
vertime Scheduling System

A. Chris Eizember

E. I. duPont de Nemours & Co., Inc.
Electronics Development Center

14 T. W. Alexander Drive
Research Triangle Park, NC 27709

Abstract

This case study examines the design and
development of an expert system used to fairly
distribute the opportunity to earn overtime pay
among workers in a manufacturing
environment. It describes the problem and the
mechanisms used to prioritize workers for
selection and details some of the difficulties
encountered in the knowledge engineering
stage. The benefits derived by using the system
are given, as are some of the lessons learned
during the development and deployment.

Introduction

The Artificial Intelligence Task Force is a small group
within DuPont tasked with catalyzing the use of Expert
Systems (ES) throughout the company. To that end, we
train ‘experts’ in the use of ES shells, support them in
their development efforts, help them with prototypes, and
communicate AI activity throughout the company. We
become involved with projects as principal programmers
when businesses having an ES need lack the resources
necessary for implementation, or when the resulting
application may have broad applicability across the
company. The Operations Overtime Scheduling System
(OOSS) is one such application.

The system assists with the scheduling of manpower
with an emphasis on consistently and fairly distributing
opportunities to work overtime among the workers. It is
in use at a manufacturing facility scheduling some 350
workers and is currently being studied for
implementation at other sites.

Scheduling workers in an around-the-clock chemical
production environment is a job that never ends. Even
with prearranged rotating schedules the task is
complicated by meetings which everyone must attend,

worker training, unit shut-downs, vacations, and
unexpected absences. These schedule upsets and others
contribute to the complex job of keeping a full
compliment of workers in the area, and making sure that
each one is qualified to perform the job that they are
there to do.

Oftentimes this becomes a full-time job, with one
person juggling lists of weekly schedules, planned
overtime, and worker records. They are called upon by
supervision to fill the schedule on time, manage worker
disputes, and produce summary reports of worked
overtime for historical purposes. They are also
constantly hounded by workers who want to know ‘Why
so-and-so got this shift instead of me’ and ‘Why are my
OT hours so high’. Emergencies arise when workers
don’t show up - they need someone on plant NOW. It
can be a very stressful job.

The OOSS was written to help manage all the
information required to perform the scheduling. It tracks
the weekly schedule, showing an up-to-date
representation of who should be working each shift, and
what job they will be performing; it also tracks each
worker’s standing in the overtime hierarchy. These two
components are critical in the task of properly filling
overtime needs. It accumulates data on the overtime
worked in a number of ways; by reason (e.g. to cover a
vacation, training, or absence), and by skill; summarized
weekly and YTD. This information has been used by
management to get ‘the big picture’ and has allowed the
plant to reduce the amount of overtime paid significantly.
One other form of information has also been important -
the system records all the transactions involved in
changing a worker’s overtime hours. This has resulted in
a direct savings of reducing grievances and an indirect
savings of fostering trust in the system.

The OOSS is currently in use at DuPont’s LaPorte,
Texas manufacturing facility. There are a handful of
separate operating units producing chemicals for

Eizember 49

From: IAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

different applications but the all share the same rules and
procedures for filling schedules and overtime. Any given
area will have between 12 and 60 workers on their
schedule; workers are not shared between areas. Many
areas have one person doing the scheduling tasks (their
‘scheduler’); in some of the smaller areas the scheduling
is handled by supervisors, a few supervisors even handle
multiple areas.

Each area is a separate entity as far as scheduling goes.
They have a pool of workers on a 12-hour rotating shift.
When workers are ‘off they are eligible to come back to
work to fill in for absences or to do extra work. When
someone works outside their normal shift rotation they
are paid a premium for that time, up to 2.5 times normal
pay for working on a holiday. As one might imagine
most workers are eager to work at least some overtime as
it can constitute a sizable portion of their pay. The
problem them becomes how to distribute the overtime
fairly among the workers. The priority for selection for
filling this extra work is decided by the concept of
‘charged overtime hours’.

