
A Knowledge-Based Configurator that Supports Sales, Engineering, and
Manufacturing at AT&T Network Systems

1Jon R. Wright, lElia S. Weixelbaum, 2Karen Brown, IGregg T. Vesonder,
%tephen R. Palmer, 2Jay I. Berman, and 2Harry H. Moore

lAT&T Bell Laboratories
600 Mountain Avenue

P.O. Box 636
Murray Hill, NJ 07974-0636

Abstract
PROSE is a knowledge-based configurator platform for
telecommunications products. Its outstanding feature is
a product knowledge base written in C-Classic, a frame-
based knowledge representation system in the KL-ONE
family of languages. It is the first successful product
using a KL-ONE style language that we know of. Unlike
previous configurator applications, the PROSE
knowledge base is in a purely declarative form that
provides developers with the ability to add knowledge
quickly and consistently. The PROSE architecture is quite
general and is not tied to any specific
telecommunications product. As such, it is being reused
to develop configurators for several different products.
Finally, PROSE not only generates configurations from
just a few high level parameters, but it can also verify
configurations produced manually by customers,
engineers, or sales people. The same product knowledge,
encoded in C-Classic, supports both generation and
verification of product configurations.

Introduction
PROSE (PRoduct Offerings Expertise) is a knowledge
based engineering and ordering platform that supports sales
and order processing at AT&T Network Systems
(AT&T-NS). The cornerstone of the PROSE architecture
is a product knowledge base written in C-Classic, a
knowledge representation system in the l&ONE language
family that was developed at AT&T Bell Laboratories
(Borgida et al. 1989). Currently, PROSE is being used to
provide configurations for sales proposals and to generate
factory orders for manufacturing. Some examples of
products that are presently being configured by PROSE are
the cross-connect systems DACS IV-2000 and DACS II
CEF, as well as the remote cell sites for the AT&T
Autoplex@ mobile phone system. We expect PROSE to
be deployed for highly optioned products across all
AT&T-NS business units.

The PROSE platform is closely integrated with the
corporate infrastructure for ordering products, and it has
communication links to the mainframe systems that
support order processing and manufacturing. PROSE can
produce a detailed materials list and pricing for sales

2AT&T Bell Laboratories
101 Crawfords Comer Road

P. 0. Box 3030
Holmdel, NJ 07333-3030

proposals, it can electronically place orders and initiate
billing, it can send manufacturing specifications to the
factory, and it can produce instructions for on-site
installers. Most importantly, the PROSE architecture is
quite general and not tied to any specific product.

The motivation underlying the PROSE project was to
solve what we initially called the data synchronization
problem. Very briefly, this means that in a large company
offering complex products, ordering information is
typically distributed among a variety of sources, both
formal and informal. The distributed, informal nature of
this critical information makes it difficult to maintain in an
up-to-date, valid, and consistent way.

The official repositories of product information at
AT&T-NS are the engineering drawings. These are
technical documents, of course, and not everyone is able to
read and understand them. Consequently, the ordering
information in the engineering drawings is reworked into
paper ordering guides, informal spreadsheet programs used
by account executives, and various PC-based configurator
programs. The product information contained in these
sources frequently becomes obsolete and out of synch with
the engineering drawings.

Inaccurate orders, when combined with products that are
so highly technical in nature, cause delays in order
processing and manufacturing, and can result in billing
discrepancies. PROSE seeks to centralize this information,
or product knowledge, in a single source, and to put it in a
form that can be made available to anyone who needs it.
Having every team member working off the same page, so
to speak, greatly reduces rework in the ordering process,
improves quality, and reduces cost.

The earliest and best known configurator application that
used techniques pioneered in the artificial intelligence
community was developed at Digital Equipment
Corporation (DEC) in conjunction with Carnegie Mellon’s
John McDermott (McDermott 1982), (Barker & O’Connor
1989). The research version was called Rl, and later
become known as XCON in its production version. Rl
used production rules to represent knowledge about
configuring DEC computer systems.

While production rules had advantages over the
conventional development approaches that had been tried at

Wright 183

From: IAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved.

DEC prior to R 1, there were some drawbacks that surfaced
after the deployment of Rl in 1981. The most serious was
the effort needed to maintain an up-to-date, consistent, and
valid collection of production rules. DEC has estimated
that 4050% of the Rl product knowledge changes each
year (Bachant 1988). By some estimates, there have been
as many as 6,fKKl Rl production rules. The rate of change,
coupled with the sheer number of rules needed to adequately
represent Rl’s product knowledge made Rl software
maintenance an expensive process. Subsequently, special
techniques had to be developed (Bachant 1988) to make
software maintenance easier and more cost effective.

