
ieu IL@ 
Pacific Bell 

2600 Camino Ramon 
San Ramon, CA 94583 

Pacific Bell has millions of phone calls that 

cannot routinely be charged. Investigators 

manually search for clues that allow unbilled 

charges to be correctly charged before the state 

regulated time period expires. In order to recover 

billable revenue Pacific Bell elected to bring 

additional automated support to the problem. As 

a result, Pacific Bell chose to implement an 

expert system, the Expert Message Correction 

System (EMCS). EMCS was deployed in 

November 1993, and is currently processing 

thousands of unidentified calls each day. The 

EMCS architecture involves access to multiple 

mainframe applications and databases, and 

incorporates a multi-process architecture that 

automatically selects and schedules multiple 

expert system processes to execute within a 

single workstation. This design provides a high 

degree of parallelism to enable processing the 

large volumes of calls and their associated 

mainframe data. In addition to this multi-process 

architecture, EMCS provides new uses of Al 

technology in the telecommunications industry, 

particularly in the areas of billing and 

investigative procedures. 

introduction 

An unidentified message refers to any phone call 
(“message”) which causes exceptions during 
normal billing procedures. These exceptions 
require investigation and then corrective action 
before the billing can be completed. Unidentified 
messages are investigated by the Pacific Bell 
billing organization. 

The unidentified message volume is a 
reflection of both a large customer base and a 
wide range of customer flexibility in choosing 
features, services, discount programs and billing 
options. A knowledge-based system was 

Philip Klahr, 
ichael Staler 

Inference Corporation 
550 N. Continental Blvd. 
El Segundo, CA 90245 

proposed to automate the message investigation 
and recovery process for a broad range of error 
conditions. The knowledge-based system 
approach was deemed appropriate because it 
provided the most effective technology tools to 
those employees who are in the best position to 
make use of them. 

rror investigation Procedures 

Unidentified messages are tagged with error 
codes by various Pacific Bell automated systems. 
Tagged messages are collected by a mainframe 
system, partitioned into cases, and assigned to 
investigators. Messages are grouped into cases 
by various criteria. Each case typically consists 
of one or two types of errors and perhaps 20 
messages (although thousands of messages 
sometimes occur). 

Cases are retrieved by the assigned 
investigator and processed. This may involve 
accessing multiple mainframe applications to 
obtain the necessary information required to 
determine the correct billing. Recommended 
actions concluded by the investigator are then 
sent back to the mainframe system for automated 
processing. Actions are specified by a 
transaction code and some number of additional 
arguments. History and comments concerning 
actions taken are inserted into the mainframe 
case record. 

The Pacific Bell Expert Message Correction 

System (EMCS) automates the investigation and 
billing procedures for the processing of 
unidentified messages. These exceptions now 
require EMCS investigation and corrective action. 
Typical results of an EMCS investigation might 

From: IAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved. 



include billing the message as is, correcting a 
mistaken account number, holding a message 
until further information is available, or collecting 
all relevant data for the call from several different 
mainframe information systems and diverting the 
case for manual follow-up. 

Error Message Processing 

The principal requirement for the EMCS system 
was the automation of unidentified message 
investigation procedures. The necessary set of 
investigative procedures depends on the error 
codes found on the case. 

For the EMCS expert system, one of three 
categories of actions is possible: 

e Initiate a transaction to charge messages. 

0 Put the case in abeyance. Abeyance holds 
a case for some number of days. Case 
processing is resumed following abeyance. 

0 Divert the case to an investigator for 
manual investigation, for cases where manual 
handling is required. 

Once case processing is complete, individual 
messages are directed to one of several target 
applications for completion. 

High-Level Architecture 

The overall throughput of the EMCS application 
can be affected by several conditions, such as the 
time required to obtain data from the various 
mainframe applications. In an attempt to model 
the system throughput requirements, total daily 
processing time estimates were performed on 
volumes of cases and messages. Actual case and 
message volumes were sampled for a typical 
single day and for a complete month. Error 
messages were summarized according to external 
host access dictated by the error procedures 
defined during the requirements analysis phase. 

Some important results were evident from the 
resulting processing time analysis. Two 
components of mainframe access time were 
modeled: the mainframe application program 
response time (the average wait time while the 
mainframe was servicing other users plus the 
time necessary to process the data request) and 
the transmission delays in sending data over 
transmission lines of various speeds. It was 
discovered that both factors had a substantial 
impact on overall throughput of cases. The 

conclusion from this analysis was that a single 
expert system image could not possibly handle 
the necessary workload because data could not 
be retrieved from the mainframe quickly enough. 