Each time someone works overtime, their charged OT
is incremented to reflect the ‘extra’ money that they will
be paid. When it comes time to select a worker for a
shift, they are placed in a ranked list based upon their
year-to-date charged OT, and those with the lowest
charged OT are offered the chance to work the shift first.
This results in a fair method of spreading the extra work
among those willing to accept it.

Adding one more level of complexity is the fact that all
of the workers in an area are not necessarily skilled in
performing all of the possible jobs in that area.
Therefore separate information must be kept on exactly
which jobs each worker can perform.

The task then becomes one of information
management. One must maintain an up-to-date schedule
and a list of worker’s skills and charged OT. When a
shift needs to be filled the system, using the list of
workers, eliminates all those who can’t work the needed
skill and can’t work because of schedule conflicts and
then produces a ‘call-out’ list of the remaining workers
ranked in ascending charged OT hours. The scheduler
then goes through the list calling the workers at home
until someone accepts the shift. Then a calculation is
made to determine how much time to ‘charge’ that worker
for the shift and the amount is added to their YTD
charges.

The real expertise in the system then comes in two

areas: selecting the proper workers to offer the overtime
to (and in the correct order) and how to do the
calculation of the number of overtime hours charged to a
worker once they accept a shift. The former was
relatively easy to implement, the latter proved to be an
exercise in knowledge engineering.

Evolution of an Application

A few of the areas had independently begun to
implement their own computer systems to help with the
problem, ranging from a spreadsheet used to track hours
to a rule-based system used to select workers to call.
These systems, and the ways in which they were being
used, were beginning to fail under a closer scrutiny of
overtime by plant management. Costs for overtime were
excessive, rules were being inconsistently applied, and
workers were increasingly turning to the union with
grievances based upon lost opportunities for extra pay.

A request was made by the plant management to
develop a system that would be useful to all the areas
(accommodating the varying ways that they implemented
policy) and also bring together data to create a picture of
overtime costs for the entire plant. The system was to
codify the rules under which all areas were operating,
and provide enough flexibility so that each area’s
particular skill set and procedures toward allocating OT
could be accommodated.

We began by interviewing people with the expertise
that would form the core of the system: how to select
qualified workers and how to charge them for the shifts
that they worked. What we discovered was that although
they were working from the same rules and procedures
they approached the problem differently and often came
up with different answers. This was no surprise. What
we found as we progressed through the development was
that as disagreements arose between the experts they
would have to discuss the problems among themselves,
often returning to the common rules and procedures only
to discover that they might have been improperly
interpreting the rules.

As is the story in the development of many expert
systems, the path to a properly functioning system was a
learning experience for all involved. Over the course of
one and one-half years, three knowledge engineers/
programmers and over ten experts/users were involved in
specifying the system, designing the user interface, and
elucidating, codifying, and coding the expertise.

50 IAAI-94

Initial meetings revolved around expectations of the
various parties, our preferred mode of development
(iterative prototyping), system requirements, access to
experts, and timeframes.

Tool selection was constrained by the size of the
problem, software available, preferred mode of accessing
the finished system, and the configuration of the
computer system in place. We decided to use RS/l (from
BBN Software Products, Cambridge MA), already on the
plant’s VAX cluster.

RS/l provided a framework to store the data (tables),
an expert system development environment
(RSDecision), and a general-purpose programming

language L). With its structure of shareable group
data, information could be made available across
workgroups with partitioning between the the various
production areas. This also meant that only one copy of
the code had to be maintained, and each area could
customize the system to meet their needs. (Figure 1)

Using the idea of rapid, iterative prototyping we would
work with the experts for a day or so at a time, then
return to development to apply what we had learned to
correcting and enhancing the system.

Initial development continued for one year before the
system was complete enough to be implemented for use
in two of the plant’s areas. An initial period of parallel

Weekly (each Area)

Yearly (each Area)

record-keeping was planned to continue for two months
but after only two weeks the users had enough faith in the
system to transition to it completely.