For a configurator application, product ordering
conventions serve as software requirements. Responding
quickly to changes in requirements is especially important
in this application domain since the inability to order new
product features via a configurator dramatically affects
utility. Development schedules for a configurator tend to
be driven by the pace of change in the product, not by the
developer’s sense of what can be delivered when.

In addition, it seems to us that the term knowledge
acquisition bottleneck is especially meaningful for
configurator applications. The Rl project, partly in
response to the fact that the DEC product knowledge was
too complex for one person to maintain, developed
schemes for factoring rules into modules so that the
maintainers could specialize within the product domain
(Bachant 1988). Having access to people who understand
the product is a very key element in the success of a
configurator project.

Thus a configurator application such as PROSE has
three critical problems to address: (1) the acquisition of
product knowledge, (2) rapid and sometimes unexpected
changes in product knowledge, and (3) complexity of
software enhancements and maintenance.

In part, PROSE responds to these problems by taking
advantage of knowledge representation techniques originally
introduced by KL-ONE (Brachman & Schmolze 1985).
While there has been active research on KL-ONE style
languages since 1975, and research prototypes have
demonstrated feasibility in several cases, heretofore there
have been no successful production software applications
using a KL-ONE style representation. PROSE is the first
that we know of, but we think other successes are likely to
follow.

The use of C-Classic, whose ancestory can be traced
directly to KL-ONE, provides the PROSE platform with
several key advantages. With some exceptions to be
discussed later, product knowledge in PROSE is isolated to
a single module - the product knowledge base. C-Classic
encourages a reasonable organization for the product

knowledge, and enforces internal consistency.
Inconsistencies in the knowledge base are often flagged in
the compilation stage, and at other times are caught during
testing. Both kinds of inconsistencies are identified by
C-Classic’s internal integrity checking mechanisms.

Our experience is that, within the context of the PROSE
application, consistency checking has somewhat the feel of
programming in a strongly typed programming language,
where inconsistent and incorrect uses of datatypes are
caught by the compiler. C-Classic’s consistency checking
has had a very beneficial effect on both the maintainability
of the PROSE product knowledge and on the quality of the
configurator’s output.

Like that of its predecessors, the simplicity of
C-Classic’s description language and the tractability of its
inference algorithms are linked. C-Classic provides only a
few primitive operators with which knowledge may be
described. These operators were chosen at least in part to
avoid intractability in the underlying subsumption
algorithm (Levesque & Bmchman 1987). In particular, the
description language lacks true disjunction and has no way
to express negation. Nevertheless, we have not
encountered major problems while encoding the product
knowledge for our AT&T Network Systems products.

To the contrary, we feel that C-Classic has encouraged
the encoding of product knowledge in a natural way.
Subject matter experts with a variety of engineering and
business backgrounds, when provided with a small amount
of assistance from someone who understands C-Classic,
have been able to easily relate to and understand the product
knowledge encoded in C-Classic.

In this context, standard software engineering techniques
such as code inspections take on a special meaning.
Essentially, these sessions perform double duty as
verification exercises. Typically, a product expert
participates and often clarifies misunderstandings in the
ordering knowledge for a product. In most cases, the
C-Classic expressions are close to the expert’s intuitive
understanding of the product, and this provides an
uncommonly strong basis for communication between the
developer and the product expert.

C-Classic’s contribution to the PROSE project is
unmistakable. Maintenance and customization of a product
configurator for specific user communities can be
accomplished in a clean and straightforward way. Reuse of
the descriptive product knowledge is one of PROSE’s most
interesting features, and it has some genuine benefits. In
particular, the sticky problems associated with updating,
synchronizing, and distributing product knowledge to the
appropriate people are much easier to control in the
PROSE environment.

184 IAAI

Blank
Panel

DS3
Interface-32

DS3
Interface-32

Blank
Panel

DSI
Interface
lvbduk

DSI
Interface
MocklIe

DSl
I ntefface
MochJle

DSI -P
Interface
Module

DSI
Interface
Module

DSI
Interface
Module

DSI
I ntetface
Module

I

DSI -P
Interface
Module

Fuse and Alarm
Panel

Switching
Power

Auxiliary Power

wry
Controller

Switching
Module

Fan Assembly

DSl
Interface

DSI -P
Interface

DS3
Interface-32

1

DS3
Interface-l 6

Module

Blank
Panel

DS3
Interface-32

DS3
Interface-32

Blank
Panel

Bay Bay Bay Bay Bay Bay
Position 2 Position 3 Position 4 Position 5 Position 6 Position 7

Figure 1. A Six Bay DACS IV-2000 Configuration.

The PROSE Application
The PROSE platform is geared toward configuring
telephone switching and transmission equipment. These
products, by their nature, are complex and have many
optional features. Although there is a trend toward scaling
down the number of available options for individual
products, customers like the ability to customize products
to their specific needs. To provide a concrete example of
the capabilities of the platform, we’ll briefly describe the
DACS IV-2000 cross-connect, which was the first product
to be made available within the PROSE platform.

