
ASAP - An Advisory Syste

Robert Chalmers, Robin Pape, Robert Rieger, and William Shirado

Lockheed Palo Alto Research Laboratories
Dept 96-50, Bldg 25 1,325 1 H‘anover Street

Palo Alto, CA 94306

Abstract

When our division changed its method of requesting the
purchase of materials and services from a paper form to
electronic mail, we incorporated an expert system to look
for errors before the user’s fingers had left the keyboard.
With patient explanations, gentle prodding, and occasional
subtle threats, the system has reduced the error rate from
75% to absolutely zero for the 12,000 documents generated
in the first two years of its use.

The Problem

Within the Research Laboratory at Lockheed Missiles &
Space Co, purchases of materials and services had until
recently been initiated by the end user filling out a pro-
curement request form (PR). Formerly, buying specialists
working from little more than verbal requests used these
forms to record all the data necessary to generate a pur-
chase order, Then, as a cost saving measure, filling in the
I‘orm became the requester’s responsibility. The abbrevia-
(ions were mysterious, the jargon was carcane, and there
n*erc 104 blanks on a single page. In the hands of scientists
;~nd cnginecrs with a low lolerance for iilling out forms
and no iuterest in learning about procurement, this PR
form was an invitation to disaster.

As a result, only about one Quarter of all PRs could be
processed as submitted. About one half were cleaned up
by a procurement specialist either with a telephone con-
versation with the requester or from his personal knowl-
edge of what the requester intended. The remaining
quarter were returned with instructions for revision.

In 1989, top management began a program of automat-
ing laboratory administrative tasks based on use of the lab-
oratory’s VAX/VMS computer system. The plans for on-
line generation, transmission, and approval of PRs were
well under way when we learned of it. By restricting the
input screen to the relevant items, this approach would
eliminate some of the paper form’s confusion, but from
lack of interest or understanding, m,any of the same mis-
takes would still be made.

Our Solution

OII learning of this plan, the authors proposed that most of
the mistakes could be caught by an expert system module
which would interact with the requester, advise him of

inconsistencies or rule violations, and suggest proper alter-
natives. If it explained its reasoning well enough, fewer of
the mistakes would be repeated. That procurement special-
ist with all the personal knowledge (who, it turned out,
would soon be retiring) would be our human expert. The
anticipated paybacks of the system were savings of time of
both requesters and procurement specialists, speedier
deliveries, and elimination of the clutter of faulty docu-
ments in the system.

The proposal for an expert system, later named ASAP,
was accepted and it was then developed in parallel with
the database program. Although the combination is known
to users as the FASTBUY system, in this paper when the&
is no ambiguity FASTBUY will also frequently refer just
to the database portion of the program which calls ASAP.

Description

OvenGew

The environment of ASAP is the VAX/VMS/COBOL/
RDB/DECFORMS database application program which
calls ASAP after the user has “submitted” a PR with at
least the required minimum data that the COBOL progmrn
has accepted. A single pointer to a table of all the argu-
ments is passed to ASAP.

When ASAP is initialized the user is advised that his PR
is being checked. Within a few seconds, depending on the
current VAX load, he or she is either advised that the PR
hay been approved or a dialogue of one or more queries
and/or advisory messages is begun. Queries either call for
a selection from an answer menu or free text entries which
become part of the PR. Reasons m always given with
queries or advice messages, but if a PR passes all of
ASAP’s tests, nothing but approval is indicated.

If ASAP recommends any changes, it summarizes them
on a final screen which offers the user options for proceed-
ing, then returns control to FASTBUY.

Structure
Inferencing in ASAP is performed by Neuron Data’s NEX-
PERT OBJECT, Version 2. The knowledge base is p‘arti-
tioned in a fashion dictated by Lockheed’s historical
method of handling multiple related PRs, which allowed
as many as nine additional items to be purchased as add-

Chalmers 35

From: IAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

ons to a base PR as long as they were for the same contract
and vendor. A decision was made to retain this feature in
FASTBUY, which forced a partition of ASAP into a base
PR section and an add-on section. The control of the loop-
ing is handled in C code.

