
Embedded AI for Sales-Service Negotiation 

Mike Carr, Chris Costello, Karen MeIhnald, 
Bell Atlantic Corporation 

1717 Arch Street 
Philadelphia, Pennsylvania 19 103 

Pamela Trusal Kemper 
Inference Corporation 

550 North Continental Boulevard 
El Segundo, California 90245 

Introduction 

Bell Atlantic Service Representatives are the primary 
interface between the company and its many customers. 
They are responsible for negotiating orders to establish, 
transfer or disconnect telephone service as well as answer 
questions and process changes to a customer’s service or 
billing account. To support this wide variety of tasks, the 
Service Reps use a number of computer applications, 
mostly hosted on mainframe systems. Each application has 
it’s own arcane language for data entry and retrieval which 
must be mastered by the user. In addition, large amounts of 
required information, such as rates, service restrictions, etc. 
are documented on paper and must be memorized or 
“looked up” during the customer contact. 

This information overload has a number of undesirable 
consequences. First, as Bell Atlantic increases the type and 
number of services it offers, it is increasingly difficult for a 
Service Rep to keep up with all of the information required 
to both provide customer service and to proactively present 
and sell Bell Atlantic’s services. In addition, the 
complications of accessing large quantities of external data 
throughout the customer contact negatively impacts the 
length of the contact. This inconveniences the customer 
and further limits the Rep’s ability to provide accurate and 
efficient service. Finally, the training necessary to provide 
the Service Reps with the tools they need to navigate this 
sea of information has reached unacceptable levels. 

In order to address these problems, Bell Atlantic has 
developed a distributed software application called the 
SaleService Negotiation System (SSNS.) The goals of the 
system include: 

In addition, it is critical that any new automated system be 
able to address both future-oriented technology and the 
current mainframe-based systems which will continue to 
perform the bulk of Bell Atlantic data processing for the 
near term. 

The SSNS system provides a number of high-level 
functions to support it’s stated goals. These functions 
include: 

. improvement of accuracy and efficiency 

. automated support of needs-based selling 

. increased sales efficiency Figure 

A Graphical User Interface utilizing both 

menu-based and English-language order 
input. The interface process prompts the Rep, 
based on the geographical location of the 
customer, for all required customer data that 
must be obtained to place an order while 
enforcing all relevant service restrictions. 

Mechanized reference information, 

including rate calculations, on request 
throughout the contact. 

An awtotnated credit check based on data 
obtained during the contact from both 
external sources as well as Bell Atlantic 
customer records. 

A SaleService tool which suggests 
appropriate Bell Atlantic products based on 
customer data, 

A Service Request translator which 
translates and transmits the resulting 
customer order data in the language and 
format required by the existing downstream 
Service Order Processors. 

1 illustrates the major SSNS functions and their 

. decreased training requirements relationships to one another. 

. optimization of customer contact time 

Carr 25 

From: IAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved. 



Figure 1 

SSNS utilizes an object-oriented architecture where each 
portion of application code which performs a distinct 
function is bundled with relevant input and output data 
structures into a building block. Building blocks have no 
knowledge of one another’s internal structure and 
communicate solely by passing messages. System building 
blocks are organized into three layers: a User Layer; 
Process Layer and Data layer which, along with a set of 
infrastructure services loosely referred to as the Contract 
Manager, make up the SSNS system. 

This object-oriented architecture provides a number of 
important benefits. First, the usual benefits of an object- 
oriented system, such as maintainability, extensibility, etc. 
are realized. In addition, it provides an extremely clean and 
straight-forward method for embedding various software 
technologies, including AI-based functions within a larger 
conventional application. 

AI in SSNS 

SSNS is the first application developed and deployed 
within Bell Atkantic to use AI technology on a production 
basis, and is among the first among the Regional Bell 
Operating Companies to embed it in a large conventional 
system. A number of the SSNS functions have been 
implemented using AI technology, specifically knowledge- 
based systems. These are shown in bold in Figure 2, and 
include: 

RIDS - This process receives data throughout 
the customer contact from the User Interface 
and returns messages concerning any product 
Restrictions, Interactions or Dependencies 
which may apply. 