A DACS IV-2000 is a digital cross connect system that
processes digitized signals at a DSl and/or DS3 ratel. A
complete lineup consists of nine 7’ frames (called bays
when they are equipped and working) connected by cabling.
The positions in the lineup are significant and are
numbered going from left to right. Each bay contains up

1 DSl (1.5 MB/s or the equivalent of 24 circuits) and DS3
(45 MB/s or the equivalent of 672 circuits) are standard
digital transmission rates in the United States.

to four shelves or modules of electronic gear. A six bay
DACS IV-2000 configuration is shown in Figure 1.

There are thirteen types of DACS IV-2000 bays, three
of which appear in Figure 1. The modules within a bay
may be equipped with different kinds of circuit packs
depending on what capabilities are desired. In addition,
compatible cabling and software must be ordered. Although
we have not tried to produce an exact calculation, the
number of possible configurations is large, perhaps
exceeding 100,000 or more. The cost of a complete nine
bay lineup, including spare circuit packs, can easily extend
into seven figures.

The time needed to process orders prior to manufacturing
is called the up-front order interval. The rework and delay
associated with processing invalid configurations during the
order interval is a significant contributor to the cost of
providing a new DACS IV-2000. Very significant benefits
are associated with reducing the length of the order interval,
not the least of which is increased customer satisfaction.
For DACS IV-2000 prior to PROSE, the interval for
getting manually produced equipment specifications to the
factory was generally between seven and fourteen days.
PROSE is capable of delivering valid orders to the factory
at the push of a button.

Central to the PROSE application, no matter what
aspect is being discussed, is the concept of a materials list.

Wright 185

A materials list is a description of the materials needed to
assemble and install a configuration. It is used to produce
a bil2 of materials for the shop floor, needed for billing and
shipping, important for generating instructions to
installers, and the basis for communicating with customers
about the product. In essence, the materials list serves as a
manufacturing specification, telling the factory what to
assemble.

For a nine bay lineup, there would be separate materials
lists for each of the bays, plus separate lists for
DACS IV-2000 software and cabling. A completed order
includes installation instructions (where to locate and how
to wire each bay). PROSE generates all information
associated with manufacturing and installation of the
equipment it configures.

PROSE has three interfaces that support different aspects
of sales, engineering, and manufacturing. Distinct user
communities are served by the three interfaces, but all three
draw on the same product knowledge base. Having a single
product knowledge base allows PROSE to avoid problems
associated with synchronizing knowledge and data or
resolving conflicts in several software applications.

The FPQ (Firm Price Quote) or Pricing
Interface. Because accurate price quotes are not
possible without knowing all the equipment needed by
an application, sales teams have technical consultants
with the responsibility of producing price quotes with
itemized lists of equipment and prices.From a few
high level parameters, FPQ can produce a price quote
for a complete nine bay DACS IV-2000 lineup,
including compatible software releases and cabling, in
a few minutes. FPQ output is such that it could be
turned into a valid order and sent directly to the
fat tory2. Frequently, technical consultants use FPQ
to explore what-if scenarios to help the customer find
the right configuration.

The SPEC (Specification) or Engineering
Interface. SPEC is intended for AT&T engineers
who may be working either on internal AT&T
applications or as consultants to outside customers.
SPEC requires more inputs from the user than does
the FPQ interface, but it is also more flexible.
Engineers have the choice of keying in capacity
parameters and feature choices, or they may specify
the quantity and type of circuit packs for each bay.
Like FPQ, SPEC output is in the form of an order
that can be sent directly to the factory’s ordering and
billing systems.

The TCE (Telephone Customer Engineered)
or Customer Service Interface. Customers
sometimes configure products on their own without
going through either FPQ or SPEC. In such cases,
the customer submits what is essentially a proposed
materials list. Because invalid configurations cannot
be assembled, it is essential to know if the list
represents a valid configuration. The TCE interface
allows a customer service clerk to key in the materials
an item at a time. PROSE validates the
configuration, and formats it so that it can be entered
in the appropriate order processing systems.

In addition to serving a diverse community of users,
PROSE must deal with constantly changing products. Our
products change constantly in response to the marketplace.
Although we have observed variations, the rate of change
for certain products approaches that reported by Rl/XCON
(40-50% per year).

For knowledge engineers, however, the real problem is
that the scheduling and timing of changes is not within
their control. The inability to produce valid orders for new
products and enhancements to existing products is
problematic for any manufacturing entity. To really be
useful, configurators must change in lock step with new
product offerings. Although the solutions to these
problems are partly methodological (for example, early
notification of changes from the design community), the
use of C-Classic has played an important role in our ability
to respond rapidly with quality results.