As more areas came on-line, more exceptions in work
procedures were found; changes would be made to
accommodate them and system evolved more and more
flexibility and utility. Approximately 1.5 man-years of
effort went into the coding, the experts’ time is not
included in that figure.

So Where’s the AI?

In our experience few simple systems - those consisting
of only a small rulebase or decision tree - survive on their
own. Successful systems consist of a large part of normal
‘computer programming’ procedural code assisted in
critical areas by AI where appropriate. Additionally, AI,
in the form of an expert system tool in this case, is useful
in the prototyping stage to rapidly and simply encode
knowledge.

The two areas of expertise in this application, selecting
workers for QT shifts and charging for the hours worked,
were obvious candidates for expert systems. They would
be hidden within the larger system - their use would be
transparent in the context of using the entire application.
Both lent themselves to the rule-based paradigm however
neither survived in rulebase form in the final application.
Surprisingly, the only ‘true’ expert-system shell portion of
the final system was the on-line help, implemented by a
decision-tree.

Area Customization Data

1 People-Changes Wistory

Plant Information

Figure 1: Data Structure

Eizember 51

Even though AI didn’t survive into the final system in
the forms expected, knowledge engineering methods and
expert systems shells did simplify the capture of expertise
and implementation of the system.

Probably the most complex and confounding portion of
the system dealt with the calculations involved in
charging for overtime shifts worked. This is where the
most disagreements arose among the experts and
required the majority of knowledge engineering effort.
We started by casting the knowledge into a rulebase. The
rulebase’s IF - THEN form seemed to match the way the
experts approached the calculation. However, the rules
started to multiply quickly. There were simple rules for
shifts worked on a day outside the normal rotation and
more complex rules for working holidays or all seven
days in the week. The worst situations happened when
exceptions piled up - workers on holidays in the middle
of the week when they were working all seven days that
week and Sunday had both normal time and overtime.
The permutations seemed endless. Complicating matters
was the fact that you had to consider the entire week in
the calculation, not just the day worked.

Another factor complicating matters was the idea that _
if a worker initially accepted a shift of overtime then later
backed out of it or otherwise didn’t work it, the impact
had to be subtracted or ‘backed out’ of their ‘charged OT’.

DO I = 1 TO 7;

Depending on the situation, the amount of time
subtracted wasn’t necessarily equal the the amount
initially charged. This resulted in separate calculations
and rules for both adding and subtracting time.

As we polished the rulebase, adding rules here and
there to cover the obscure cases, we realized that
although this was the way the experts were explaining
things to us, they were, in fact, performing the
calculations much differently when asked to do example
problems. This resulted in a shift in our interviewing in
order to determine how they were doing it, not how they
were explaining it.

We had been treating each shift as an individual event -
“How many hours would you charge if this person worked
in such-and-such situation”. Our examples were all for
discreet cases. We discovered by considering the impact of
a shift on the week - as a whole - we could greatly simplify
the situation. By casting the data (the person’s weekly
schedule complete with overtime shifts) into a table, the
rulebase needed to process it shrank to a handful of simple
rules, the exceptions that had been posing problems were
easily handled. Both adding and subtracting overtime
charges could be handled by the same rules. Ultimately the
rulebase was coded into a relatively simple procedure with
nested IFS. (Figure 2)

IF ((HOURS_WORKED = O)and(uns_worked = 0)) OR LOSE_PREM THEN

(
TT[I,C_OTl = 0;

DONEXT;

I
CHARGED_OT = 0;

SCHEDULED-DAY = TT[I ,C_SCHED_DAY];

HOLIDAY = TT[I,C_HOLIDAY];

TOT-WORKED = HOURS_WORKED + UNS,WORKED;

IF (NOT SCHEDULED-DAY) THEN

I /* Not a normally scheduled workday */

CHARGED_OT = TOT-WORKED * 1.5;