Additional functionality provided by custom C routines
includes interfacing with the user, the COBOL program,
and the VAx/vMS operating system for files ASAP reads
or writes at run time; “reading” the free text fields; and gen-
erating automatic MAIL messages to operators when a file
access failure prevents normal execution of ASAP.

The knowledge base was developed on a Macintosh, then
copied to the VAX and linked with both the C code and the
database program. Nexpen was chosen for the portability of
the knowledge base between these platforms, its broad
capability, and the developers’ familiarity with it.

Because many users would have only a VT100 terminal,
its use was assumed in designing the interface screens. PC
or Macintosh owners use them in VT100 emulation modes.
Each screen to be displayed is stored as a VAX text file.

User Orientation

Considerable attention was given to user friendliness in the
design of ASAP. It was recognized that many non-computer
users would feel rebellious at having this system forced
upon them, and all reasonable efforts had to be made to
forestall any avoidable complaints. While we only had con-
trol over our own user interface, we conferred extensively
with our database colleagues to try to produce a unified
appearance.

An important design guideline we adopted was to assume
that the user could possibly know more about some detail
of policy, procedure, or practice than ASAP. When a procc-
dural change occurs, some user might happen to know
about it before the program can be updated. Also there had
been some exemptions authorized for some specific users.
Therefore, the user was universally given the option of
ignoring any “advice” offered by ASAP. But in case the
user is wrong, ASAP then adds a message field to the PR
,alerting the buyer to the suspected error. The options for the
user if ASAP is not entirely satisfied with the PR at the
completion of the interaction are to:

l return to the data entry routine to make a correction
l repeat the ASAP analysis to change his answer to a

query
l submit the PR as is
l store the PR for future revision, or
l discard it.

Avoids Repetitions

ASAP tries not to be boring. When a PR is revised and
resubmitted whether immediately or later the same day,
ASAP does not repeat advisory messages. For each new
call to ASAP, it checks first to see if the new PR number is
the same as the last PR examined. If so, only changes to
data or answers to queries will retrigger rules previously

fired. After each PR review that ends with the requester sav-
ing the PR instead of submitting it, Nexpert automatically
also saves the state of the consultation (its logic variables)
by writing them to a scratch file and naming it with the PR
number. Such a scratch file is always looked for and loaded
if found whenever a PR is submitted enabling ASAP to pick
up where it left off. We trust our users’ memories for a few
hours, but not overnight. Thus, at the first execution of
ASAP each new day, all scratch files are deleted, so remind-
ers are repeated once per day.

“Reading” Text Fields

A significant custom feature we created for ASAP with %
routines gives it a rudimentary text recognition capability
which may be novel in some aspect of its implementation.
The need first arose when our human expert informed us
that a common but important error in many PRs was mis-
charging of overhead items such as shop supplies directly to
accounts of contracts under which funds for overhead items
were separately provided to the company overhead pool.
Such purchases should instead be charged to the requesting
department’s share of that overhead pool. The practice by
requesters may be either accidental or deliberate when a
department has not saved a sufficient amount of its over-
head money to last to the end of the year. It is important that
such a practice be caught and corrected in all cases because
the government rightly views this as double billing. People
have been fired for this. Thus there was <an apparent need to
be able to infer certain attributes of a requested item that
could be associated with terms appearing in the free text
fields. Because this need did not require parsing of the text,
which was probably unparsable anyhow, a simple dictio-
nary system was employed.

The entries in the dictionary are those terms the requester
might use in the “Specification,” “Description,” and
“Requester Remarks” text fields which for one reason or
another we wished to be able to recognize (such as “hydro-
gen” or “gloves”) because they implied some attribute we
needed to know (such as “hazardous” or “overhead”) for
which a strength of belief value could be assigned (range 0
to 100).

