tool for increased 
productivity. Virtually all of our users like to have 
the computer send them “diagnoses by wire” and 
have an integrated system for their data analysis and 
interpretation requirements. 

Even for table-driven applications, a knowledge 
editor is desirable to manage the dynamic 
application-specific patterns. Manual verification 
techniques are cumbersome in continuously 
changing applications. 

We have observed that a few, but powerful meta- 
rules can be used to represent the heuristics used by 
the experts for problem-solving in this class (data 
interpretation) of applications. This has encouraged 
us to plan to add more meta-rules to the inference 
engine to increase the reasoning ability of DYCE. 
The aim is to allow the computer to reason with 
other aspects of semiconductor process diagnosis. 
The goal is to eventually automate root-cause anal- 
ysis. 
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