C-Classic
C-Classic (Weixelbaum 1991) is a frame-based knowledge
representation system derived from the KL-ONE family of
languages (Brachman & Schmolze 1985), (Brachman,
Fikes, dz Levesque 1983), (Pat&Schneider 1984), (Woods
& Schmolze 1993). It is a direct descendant of Classic
(Borgida et al. 1989), which was written in Common LISP
and had the benefit of years of research on semantic nets
and frame systems3. Because of the declarative nature of
the information encoded in a C-Classic knowledge base, it
and other similar languages are sometimes referred to as
description logics.

C-Classic inherits from Classic its two most salient
features: a simple description language and tractable
inference algorithms (Borgida et al. 1989). C-Classic is an
interpreted language written in C and portable to any
UNIX4 system. There are three basic types of objects

2 In some cases, a small amount of additional information
such as the desired location of certain circuit packs may be
required.

3 A prototype of the PROSE system was developed using
Common LISP Classic.
4 UNIX is a trademark of UNIX Systems Laboratories.

186 IAAI

provided by C-Classic: concepts (or frames), which are
assertions or descriptions about the state of the world,
individuals, which are particular instantiations of concepts,
and roles, which provide a way to relate individuals. In
addition, C-Classic provides a simple rule firing
mechanism. A rule consists of a left hand side and a right
hand side. The left hand side is a concept and the right
hand side could either be a concept or a function that, when
called on an individual, returns a concept. Whenever an
individual is classified under a concept, all rules that have
that concept as the left hand sidefire on the individual, thus
adding the right hand side concept or the result of the
function call onto the individual’s descriptor.

Concepts are primarily built through composition of
components that include previously defined concepts and
various types of role restrictions. In addition, escape
mechanisms to the C language are provided that permit
tests to be made on individuals and computed rules to be
defiied.

C-Classic provides the following types of inference:

1.

2.

3.

4.

5.

classification - finding all descriptions applicable
to an object; finding all descriptions more general
and more specific than a proposed object description,

completion or propagation of logical consequences,
including, but not limited to, inheritance,

contradiction detection,

simple forward chaining rules (or triggers),

dependency maintenance (for retraction and error
recovery).

All of these inference mechanisms are used in PROSE.
Classification and inheritance are used to organize the
knowledge base into understandable pieces. In addition, an
important side effect of C-Classic’s ability to classify and
propagate logical consequences is that internal consistency
is maintained within the knowledge base. Sometimes a
user may request a combination of features which does not
represent a legal configuration. Contradiction detection is
used to detect such errors. Next, as will be discussed in the
subsequent section, rules are needed to represent the product
knowledge adequately. Finally, users may sometimes
change their minds in the middle of a PROSE session.
Dependency maintenance gives them the opportunity to
retract an action without losing anything else.

In addition to the C-Classic interpreter, the system
includes a library of C-Classic functions callable from C.
Using this library, a customized interface has been
developed for PROSE. The system provides error data
through the C interface enabling PROSE to have its own
customized error-handling procedures.

PROSE Knowledge Base Organization
The official source of product information at AT&T are
engineering documents that describe each product, including
comprehensive sections on the product’s acceptable

configurations. For example, the DACS IV-2000
knowledge base represents a section of the engineering
drawings called Table A, which describes all of the pieces
of equipment that can be ordered for a product, when each
item can ordered, and how to determine the desired quantity
of each item. Product experts often write concise
summaries of the information in Table A using their own
notation. The summaries contain descriptions of simple
constraints called compatibility rules by our experts, and
we have adopted this terminology.

Compatibility rules are generally derived from the
physical structure of the product. However, other factors are
sometimes involved, and, in general, it is not possible to
derive all compatibility rules by simply knowing the
structure of the product. For example, some compatibility
rules represent artificial constraints imposed by marketing,
others represent an attempt to make the product easier to
order, and still others represent constraints required for
cost-effective manufacturing.

Figure 2 shows several compatibility rules and their
C-Classic representations. The two rules are associated
with a type of DACS IV shelf called a DSl IF shelf. The
description that corresponds to a DSl IF shelf is named
DSl-IF in the Classic knowledge base.

For purposes of ordering product, a DACS IV-2000 shelf
has six attributes - signal capacities for dsl and ds3 signals
(dsl lines and ds3 lines), the quantities of dsl and ds3
circ& packs needed to satisfy a given signal capacity
(dsl-packs and ds3_packs), the quantity of so-called
common circuit packs (a general term used for a bundle of
power and interfacing circuit packs), and pmgr type circuit
packs which are used to monitor the dsl and ds3 signals.
The value restrictions (e.g., “(range 0 224)“) on
DSl-IF in Figure 2 represent the legal ranges of these
attributes for a DSl IF shelf.