CREDIT TOOL - This process provides 
automated credit checking based on customer 
credit information. Deployment planned for 

3rd quarter 1994. 

CSOP - At the conclusion of the customer 
contact, this process takes the set of English- 
language Service Request data and translates 
it into the appropriate Service order language, 
then formats it for the mainframe-based 
Service Order Processors.Although each of 
the functions differ somewhat they have a 
number of common features that lend them to 
a knowledge-based implementation. 

First, each of the functions is data-driven. In the case of 
RIDS, the particular customer data or set of products is 
developed gradually throughout the contact and can be 
changed at any point in a number of ways. The analysis 
needs to respond immediately as the data changes. In the 
c,ase of CSOP, the data-driven nature is less obvious, since 
it is a backend batch process. However, the task of 
efficiently building a Service Order out of ‘almost infinite 
subsets of possible data benefits greatly from a data-driven 
approach. Only the appropriate data is examined for 
translation and processed during formatting. 

26 IAAI-94 



Figure 2 

Second, the knowledge required to perform each of the 
functions is constantly changing to greater or lesser 
degrees. By explicitly representing product restrictions, 
data translations and Service Order Language variables as 
rules or objects, system maintenance is greatly simplified, 
and in some cases automated. 

Finally, the system must be easily extensible. SSNS 
implementation plans call for a phased introduction over a 
number of years. Various order types: New Connect, 
Disconnect, Transfer, etc. will be added gradually, as will 
the geographic areas that the system covers. This me‘ans 
that changes in product restrictions, credit guidelines and 
Service Order language and format, which all differ across 
the Bell Atlantic region, will have to be incorporated 
seamlessly without significant changes to system design. 

As the Service Rep negotiates a Service Request with the 
customer, products such as Call Waiting or Answer Call ‘are 
requested by the customer. The Service Rep then selects the 
product from the appropriate window and the data is 
immediately passed from the User Interface to the RIDS 
process running in the background. If any restrictions, 
interactions or dependencies are relevant to the product 
selected, a message is returned to the User Interface, e.g., 
“You have selected Answer Call; Answer Call requires Call 
Forwarding” and displayed in a pop-up window. Otherwise 
RIDS waits for the next piece of data. If the customer m‘akes 

a change and “deselects” a product, that information is also 
passed to the RIDS process, where the absence of a product 
may also trigger (generally dependency) rules. 

The RIDS process consists of 5 functional modules, 
shown in Figure 3.RIDs is implemented using a modified 
rule-based approach. This approach utilizes a schema 
system for declarative representation of application 
knowledge and a limited number of generic rules to select 
and process that knowledge, rather than using rules to both 
represent and apply application knowledge. In addition to 
the rule-based analysis, the RIDS process utilizes a series of 
procedural “wrappers” to assert and extract data into and 
out of the knowledge base. 

RIDS Knowledge Base 

The RIDS knowledge base is used to store declarative 
knowledge about product restrictions, interactions and 
dependencies, as well as incoming product selection or 
deselection data. As all restrictions, interactions and 
dependencies among Bell Athantic products are considered 
to be corporate data, they are stored and maintained in 
corporate database tables. Rather than duplicate this 
information by hand in the knowledge base raising 
potential inconsistency issues, the majority of the 
information in the RIDS knowledge base is downloaded 
from these corporate database tables each time an SSNS 
session is started. When the RIDS process is initially 

Carr 27 



I Prod Knowledge 

Knowledge Base 

Figure 3 

invoked, the knowledge base contains only a limited 
number of definition-type schemas noted below. (A 
instance of each type is shown for clarity) 

Prod-knowledge. Prod-knowledge schemas contain the 
restriction, interaction and dependency knowledge 
organized on a product by product basis. 