The analysis of a text field consists of seeking a match of
each word in the text against a tree of all dictionary entries.
In the tree, each node corresponds to a character in an entry
and can contain pointers to all possible following charac-
ters. For example, in the root node the third pointer points
to all subtrees for entries that start with the letter C. The
maximum depth of the tree is thus only the number of char-
acters in the longest term in the dictionary, but the breadth
can be enormous. Each node must be capable of holding
pointers to all 40 allowed characters: alphanumerics plus a
few additional symbols including a space, making it possi-
ble to store phrases as entries.

In its compiled form, a complete dictionary entry con-
sists of the vertical thread of pointers proceeding downward
from the top node spelling out the entry term. The last letter
of an entry also has a flag indicating a “hit” and a position-

36 IA&94

ordered list of values associated with that entry for all
attributes. The analysis of the text requires two tests for
each source text character: for a “hit” and for an “end”
which is implied by a null next character pointer. However,
a “hit” does not automatically guarantee the end of a thread;
both “disk” and “diskette” might need to be included.
Reaching an “end” without a “hit” means the requester’s
word or phrase is not in the dictiomary. Upon finding a “hit”
the stored list of attribute values is accumulated. Then, if it
is not also an “end”, tracing the thread continues to the next
node. At an “end” the lookup routine returns all accumu-
lated scores and steps to the next word in the text field.

Interesting things can happen if the dictionary contains
the words “computer” and “paper” and the item to be pur-
chased is “computer paper.” By themselves, “computer”
implies “fixed-asset” and “paper” implies “overhead.”
Attempting to use different values to resolve this can only
prove to be a blind alley. This can be easily resolved by
adding the phrase “computer paper” to the dictionary with
an “overhead” value provided that the method of accumula-
tion of scores generates a result greater than either of the
individual scores. We chose to use the EMYCTN arithmetic
to do this as it also guarantees that the result will always
remain bounded by 100 regardless of the number of values
combined. It further suggests the possible use of negative
attribute values, but so far they have not been required. An
auxiliary test program showing the dictionary output values
for arbitrary typed inputs was found helpful in making deci-
sions on values to be assigned to new dictionary entries.

The dictionary is compiled from an ASCII text file with
one line per entry of the following sort:

ARGON# gas = 99 *

486 PC# computer = 50 fixed-asset = 50 *

This file has been maintained both as a simple text file
and as a database table, which affords some convenience
for sorting and editing. Compilation builds the tree from
each entry adding nodes as necessary ‘and inserting one
pointer into a node for each character preceding the # sign.
At the end of the thread for 486 PC, the set of scores is all
zeros except for two SO’s stored in the positions correspond-
ing to the attributes “computer” and “fixed asset.”

i’his structure affords remarkably rapid lookup (propor-
lionA to the length of the term being sought, indepcndcnt of
the size of the dictionary), but is expensive in its use of
memory, although only one copy is required no matter how
many simultaneous users are executing ASAP. M,aintcnance
of the dictionary is easy. A new entry is made simply by
inserting a line anywhere in the source file. Adding a new
attribute requires adding one line to the file defining the list
of attributes and relinking the programs that compile and
USC the dictionary. Development of the dictionary and the
knowledge base go hand in hand as new capabilities are
added to the program.

This simple “reading” technique has proved quite suc-
cessful for our needs, ‘and incidentally suggests to users that
the program is a lot smarter than it really is.

The environment that made ASAP possible was a signifi-
cant factor in the project’s success. By 1988, VT100 termi-
nal access to the laboratory’s own VAX/VMS system had
only recently become available to all 1000 employees.
Interactive access to the main plant’s administrative com-
puting facilities ten miles away was only beginning to reach
the laboratory. PCs and Macintoshes were increasingly
used, but had only reached perhaps 50% of technical per-
sonnel’s desks and less for nontechnical staff. Following the
successful introduction of an on-line labor-reporting VAX
program for department and program managers, the assis-
tant laboratory director envisioned an integrated set of sim-
ilar high level tools for all laboratory administrative
functions. Automating purchase requesting and approving
became the second objective.