Because the pmgr packs and the dsl packs are inserted in
the same slots on a DSl IF (seven slots available in all),
the rule DSl~IF~max~dsl~packs limits the legal
range of dsl-packs with the simple formula
dsl-packs c= 7 - pmgr using a computed rule.
Calc is a general routine that accepts an algebraic
expression and returns a C-Classic concept. In the case
where pmgr is filled with the integer 2, Calc would
return the concept expression
(all dsl-packs (upper-limit 5)).

The expression (test-c fills? pmgr) is a filter or
guard that is used to determine when an individual has
enough information for computed-concept Calc to be
applied.

The set-descriptor function immediately below
DSl~IF~max~dsl~packs simply attaches a string to
the rule that elaborates what the rule itself means. We
anticipate that description strings will eventually be used to
enhance error-handling capabilities and/or the ability of
PROSE to explain what it is doing in the context of the
application (the Common LISP version of Classic already
has a rudimentary way to do this). For now, they are
simple English elaborations of what the rules mean.

Wright 187

(define-primitive DSl IF -
(ati

shelf
(all dsl~lines (range 0 224))
(all dsl_packs (range 0 7))
(all commongacks (range 0 1))
(all pmgr (range 0 7))
(all ds3Jines (range 0 0))
(all ds3Backs (range 0 0))

1
)

(define-rule DSl IF max dsl_packs
(and - - -

DSl-IF
(test-c fills? pmgr)

1
(computed-concept Calc (dsl_packs <= 7 - pmgr))

1

(set-descriptor DSl IF max dsl packs
“There are seven Gotsin a DSl I? shelf for both pmgrs and DSl packs”)

(define-rule DSl IF eq_dsl_packs
(and - -

DSl-IF
(test-c fills? dsl-lines common_packs)

1
(computed-concept Calc (dsl_packs = (dsl-lines / 28) - common_packs))

1

(set-descriptor DSl IF eq_dsl_packs
“Formula for compitin< dsl_packs from dsl-capacity and common_packs”)

Figure 2. DACS IV-2000 Knowledge for a DS 1 IF Shelf

The rule DSlJF-eq-dsl-packs describes how to
obtain a value for dsl-packs when the dsl capacity of a
DS 1 IF shelf is known.

For a new configuration, information about the user’s
selection of features is passed to the knowledge base by
filling roles or by adding value or number restrictions to
individuals. As information is added, these individuals are
classified under the DACS IV-2000 concepts, triggering
computed rules and causing the appropriate integrity checks
to be performed. The rules sometimes cause propagations
and chaining such that additional integrity checks are
performed and additional rules are applied.

It is possible for a configuration to be overconstrained.
From the user’s point of view, this happens when an
incompatible set of features is selected. Perhaps the user
wants to have both feature x and feature y, but features x

and y, when combined, exceed some capacity limitation of
the equipment. In such cases, PROSE provides
customized error messages based on the C-Classic
error-handling features. These messages describe the
problem adequately, but PROSE lets the user decide what
feature (or constraint) to change or withdraw.

The compatibility rule idea is rather deeply imbedded in
the existing process and in the thinking of the product
experts. There are, for example, paper documents
describing the compatibility rules for each product. These
documents are used to support manual validation procedures
for incoming orders at the factory.

Consequently, product experts are most comfortable
thinking in terms of compatibility rules. Although more
satisfying representations may exist, we are convinced that
representing compatibility rules directly in C-Classic is the

188 IAAI

only realistic choice for the present. C-Classic makes it
possible to represent these rules in a rather straightforward
way so that any time a rule must be changed, only a very
localized piece of code is affected. We find the
expressiveness of the C-Classic description language, when
enhanced with a few hand coded test functions, to be
completely adequate for our purposes.

Each product knowledge base in the PROSE platform is
not simply an undifferentiated collection of compatibility
rules. Rather, there is a standard way in which such rules
are organized within a product knowledge base for all
products. We refer to the C-Classic structure which
describes such an organization as the order template.

The order template describes the items and the logic for
assembling a valid order. It is the organizing principle
lying behind each knowledge base. Although it differs in
certain details from product to product, the general outline
of the order template is the same for all products.

C-Classic provides a very important benefit that we have
not yet discussed. Because all objects are classified in the
C-Classic system, the description of each object must, in a
sense, be consistent with all other object descriptions.
Inconsistent descriptions are detected at “compile” time,
i.e., when the knowledge base is loaded into C-Classic. In
the context of the PROSE platform, they represent either
incorrect knowledge or incorrectly encoded knowledge, and
they must be investigated and corrected. Detection of
inconsistencies by C-Classic has been very important
debugging tool within the PROSE platform.