(Defschema prod-AC 

(instance-of prod-knowledge) 

(prod-id 1) 

(prod-name Answer Call) 

(restricts prod-UF) 

(interacts prod-CFV) 

(depends node-l) 

The restricts and interacts slots will reference other prod- 
knowledge schemas, while the depends slot will reference 
node schemas. 

Node. In some cases product dependencies involve more 
than one other product and may be AND or OR 
relationships. For example: Answer Call requires Call 
Waiting AND either Touchtone OR a tone signalling set. To 
address this, product dependencies are modelled using a set 
(or tree) of dependency nodes. Each node is either 
complex, containing children that may themselves be 
nodes, or atomic, containing a single product. Complex 

28 IAAI-94 

nodes also identify the relationship (AND/OR) among their 
children. Each dependency node is represented by a 
schema with the tree implicit in the relationships. 

(Defschema node- 1 

(node-id 1) 

(node-description AC-depends) 

(left-child node-Z) 

(right-child node-3) 

(node-relation AND) 

(atomic-node-type complex)) 

Cust-info. Each time a product is selected (or de-selected) 
by the Service Rep, information is sent to RIDS and stored 
in a schema. 

(Defschema cust-info- 1 

(state select) 

(time-stamp 00123) 

(contact-id cust- 1) 

(prod-id 1)) 

These schemas are used by the Assert Prod Info and Assert 
Cust Info functions as templates for further knowledge 
base population. Both Assert Prod Info and Assert Cust 
Info are strictly procedural processes. 



Assert Prod MO 

Assert Prod Info begins by sending a request-for-data 
message to the System Contract Manager which in turn 
invokes the appropriate data layer building block (DLBB). 
The DLBB queries the appropriate database tables and 
returns a TVO1 containing the data. The data is “massaged’ 
by a series of functions which generate the format 
represented by the prod-knowledge and node schemas and 
assert the data into the knowledge base as instances of 
those schemas. After the download function is completed, 
the RIDS process is available to receive User Layer 
messages. 

(Defrule prod-prod-restricts 

“This rule prevents the selection of two products one of 
which restricts the other” 

(schema ?cust-select 1 

(prod-id ?idl)) 

(schema ?cust-select2 

(prod-id ?id2)) 

(schema ?prod-knowledge-A 

(prod-id ?id 1) 

(prod-name ?name 1) 

(interacts ?Prod-knowledge-B)) 

(schema ?Prod-knowledge-B 

(prod-id ?id2)) 

(prod-name ?name2) 

=> 

Assert Cust Info 

Each time a product is selected, the data is passed to RIDS, 
in TV0 form, by the User Interface. The Assert Cust Info 
function reads the TV0 and asserts a schema into the 
knowledge base as an instance of the cust-info schema. Pf a 
schema representing that product selection already exists 
(e.g. a product has been previously selected but is now de- 
selected), then its values will be updated with the new data. 
If it does not yet exist, it will be created dynamically and 
populated. 

Analyze RIDS 

RIDS processing is accomplished by a series of rules which 
match the incoming data stored in cust-info schemas with 
the restriction, interaction and dependency information 
stored in prod-info schemas. As noted earlier, the rules ,a.re 
generic containing no product-specific information, but 
match on prod-knowledge and cust-info schemas as 
appropriate. Each of the rules generates an error message 
identifying the type of restriction, interaction or 
dependency and the product or products affected. 

Restrictions/Interactions. Restriction and interaction 
rules are triggered by the presence of two cust-info 
schemas (or product selections), where a prod-knowledge 
schema shows the first product in the restriction or 
interaction slot of the other. (Question marks indicate 
variable names.) 

1. In SSNS all data is passed in C data structures known as 
TAG-VALUE-OBJECTS or TVOs. Within the hierarchical 
TV0 structure, each individual piece of data has a name (or 
tag) and a value. Utilities to read from and write to TVOs 
are provided by the SSNS infrastructure services. 