The recent investment in a corporate AI Center within the
laboratory for AI research, development, and training
reflected a broad recognition of the potential of AI technol-
ogy. The desirability of an expert system in the on-line gen-
eration of PRs was further impelled by the imminent
retirement of the man who had led the growth of the labs
procurement organization for a number of years. Without
an expert system, the error problem would get far worse
after his departure. But his long experience and willingness
to participate made him an excellent resource person for
building an expert system. In addition, the manager of the
procurement organization was enthusiastic in his support of
both an expert system and the total goals of FASTBUY.
ASAP was a proposal that couldn’t fail. The team which
proposed this application was made up of five classmates
graduated from that AI training program only six months
earlier and one of our instructors.

Unfortunately, the head of the FASTBUY database team
was, from our viewpoint, overly cautious during the ASAP
proposal phase. The design of the database program was
already fairly far along, and as designer, he bore total
responsibility for the integrity of the data. This, he felt,
made it necessary to prohibit the expert system from writ-
ing anything but annotations to the data, and he insisted that
a single call be made to ASAP so that in the event of its
total failure, it could most e‘asily be byp‘assed. This pre-
cluded the use of rules to check data as they were being
entered which would have resulted in greater ease of use by
the requester. However, we hasten to add that uniformly
excellent cooperation was received throughout the execu-
tion of the project from all the FASTBUY team members.

The funding to build ASAP supported only a little more
than a two-man level of effort which was generally divided
equ‘ally between the knowledge engineering and C code
development. Throughout the program the knowledge engi-
neering has been the exclusive province of Robin Pape. The
C coding was by the other three authors at various times.

Chalmers 37

Knowledge Engineering

Interviewing the principal expert produced most of the rule
content of the knowledge base. Leafing through a large
number of faulty PRs gave additional insights. Sorting
through the free text fields from 30,000 PRs gave a feel for
how users described items. The knowledge acquisition was
the responsibility of R. Pape who also wrote and tested all
the rules and developed all the user interface screens. He
employed tape recording during the interview phase and
was accompanied by one other person so that sessions
could be reviewed and discussed for confirmation of what
was learned.

The knowledge base contains about 500 rules and is basi-
cally backward chained. It is partitioned into two p‘arts in
order to accommodate the practice of data sharing when
ordering multiple items for the same contract ‘and from the
same vendor (add-ons). One set of rules relates to the com-
mon inL’ormation and executes only once; the other, called
as often as necessary, uses the variable information. The C
code handles the calls to the knowledge processes.

Examples of Rules

If the requested item is made by another Lockheed com-
pany ASAP advises the user how it can be obtained more
easily by a different procedure.

If the request is for hypodermic syringes or needles, he is
informed of a host of special regulations concerning “con-
trolled substances.”

If the object is a cylinder of gas and it is being charged to
a government contract, several screens of dialogue ensue
which require the user to promise to keep a log of the con-
sumption of the gas as required by law. His reply becomes a
part of the purchase request by mecans of the findings which
ASAP adds to the PR file.

A rule specifying a lower limit on the procurement time
allowed by the requestor’s required delivery date resulted
from asking procurement management what problems were
found by audits of the department. Government auditors
had noticed a large fraction of procurements were being
demanded in only a few days. They correctly felt that either
too much expensive overtime work or inadequate compari-
son shopping was being done. ASAP now advises the
requestor that either more time must be allowed or condi-
tions for rationed emergency procurements must be met.

Support code

The FASTBUY/ASAP application resides on one of the
laboratory’s cluster of VAXes that execute under the VMS
operating system. It is built as a single executable file com-
posed of several groups of objects linked together and com-
piled principally from COBOL and C source files.
FASTBUY employs the DECForms proprietary interface
building toolkit and makes multiple database calls to RDB.
ASAP invokes a VMS version of the Unix “Curses” screen
I/O routines in addition to calls into and out of Nexpert
Object.