PROSE Architecture
There are three PROSE installations currently up and
working. All are based on the Sun 490 platform, The first,
which processes orders for transmission products, is located
at AT&T’s Merrimack Valley Works Data Center in
Massachusetts. The second, used for Autoplex, is at
AT&T Bell Laboratories in Whippany, NJ, and the third, a
Microelectronics system, is in AT&T’s Dallas Works
Computer Center. Each PROSE installation allows access
to more than one product configurator.

PROSE users access the PROSE computer via AT&T’s
DATAKIT corporate wide area network. The PROSE
computers are also on the corporate XNA network so that
PROSE can access AT&T’s mainframe computers.

A high-level view of the PROSE software architecture is
shown in Figure 3. The top of the picture shows
PROSE’s three user communities. The three user
interfaces contain menus and forms, pick-and-choose
options, and pop-up windows that make the application
user-friendly.

Feature selections and choices are passed to the PROSE
knowledge base through an application driver and a data

manager level. Report data such as installer’s notes,
equipment codes, and a few other items are stored in flat
UNIX@ system files. Orders and quotes are also saved in
flat files so that users can do some of the work on an order,
interrupt it, and then return later to complete the same
order.

Intelligent programs tend to be factored into control,
operations, and data at a high level. The application
drivers, the data managers, and the knowledge base can be
thought of as the control, operations, and data for PROSE.
The best way to illustrate this is with an example.

In the case of DACS IV-2000, the application driver for
FPQ (pricing module) is basically a simple search program
over the space of DACS IV-2000 configurations. An
FPQ user enters the desired DSl and DS3 signal capacity
which defines the goal state for the search program. For
efficiency, the minimum and maximum capacities of each
bay type are “precompiled” into the knowledge base, and
not calculated dynamically.

Users are mostly interested in solutions with the
minimum number of bays since this is the major
determinant of cost. The FPQ application driver searches
first for the one bay solutions. If none are found, it
searches for two bay solutions, etc. If solutions are found
at any level, the program continues to search that level
exhaustively, and returns all solutions to the user.
Programs at the data manager level support the search by
supplying successor nodes and data for testing. Although
the search algorithm is customized for the application, it
appears to be related to iterative deepening (Korf 1985).

AT&T’s corporate systems are used to either price the
quote or send the order to the appropriate AT&T factory.
From the PROSE side, these functions are performed by
software called the Access Management Interface and
Access Manager. These modules provide an
application-to-application protocol between PROSE and
the mainframe applications.

PROSE also contains a suite of Operations,
Administration, and Maintenance Tools. These tools assist
in system administration, including adding and removing
users, doing backups, installing new software, and the like.
Also included here are tools to update the knowledge base
and other data files.

Although PROSE uses AI technology, the majority of
PROSE’s software is written using conventional
techniques. In fact, for the DACS IV-2000 configurator,
only 15 percent of all PROSE code for the DACS IV-2000
is the knowledge base. This shows that while the
knowledge base is a significant part of PROSE, procedural
programming is still necessary to produce a useful,
production-quality product. This reinforces our previous
experience with AI applications (Wright, Zielinski, &
Horton 1988), (Ackroff et al. 1990).

Wright 189

PROSE SYSTEM

FPQ
Interface

TCE
Interface

SPEC
Interface

Application Drivers and Report Generators

I 1
Data Manager

Access
NV

I

DACS IV Report
2000 #.A I I Data i

< Kt5 c/
u ’

Operations,
Administration,

and Maintenance
Tools

Figure 3. PROSE Software Architecture

Customer fz Service
Systems

Most of the non-Classic code is reusable and does not
need to be rewritten for new product configuators.
Currently, to produce a new configurator, the major pieces
that have to be rewritten are the user interface and the
knowledge base. While these modules will always be
product-specific and new ones must be provided for each
configurator, we are moving towards the development of
standard methodologies that will greatly improve our
productivity for product-specific modules.

PROSE Deployment

Usage
The PROSE platform was designed and developed by a
team of seven systems engineers and developers. The first
release of PROSE, called Release 1.0, had a production
interval from conception to delivery of eight months.
Figure 4 shows the PROSE Release 1.0 schedule from

initial contact with the customer to the released product,
and includes knowledge base and application design,
development, system test, and documentation.

Figure 4 does not cover the development of C-Classic.
C-Classic was available before PROSE 1.0 development
began.

Figure 4 should not be construed as representing the
effort needed to develop and deploy a new product
configurator under the PROSE platform. Development
schedules for new products today are a fraction of what they
were for the first product configurator in 1990.

Currently, PROSE has been deployed and is being used
in all AT&T-NS sales regions. PROSE users include
regional engineers, technical consultants, account
executives, members of the design community, and product
management. We expect that new configurators for
additional products will be developed under the PROSE
platform in the coming year.