(generate-error-message In teration 1 ?name 1 ?narne2)) 

For example the customer requests Answer Call and Call 
Forwarding-Variable. The interaction rule is processed as: 

(Defrule prod-prod-restricts 

“This rule prevents the selection of two products one of 
which restricts the other” 

(schema Prod-knowledge-AC 

(prod-name Answer-Call) 

(prod-id 1) 

(interacts Prod-knowledge-CFV)) 

(schema Prod-knowledge-CFV 

(prod-name Call-Forwarding) 

(prod-id 12)) 

(schema Cust-selects- 1 

(prod-id 1)) 

(schema Cust-selects-2 

(prod-id 12)) 

=> 

(generate-error-message Interaction 1 Answer-Call Call- 
Forwarding-Variable)) 

ependencies. Dependencies are implemented by a series 
of rules. An initial rule is triggered by the presence of a 
customer selection which matches a prod-knowledge 
schema with a depends slot containing a uode-id. 
Additional rules then perform a tree walk to find all 
possible dependencies, then walk back up the tree checking 
for the absence of customer selections which match the 
products represented by each node to avoid returning a 
dependency that has coincidentally satisfied. The final 
result is the generation of one message conuaining only the 

Carr 29 



dependencies that were not satisfied. Although a complete 
example is beyond the scope of this paper, the generation 
of dependencies is accomplished as follows: 

(Defrule start-looking 

“Based on a product selection, this rule locates the root 
node of the dependency tree and asserts that it is required.” 

(schema ?prod-knowledge-A 

(prod-name ?name 1) 

(prod-id ?id 1) 

(depends ?nodel)) 

(schema ?cust-info1 

(prod-id ?idl)) 
=> 

(assert (need-prod-node ?nodel))) 

(Defrule generate-required-node 

“This rule takes a required prod node and asserts that each 
of it’s children is also required.” 

(need-prod-node ?node 1) 

(schema ?nodel 

(node- type complex) 

(left-child ?node2) 

(right-child ?node3) 

=> 

(assert (need-prod-node ?node2)) 
(assert (need-prod--node ?node3))) 

Process Output 

Process Output is a series of procedural functions which 
extract error messages from the knowledge base and write 
them to a TV0 in order to pass them back to the User 
Interface. 

CSOP 

At the end of the customer contact, the Service Request 
containing all data required to produce a Service Order is 
sent by the User Interface process to the CSOP process. A 
typical residence service request may contain 200-300 
pieces of data with more complex requests containing 8OO- 
1000. 

First, the English-like Service Request data must be 
translated into Service Order Language. Service Order 
Language consists of FIDs (Field Identifiers) and USOCs 
(Universal Service Order Codes) with their corresponding 
values. For example, if premises visit charges are to be 
waived the FID RMK with the value “WHR” should be 
placed on the service order. Or often less clear, if the 
customer is a Mary Baldwin student living off campus, the 

FID ZST (indicating student customer) with value 0,MBC 
(off-campus, Mary Baldwin College) should be placed on 
the service order. 

Then the appropriate FID and USOC data must be 
assembled and formatted to produce a Service Order that 
can be further processed by the existing mainframe-based 
Service Order Processors (SOPS). Although SSNS 
provides a single user interface throughout the Bell 
Atlantic region resulting in a uniform Service Request, 
each of the operating companies has its own SOP with its 
own unique Service Order Language and format, further 
complicating the CSOP task. 

Finally the Service Order is sent to a data layer process 
to be relayed to the appropriate SOP. 

The CSOP process consists of 5 functional modules, 
shown in Figure 4. 

CSOP is implemented using a variety of reasoning 
techniques, both object-oriented and rule-based as well as 
a series of procedural “wrappers” to assert and extract data 
into and out of the knowledge base. As described in the 
RIDS process, a schema system is utilized for declarative 
representation of application knowledge while generic 
rules to are used to select and process that knowledge. In 
CSOP, however, the selection of appropriate knowledge is 
accomplished via rule-based pattern-matching, but often 
the processing of that knowledge is accomplished by 
methods attached to the schemas, and triggered by 
message-passing from the right-hand side of the rules. This 
combination of reasoning approaches allows the 
knowledge to remain highly segmented and very easily 
maintained. CSOP also utilizes a wrapper process similar 
to that previously described to assert and extract 
information into and out of the knowledge base. 