The interface between FASTBUY and ASAP is a single
function call as mentioned e‘arlier. The FASTBUY portion
of the application is responsible for the entire PR data entry
form. Once the form is filled in and the user has chosen to
submit the data, it is automatically sent to ASAP for review.
The data set is passed as an argument to ASAP in the form
of a fixed field ASCII string, but data structures are not
shared between FASTBUY and ASAP. The string is parsed
to yield the PR field entries, which are submitted to the
knowledge base before inferencing is begun. The ASAP
support routines are written in C and use the Nexpert appli-
cations programming interface to access the knowledge
base and to set up up the linkage to the routines that Nex-
pert itself will invoke.

During the course of a review session the expert system
can ask questions and present tutorial or explanatory text.
Questions can be multiple choice or a more general ques-
tion with a free text reply. All of the text for display and for
questions is kept in individual ASCII files. The knowledge
base rules contain filenames but not the actual text. This
single level of indirection was chosen to allow one to alter
the text using a simple editor rather than requiring access to
(and knowledge of) the Nexpert development environment.

Three Curses routines are used to generate the ASAP
user interface: one to display a text file, one to ask a multi-
ple choice question, and one to ask a question that will
accept a free text reply. The routines are called from within
the rules in the KB. The multiple choice replies can simply
be asserted in the KB while the free text replies are ana-
lyzed and then those results asserted into the KB.

The “text reading” routines were initially written and
tested on a UNIX system but when they were ported to
VMS they suffered a dramatic increase in execution time.
The VMS operating system supports a wider variety of file
organizations than UNIX, but its implementation of random
access within a file imposed a heavy penalty in overhead.
VMS supports a file access technique that allows an entire
file to be mapped into memory and then accessed as a sim-
ple character array. This technique was used to restore the
performance to acceptable margins.

The add-ons to a PR to purchase additional items that
share a common vendor and contract mentioned earlier are
handled in the C code by calling multiple inferencing ses-
sions, one for the common data that remain constant, and
additional calls for each specific item’s set of variable data.

The task of coding all the supporting C functions was
comparable in size to the knowledge engineering task and
was done chiefly by R. Rieger. The only remarkable point is
the development of the “reading” capability by R. Rieger
and W. Shirado described above. After the retirement of R.
Rieger in August 1991, the C code tasks were carried out by
R. Chalmers through January 1993.

38 IAAI-94

Deployment

An incomplete prototype of FASTBUY/ASAP w&as first
exercised by real userS beginning in September 1990. Both
programs were continuously expanded and reworked for
the next twelve months. Production work for about 10% of
the laboratory started in September 1991, about 2 years
after work on ASAP was begun. The number of users was
rapidly increased until the full laboratory was on-line by the
end of 1991. However, development did not stop at that
time, but gradually turned into maintenance as it became
more user driven.

In July 1992, FASTBUY/ASAP was demonstrated under
the auspices of Neuron Data, the creators of NEXPERT, at
the Tenth National Conference on AI in San Jose, CA.

Through the end of 1993, about 12,000 PRs had been
processed by FASTBUY/ASAP which, including add-ons,
represented approximately 20,000 items procured. Not a
single faulty PR had been found bv Drocurement oersonnel.

The only known failure of ASAP was on March 10,
1992, when a VAX system operator took a disk off-line
without realizing it held files used by ASAP. In consc-
quence, accessibility tests of ASAP files were added to the
program with automatic generation of warning messages
when needed.

Costs/Payoff

The labor cost to develop ASAP from acceptance of the
proposal to full production use in December 1991 was
about $200,000. Two VAX runtime versions of NEXPERT
were bought for the application for under $15,000.