IF (HOLIDAY) THEN

~CHARGED_OT=MAX~~TOT_WORKED-8~,O~*2.5+MIN~8,TOT_WORKED~*l;;

3
ELSE

I /* Is a normally scheduled workday */

CHARGED_OT = MAX(TOT_WORKED-NORM_HOURS,O)*1.5;

IF (HOLIDAY) THEN

CHARGED_OT = MAX(TOT_WORKED-NORM_HOURS,O)*2.5;

1
TT[I,C_OT] = CHARGED_OT;

END;

Figure 2: RS/I RPL code fragment for overtime hours calculation

52 IAAI-94

A pleasant surprise was how well a decision tree handles
an on-line help system. By reflecting the system’s menu
structure and task flow into the structure of the decision
tree it was possible to access it from the ‘trunk’ as is usual,
and also to jump into the middle when called from a menu
in the middle of the application.

The help system was also structured so that the
explanatory text was kept in a separate table and
referenced from within the decision tree. Options were
also provided to print the contents of the table containing
text, thus making the system somewhat ‘self-documenting’.

aintenance

The only maintenance required has been when the plant
has changed its rules and procedures around calling out
and charging for overtime. CareM task partitioning in the
system design resulted in these changes being easy to
make, with little to no side effects throughout the system.

enefits

With the system in use in twelve areas on the plant
scheduling approximately 350 workers, a savings of
approximately $30,000 per week could be attributed to the
system; determined by the following calculation: Prior to
installing the system the overtime pay as a percentage of
total pay was 18.7% (of 14,390 hours/week = 2691). After
using the system for 10 months it was down to 3.8% (of
16,289 hours/week = 619, a reduction of about 2000
hours). Although other factors were affecting the level of
overtime, supervisors directly attributed about half of the
reduction to the system (1000 hours @ $30 per = $30,000).

Factors contributing:

- Increased awareness of ‘where the time was going’.
Simply seeing reports of the overtime summarized by the
reason and skill worked caused many supervisors to re-
examine their practices and re-position manpower to
minimize re-occurring needs.

- Decreased number of mistakes. By keeping close track of
all the shifts to be worked scheduling unnecessary or
duplicate manpower was avoided.

- Ability to schedule work ahead of time rather that call-out
at a moment’s notice. Scheduling just one shift ahead of
time, rather than waiting until the last minute can save
$50.

also accrued. The workers came to trust that the system
was treating everyone fairly; grievances filed with the
union for overtime reasons dropped to 10% of the
original number. Schedulers found that they could
perform their jobs better, under less stress, because the
system was handling the detailed paperwork, automating
the simple parts of their jobs, and freeing them to apply
themselves to more challenging tasks.

Lessons Learne

The story of this system has taught us new lessons and
reinforced old ones:

- The methods of knowledge engineering used can have

as large an impact as any other decision in the system
design. An expert system succeeds or fails based upon
the form and quality of knowledge extracted from the
experts.

- Involve the eventual users early in the development of
the system. Find out what the like or dislike; watch the
way they work and use the system.

- Keep an eye out for innovative uses if standard
methods.

- Employ iterative development. This will keep you from
going off too far in the wrong direction.

- Design the system for flexibility and expandability.

- Know when to stop prototyping and start fielding.

The payback of the OOSS application matches what we
usually see in successful systems. After one year of use
the system has resulted in a bottom line savings of ten
times the money ‘spent’ internally on its development.
The hope is now that the system, with minor
modifications, can repeat its success at other sites in the
company.

Thanks To LaPorte

The successful development and delivery would not have
been possible without the cooperation we received from
the workers at the LaPorte plant. Their help in the
design, knowledge engineering, and debugging made it
possible to deliver this application. Thanks also to those
in systems positions who helped in the integration into
the existing applications and those in management who
saw the value of this effort.

Other benefits not directly measured in the bottom line

Eizember 53