CSQP Knowledge Base 

The CSOP knowledge base is used to store both the 
incoming Service Request data as well as knowledge about 
the Service Order language and format into which the data 
is to be transformed. This information is stored in three 
types of schemas: tag, service order language, and service 
order template. 

Tag. As noted earlier, all SSNS data including Service 
Request data is passed by tag name and value. The CSOP 
knowledge base contains a set of schemas, each of which 
corresponds to one of the possible tags that may be part of 
a service request. 

If a given tag value must be translated, information about 
either the new value to be assigned, or how to obtain that 
new value (e.g., perform a calculation) is also stored in that 
schema. If data from more than one tag schema is required 
for a translation, the name(s) of those schemas are included 
in the translation information along with a target schema 
name to hold the combined data. 

30 IAN-94 



Service Request 

Service Order 

Figure 4 

(Defschema cust-tel-nbr 

(instance-of multi-occr-tag) 

(tag-name SVC_RQ.SVC_RQ_CUST. 

CUST_POC.TEL_NBR) 

(value) 

(value-format format-npa-nxx)) 

Service Order Language. The knowledge base contains a 
schema for each FID or USOC that may be used in a 
service order. The schemas contain formatting parameters 
along with relational links to the tag schemas that will 
contain their values and information about how the value 
should be processed. 

(Defschema LN “Listing N‘ame” 

(instance-of left-handed-FID) 

(label-start 2) 

(label “LN”) 

(get-vaIue concat-value) 

(value-start 6) 
(values (d-listing-last-n‘ame d-listing-first-name 
d-listing-middle-name))) 

Service Order Template. The service order template 
represents the service order in terms of sections, and each 
FIDKJSOC that may appear in each section. The template 
reflects the order of the sections and the FIDPUSOCs within 
each section. 

(Defschema service-order 

(has-sections (ident-section listing-section billing- 
section))) 

(defschema billing-section 

(has-entries (bill-name bill-address number-of- 
bills))) 

(defschema bill-name 

(has-FIDS (BNl, BN2, BN3))) 

Load Service Request 

The Load Service Request function is a procedural function 
which processes the incoming TV0 which contains the 
Service Request data and asserts it into the knowledge base. 
As each individual tag is read, the schema name 
corresponding to that tag is located in a hash table of tag- 
schema pairs (generated automatically from the knowledge 
base code at system start-up) and the tag value is placed 
into the schema. If the tag can occur more than once with 

Carr 31 



different values a child schema is created for each instance 
and the value stored in that schema. When the entire TV0 
has been processed, the rule-based translation process is 
invoked. 

Translate Service Request 

The translation function incorporates both object-oriented 
and rule-based processing. As in the RIDS process, 
translation rules are generic. They contain no specific 
translation information but rely on pattern-matching to 
both respond to incoming data and locate appropriate 
translation information along with any additional data 
required. Methods are invoked on the right-hand side of the 
rules and are used to perform data manipulation such as 
calculations or format changes, as well as any knowledge 
base update resulting from the translation. 

For example, the following rule is triggered by the 
presence of two tag values. The first tag can have any value, 
the second tag must have the name and value specifically 
stored in the eval-transform slot of the first. Messages are 
then sent, first to tag 1 to execute a particular function which 
manipulates its value replacing it in the value slot, then to 
the same tag to pass its new value to its target schema. 

defrule eval-transform 

(schema ?tag 1 

(value ?vl) 

(eval-transform ?tag2 ?value2 ?target) 

(eval-function ?function 1)) 

(schema ?tag2 

(value ?value2)) 

=> 

(send ?tag 1 ?function 1) 

(send ?tag 1 put-new-value)) 

When all translations 
is invoked. 