By June 1992, it was estimated that the FASTBUY/
ASAP system would save over $1800,000 annually, and by
measurement it had cut the average author-to-buyer time
from 30 days to 4. There was no determination made as to
what fraction of these achievements was specifically due to
the ASAP program, but in general, FASTBUY gained most
of the speed by substituting electronic mail for paper deliv-
ery, and ASAP probably gained the majority of the dollar
savings through elimination of the effort formerly spent
cleaning up faulty PRs. There is probably an exaggeration
in the above total savings claim, but the savings from ASAP
alone probably is somewhere between $600,000 and
$800,000.

Maintenance

As with aLl such projects, it was not easy to determine when
the system was complete. Both ASAP and FASTBUY
developers had many improvements they wanted to add.
Also, there was a constant stream of requests for improve-
ments from users. Therefore, a user committee was fomled
in 1992, consisting of six individuals who were among the
heaviest users of FASTBUY. The group was charged with
determining the priority of requested and proposed

improvements. Enhancements to ASAP continued to be
made by the authors throughout 1992 at <an additional cost
of about $84,000.

Maintenance of the knowledge base due to policy or rule
changes was required only once, and that occurred before
the system went into production.

Subsequent Developments

A natural consequence of the successful deployment of the
FASTBUY/ASAP system in the R&D Division was the
decision to extend the use of the technology to the larger
task of company-wide procurement. A task force to reengi-
neer procurement was formed and consultants hired. One
year later in early 1993, the ASAP team was asked to port
the existing ASAP program to the UNIX-based client/
server architecture of the new system. Because the larger
program would supplant FASTBUY in the laboratory,
maintenance of ASAP stopped and the team went to work
on the port, At this point W. Shirado took over all the C and
UNIX coding responsibilities.

The new architecture calls for ASAP to be partitioned
with all the user interface functions executing in the
requester’s PC or Macintosh computer. This led to the user
interface being completely redone with <Neuron Data’s
Open Interface tools.

A server machine is called whenever Nexpert’s services
are required. (The commercial client/server configuration
of NEXPERT is not used.) However, the responding server
may be any one of several such machines. Therefore, all of
a PR’s data are maintained in the user’s computer until the
ASAP review process is completed. Each call constitutes a
complete transaction even though only a small piece of
ASAP is executed, Once again, NEXPERT’s state saving
capability is employed. Each call to NEXPERT transmits to
the server the most recently saved state of the consultation,
‘all the relevant PR data, and any new user input since the
last call to NEXPERT. The server proceeds with the analy-
sis until the next need to return control to the user. A new
state file is then written and transmitted to the user machine
together with instructions for any new user display.

The change from VMS to UNIX was also complex due to
the many services ASAP obtains from its operating system
such as automatic generation of mail messages.

Final Assessment

The FASTBUY/ASAP system has clearly been a success.
The procurement people it was built to help like it. Many
users of FASTBUY might still prefer to write their PRs on
paper, but all users like the shorter procurement time of
FASTBUY.

Nobody basically likes having his work checked, espe-
cially by a computer, but ASAP has helped users to under-
stand the procurement process better. They like no longer
having to participate in the old forms procedure that they
never understood and somehow found demeaning. We think
ASAP has made them more tolerant customers of the pro-

Chalmers 39

curement organization. And in a time of retrenchment,
the savings from ASAP may have helped save ten or
twenty of their jobs. Finally, the decision to continue
ASAP into the next generation procurement program is
the most gratifying result of all.

Acknowledgments

We gratefully acknowledge the contributions of the fol-
lowing colleagues: our classmate Abe Tassa who helped
write the proposal; Drs. Linda Cook and Dan Drew, two

friends who were both our instructors and advisors; Dr.
Stan Sal&bury, whose managerial expertise kept the
skids greased and the wheels in motion; and the mem-
bers of the FASTBUY development team, Dr. Ken Siler,
Nancy Dixon, Bobbie Riedel, Mike Wright, and Ming
Yang, whose friendly cooperation always made the
work a pleasure. Most of all we are grateful to Dr.
Joseph Reagan, Vice President and General Manager of
the Research & Development Division who immedi-
ately saw the potential value of the project, and then
entrusted it to our hands.

IAAI-94