190 IAAI

January I,1990 Initial contact with customers

April 1,199O DACS IV-2000 selected as first produci
offering and PROSE KB development begins

June I,1990 PROSE Release 1.0 platform developmeni
begins

August 30,199O PROSE Release 1 .O available and firs1
DACS IV-2000 order processed

Figure 4. PROSE Development and Release Schedule

Benefits from Usage
Assuming the continued deployment and use of PROSE in
the field, the following benefits are expected in AT&T’s
order processing environment:

1. A reduction in operating costs due to the elimination
of errors on orders detected by AT&T Clerks and
order rework that is carried out to clear these errors.

2. A reduction in operating costs through the
consolidation of data bases and positions:

3. A decrease in the interval for updating product design
changes into the order process infrastructure by
eliminating manual interpretation and transcription
of drawing information.

4. Support for key organizational changes and business
practices within AT&T Network Systems.

5. A decrease in the order process interval by allowing a
user to configure, edit, and send the order to the
AT&T factory interactively. This compares
favorably with the current process which can take
anywhere from two days to two weeks. For some
highly complex products, the order interval may be
even longer.

Future Plans

Knowledge Base (KB) Development and
Maintenance Tools. We would like a product expert to
update the KB. The product expert is usually not a
programmer, and has little or no experience using
C-Classic. To make it easy for the product expert to
update the KB, we would like to supply tools to update the
product information easily. We are currently exploring
ways of integrating PROSE with the existing design
capture tools being used within AT&T Network Systems.

In addition, we feel that it is possible to develop an
application-specific methodology for developing a new

product knowledge base. The methodology would exploit
the capabilities of C-Classic to identify redundancies,
contradictions, and incompleteness in the product
knowledge.

Interestingly enough, we think there are common
organizing principles present in all the existing product
knowledge bases. These commonalities can serve as the
guidlines for a standardized knowledge engineering
methodology that could be replicated and improved on for
the development of all new PROSE knowledge bases.

We are currently at work developing this methodology.
The first step in our strategy is to describe all the kinds of
knowledge that have to be collected in order to develop a
new product knowledge base, as well as a standard format
for recording this knowledge. Step two will be to write a
translator which can turn the product knowledge into a
C-Classic knowledge base. A working prototype of such a
translator currently exists and is adequate to handle all of
the products currently available through PROSE.

Generic Application Programs. Currently, a new
user interface as well as certain other application programs
(such as error-handling routines) have to be written to
reflect the structure of a new product. Since all the
information about the product is or could be located in the
KB, it would save time if PROSE relied on general
application programs that queried for data encoded in the
KB. Thus, to develop a new configurator, one would
collect all the product-specific information, put it in the
standard format, and run the translator.

Because the benefits are so significant, we are beginning
to think about the architecture of a generic collection of
application programs that could be used with any product
knowledge base. For example, the user interface could
query the knowledge base following accepted conventions
to determine what information to present to the user.
Because there is a fairly straightforward correspondence
between the knowledge base and the menu structure in
PROSE’s user interface, we feel that this is worth
pursuing.

Reusability of the Product Knowledge. Earlier we
discussed one form of reuse - that which occurs when
several application programs access the same product
knowledge. However, it seems to us that we can take
advantage of the modularity provided by C-Classic’s
object-centered nature to build higher-level configurators.
For example, the equipment currently available through
PROSE is used by engineers to piece together elements of
a working telecommunications network.

SLC Series 5 Carrier@ equipment and DDM-2000
shelves, which are two kinds of transmission equipment
available through the PROSE platform, can be combined
to make something called an access node. There is no
reason why a higher level template couldn’t be put together
that describes how to assemble an access node. In theory,
one could continue adding more structure above the
existing product knowledge to provide higher and higher

Wright 191.

level solutions to the customer. This could be done
without changing or replicating the product knowledge at
the lower levels.

Support of New Products. PROSE currently handles
configuring and order processing for the AT&T-NS
DACS IV-2000, the DACS II CEF cross connect, the
SLC Series 5 Carrier system, the E2 power system, the
DDM-2000 multiplexer, and for AUTOPLEX remote cell
sites. Although we expect to spend some of our time on
knowledge base maintenance and user interface
enhancement, new product configurators are planned for the
PROSE platform in the coming year.

Discussion
In this final section, we will focus on the question of
whether we have selected a good software architecture for
the PROSE configurator. From our point of view as
software developers, we feel that the use of C-Classic and
the architecture it encourages has contributed something
important to the PROSE project.

Change and modification is an integral part of the
process of developing a configurator and
telecommunications products change continuously in
response to the marketplace. Further, although having
well-designed products helps, change is inevitable for
reasons having nothing to do with product design. As the
business needs of our customers change, they desire new
capabilities in the products they buy and we respond
accordingly. The key point is that the pace and nature of
the changes are out of the hands of the software developer.
Products change in response to marketplace forces and the
configurators must be ready when the new products are
dY*

Planning for sometimes arbitrary but necessary change
and having an architecture that can respond are essential if
PROSE is to be a successful product. It should be no
surprise to the AI community that factoring the product
into control, operations, and data modules at a high level
has proved to be a key element in the ability of PROSE to
deal with change.