have completed, the format function 

Format Service Order 

Format Service Order uses a series of procedural functions 
to place the appropriate FIDA_JSOCs in the correct position 
on the service order, represented by an output stream. 
These functions “walk” the service order template as 
represented in the knowledge base, utilizing the relational 
links between the FIDs and the incoming tag data to see if 
each FID should appear on the order. (i.e., the appropriate 
tag(s) have current values.) If so, a message is sent to the 
FID to write its label and value on the Service Order output 
stream using the placement information contained within 
it. If the FID has no data associated with it is skipped and 
the process continues until the complete template has been 
processed. 

Build SOP Record 

For efficiency, the formatted Service Order is finally placed 
in a record format understandable by the mainframe SOP. 
No additional data fomatting is done, the stream is simply 
broken into pages with header information associated with 
each. 

SSNS is a distributed system, utilizing a number of 
software and hardware technologies. The individual User 
Layer processes are implemented in MOTIF and hosted on 
SUN workstations. Infrastructure services are 
implemented in C and are compiled into each individual 
building block. Process layer building blocks (other than 
CSOP and RIDS) are also implemented in C and are hosted 
(including CSOP and RIDS) on a SUN server. Sybase is 
used for data storage and access. The S ybase process and 
related Data Layer building blocks are hosted on an 
additional SUN server. 

The RIDS and CSOP building blocks contain both 
knowledge-based and conventional subprocesses. The 
knowledge-based subprocesses, such as RIDS Analyze, 
and Translate Service Request, along with their associated 
knowledge bases were developed primarily in the ART-IM/ 
UNIX language. Data input and output processes, such as 
Assert Cust Info or Load Service Request, and Build RIDS 
messages or Build ST1 Record were implemented directly 
in C. The C-based I/O processes called SSNS infrastructure 
services as required. In addition, a number of C functions 
were written to perform data manipulations more 
appropriate to that language such as string parsing. These 
functions were called directly from ART-IM rules, or 
invoked by messages. Both C code and ART-I&l code are 
compiled into the application executable and can be called 
either internally from ART-IM, for development purposes, 
or externally by the SSNS architecture, during deployment. 

The ability of ART-IM to provide a clean interface 
between its internal language and C was critical to allowing 
CSOP and RIDS to be embedded transparently in SSNS. 

SSNS development began in July of 199 1 with an eventual 
staff of approximately 45 software developers, 20 business 
requirements analysts, and 10 deployment and testing 
specialists along with a number of support personnel. 
CSOP development began with a prototyping effort using 
two developers. Full system development followed in 
March of 1992 with a development staff of five. The RIDS 
development effort was accomplished in parallel to the full 
system effort, utilizing two of the five developers as 
required. 

32 IAAI-94 



SSNS was (and is being) developed according to the Bell 
Atlantic Software Engineering (BASE) methodology. This 
methodology adheres to current practices in software 
engineering and includes the following phases: Project 
Planning, Requirements Definition, General and Detailed 
Design, Software Development, Testing, Quality and 
Configuration Management, Installation, Maintenance and 
Documentation. The development of the AI subprocesses, 
although historically an activity often hostile to Software 
Engineering Methodology, followed BASE as well. Some 
development deliverables such as function call-trees, or 
structured english were replaced by more “AI-like” 
deliverables, such as object hierarchies, or knowledge 
representation schemes, but the majority of the 
development processes were compatible. 

There are a number of phased targets throughout the 
overall development. SSNS Versions 1 .O and 1.2 address a 
single order type, residence New Connect, for the PA rate 
jurisdiction only. Current development, SSNS Version 1.5, 
is focused on software that will be deployed throughout the 
region for residence New Connect order types. Future 
development phases address the spectrum of order types as 
well as Bell Atlantic Business Customers. 

lication Deployment 

The deployment of each version of SSNS follows a 
significant period of system and user acceptance testing in- 
house. Testing is accomplished using approximately 30 
scripts which are executed manually by representatives 
from the Business organizations. Once software is installed 
in the business office a period of limited use precedes 
general release throughout the business office. 

Initial deployment of SSNS Version 1.0 began in 
October 1992 on a limited basis in one business office with 
additional rollouts following hardware deployment 
throughout PA. Deployment of Version 1.5, planned to 
begin later this year will result ultimately in approximately 
7500 Service Reps issuing approximately 150,000 New 
Connect orders per month. 

Significant payoff has already been realized from SSNS . 
Based on a sampling conducted in late 1993 comparing 
approximately 100 Service Reps using the system vs. 100 
Service Reps using traditional methods a 29% increase in 
revenue per contact was realized. The rate of errors which 
can significantly extend the overall time to complete a New 
Connect order have also been lowered. 

Application Maintenance 

The SSNS application is currently being maintained by 
SSNS team members. Whenever possible, system 
maintenance has been automated through the use of 
specialized utilities. End-user maintenance is not a goal at 

this time. In the future, system maintenance responsibility 
will be assumed by a specialized Application 
Administration function within the Information Systems 
group. 

CSOP 

Although not on a frequent basis, additional FIDs and 
USOCs are added to the Service Order requirements, while 
the incoming Service Request data may change due to 
changes in User Layer requirements. Approximately l-10 
FIDAJSOC changes are seen over the course of a year, each 
with lead time on the order of several weeks to several 
months. User Layer changes are less frequent than that, and 
are generally driven by the same changes in Service Order 
requirements. 

The maintenance process is supported both implicitly by 
CSOP design and explicitly with a number of utilities. The 
design use of a limited number of generic rules with the 
majority of knowledge represented declaratively in 
schemas, as well as the separation of translation and 
formatting knowledge provides for straight-forward 
maintenance. Over the last year, most changes have been 
made to a limited set of the knowledge base schemas. 
Changes to the rules have been, and are expected to be 
extremely infrequent. Utilities such as the automatic 
generation of hash tables from the knowledge base and 
automated unit test facilities have also been developed to 
support system maintenance. 

RIDS knowledge is more likely to change than any in the 
system. Bell Atlantic offers new products with associated 
restrictions, interactions and dependencies frequently. 
Therefore, in addition to the design support mentioned 
above, the RIDS process has automated knowledge-base 
maintenance. 

The use of a database download to build the majority of 
the knowledge-base on system start-up eliminates the need 
for most maintenance activity. The database tables used to 
store the restriction, interaction and dependency 
information are maintained as part of the overall corporate 
data maintenance process and are relied upon to be 
accurate. Any changes to the actual structure of the 
corporate data, which would affect the data massage 
procedures within RIDS, are possible but expected to be 
extremely infrequent. Changes to the RIDS rules ‘are also 
expected to be infrequent. This download process also 
circumvents the need for building block recompilation and 
potential SSNS redeployment due simply to changes in 
RIDS knowledge. 

Carr 33 



Overall, maintenance experience over the last year has 
been extremely positive. CSOP (and RIDS) have among 
the best maintenance records in the overall SSNS system. 
In fact, the majority of system maintenance is performed by 
team members new to both AI techniques and ART-IM. 

Summary 

The use of AI-based technology within Bell Atlantic’s 
SSNS has been a success. Embedding the technology 
within the larger system has been a straightforward 
process. CSOP and RIDS building blocks function like any 
other in the system requiring no special data 
communications or infrastructure service support. 
Maintaining and extending the processes has been 
accomplished with relative ease. In particular, the use of 
automated knowledge-base generation such as that used by 
RIDS eliminates a large part of the maintenance burden. 
Finally, and most importantly, functional goals have been 
achieved. The deployment of a new technology to support 
Service Representative activity has been accomplished 
with significant benefit to the company, and little or no 
impact to the remainder of the Bell Atlantic processes. 

Based on the success of the current AI development, the 
use of the technology is being planned for future processes 
that were initially targeted for other methods of 
implementation. 

34 IAAI-94 