A few examples may help us make our point. Not long
after PROSE 1.0 was introduced, some rather sweeping
changes in the DACS IV-2000 product collectively called
DACS IV Generic 2 were introduced. These changes were
implemented in the PROSE knowledge base without
affecting PROSE at either the data manager or the
application manager level. Further, simply by modifying
the knowledge base, these changes were made available to
the FPQ (pricing), SPEC (engineering), and TCE
(customer service) applications simuhaneously.

Similarly, as PROSE was introduced to new customers,
we found that some customers were only interested in
seeing certain classes of configurations in the output of the
DACS IV-2000 FPQ. These changes were implemented
via very localized changes in the FPQ search algorithm -
essentially by allowing the customer additional control

over the definition of a goal state through the user
interface.

C-Classic itself plays a key role in the management of
change. Although this is a moderately sized system,
without some form of mechanical assistance the knowledge
engineer has a difficult job maintaining consistency while
frequently updating the descriptions with new product
knowledge.

We find that the consistency checking provided by
C-Classic feels somewhat like programming in a strongly
typed www - many errors are detected in the “compile”
stage. The bottom line is that the knowledge engineer can
feel confident about attacking changes in the product
structure, making it feasible to keep pace with new product
knowledge.

Acknowledgments
No AI application like PROSE becomes successful
without contributions from many diverse sources. The
number of people who have contributed at different times
in the project does not make it possible to list everyone by
name. Briefly though, the research department at AT&T
Bell Laboratories headed by Ron Brachman helped us in
many ways - too many to describe. Clearly, the
developers and systems engineers in Harry Moore’s and Jay
Berman’s organizations, and their management, were
essential. They turned a good idea into reality, which is
probably the toughest job of all. Many forward-looking
people at AT&T Network Systems provided support at the
right times. In particular, we would like to thank John
Ehasz and Dennis Dibert, who believed in what we were
doing and were willing to try something new.

References

John Ackroff, Pamela Surko, Gregg T. Vesonder, and Jon
R. Wright. 1990. SARTS AutoTest-2, in M. Bramer
(Ed.), Practical Experience in Building Expert Systems.
New York: John Wiley & Sons, 209-226.

Judith Bachant. 1988. RIME: Preliminary Work Toward a
Knowledge-Acquisition Tool, in Sandra Marcus (Ed.),
Automating Knowledge Acquisition for Expert Systems.
Norwell, Massachusetts: Kluwer Academic Press, 201-224.

Virginia E. Barker and Dennis E. O’Connor. 1989.
Expert Systems for Configuration at Digital: XCON and
Beyond. Communications of the ACM 32(3):298-3 18.

Alex Borgida, Ronald J. Brachman, Deborah L.
McGuinness, and Lori Alperin-Resnick. 1989. Classic: A
Structural Data Model for Objects. In Proceedings of the
1989 ACM SIGMOD International Conference of Data,
59-67.

192 IAAI

Ronald J. Brachman, Richard E. Fikes, and Hector J.
Levesque. 1983. KRYPTON: A Functional Approach to
Knowledge Representation. IEEE Computer (Special Issue
on Knowledge Representation) 16(10):67-73.

Ronald J. Brachman and James G. Schmolze. 1985. An
Overview of the KL-ONE Knowledge Representation
System. Cognitive Science g(2): 171-216.

Richard E. Korf. 1985. Depth-first Iterative Deepening:
An Optimal Admissible Tree Search. Artificial
Intelligence 27:97-109.

Hector J. Levesque and Ronald J. Brachman. 1987.
Expressiveness and Tractability in Knowledge
Representation and Reasoning. Computational Intelligence
3(2):78-93.

John McDermott. 1982. Rl: A rule-based configurer of
computer systems. Artificial Intelligence 19(1):39-88.

Peter F. Patel-Schneider. 1984. Small can be Beautiful in
Knowledge Representation, AI Technical Report Number
37, Schlumberger Palo Alto Research.

Elia S. Weixelbaum. 1991. C-Classic Reference Manual
Release 1 .O. Technical Memorandum Document Number
59620-91073 I-OlTM, AT&T Bell Laboratories.

William A. Woods and James G. Schmolze. 1993. The
KL-ONE family. Computer and Mathematics with
Applications (Special Issue on Semantic Networks in
Artificial Intelligence). Forthcoming.

Jon R. Wright, John E. Zielinski, and Elizabeth M.
Horton. 1988. Expert Systems Development: The ACE
System, in J. Liebowitz (Ed.), Expert Systems
Applications to Telecommunications. New York: John
Wiley & Sons, 45-72.

Wright 193