These observations resulted in a multi-process 
architecture, where multiple UNIX child expert 
system processes are maintained and supervised 
by a parent EMCS process (Figure 1). Child 
processes are run concurrently on the 
workstation, each with its own dedicated set of 
communications sessions to the necessary 
mainframe hosts. In the initially deployed system, 
five to seven of these child processes are run 
simultaneously on each workstation. Inference 
Corporation’s ART-IM for Unix was utilized as the 
programming language for EMCS because it 
provided the necessary representational 
capability, speed (data-driven architecture and 
compiled rules), and flexibility to implement this 
architecture. 

EMCS provides three primary modes of 
operation: 

e A test operation mode allows users to step 
through case investigation steps, providing a 
running description of information extracted 
from case messages or external database 
systems. Test mode does not send any 
update transactions back to the mainframe 
application. 

0 An interactive operation mode provides 
display and interaction characteristics identical 
to the test mode, except that update 
transactions are enabled. Following user 
confirmation of proposed actions, 
transactions are submitted to the mainframe. 

l A batch mode of operation provides 
continuous case processing. EMCS maintains 
a cumulative statistical summary of cases 
processed for the session. Batch mode is 
used to service most of the case load. The 
batch subsystem is designed to allow multiple 
EMCS batch processes to be running 
concurrently (limited by the number of host 
ports attached to the workstation). 

The test and interactive subsystems of EMCS 
are designed as a single UNIX expert system 
process, while the batch subsystem is a multi- 
process architecture designed in a parent/child 
configuration. The parent process has a graphical 
Motif-based user interface. This parent process 
uses the UNIX fork/exec system calls to spawn a 

76 UAI-94 



HP 9000 

Child EMCS Process 

Send-mainframe-transactions 

Le 77 



user-specified number of batch child processes. 
Each child process independently processes 
cases, using a local case ID file and record locking 
to determine the case ID of the next case to 
process. Each child process writes out to a file a 
set of summary statistics. This file is updated 

after each case is fully processed. 
The parent process monitors the progress of 

its children, and allows an on-line user to view a 
summary of that progress. The parent process 
utilizes the XWindows X Tool kit 

XtAppAddTimeOut facility to automatically collect 
statistics at designated time periods. At the 

designated intervals, the timer expires and the 
parent process collect summary statistics by 
reading the output files generated by each child 
process. This information is summed and 
displayed in a Motif window. Once the batch 
system has been invoked, the system runs 
unattended, with summary information presented 
in a window on the screen. Statistics can also be 
updated via a menu choice when the user needs 
an updated summary. This menu choice causes 

the EMCS parent process to immediately total the 
statistics from all of its children and display this 
summary information in the window. 

When a particular day’s workload exceed 
EMCS’ capacity, both the primary mainframe 

application and EMCS are designed so that any 
unprocessed cases will automatically be rolled 
over into the next day’s work. Each batch 

process also automatically checks the time of day 
after processing each case. Just before the 
designated end of the business day, when the 

host systems are taken down for the day, each 
batch process stops case processing and logs off 
from the various host systems. Users can define 
the hours of operation for EMCS processing by 
setting the AUTOSTART and AUTOTERMINATE 
times in a dialog box available from the options 

menu. Once these times have been set, EMCS 
operates in self-scheduling mode. 

Should any communication problem occur 
with one of the host systems during normal 
business hours, any batch EMCS processes 
requiring data from that host system will be 
unable to complete their processing. They will 

simply generate the appropriate error message 
and exit. Normally, the host system problem is 
quickly fixed by the appropriate Pacific Bell 
system administrators. Therefore, every few 

minutes (as the timer expires), the EMCS parent 
process checks on the status of its children. If 
any children have terminated and unprocessed 

cases are pending, the EMCS parent process 
automatically spawns a new set of replacement 
child batch processes. In this manner, once the 

batch subsystem of EMCS has been invoked, it 
can run unattended - EMCS processes are 
automatically spawned daily. If some abnormal 

event occurs such as the workstation crashing, 
simply re-booting the workstation (if necessary) 
and logging back into the EMCS account will 
restore normal EMCS processing. 

The EMCS user interface was built in 
Inference Corporation’s Motif Integration Library 
(MIL). MIL is itself implemented in ART-IM and C 
using an object oriented methodology built on top 
of XWindows and provides an OSF Motif-based 
graphical user interface. The basic EMCS user 
interface design relies on the Motif Integration 
Library for access to Motif primitives, and relies 
on the ART-IM schema system to build higher- 
level objects from those primitives. 

EMCS Reasoning Kernel 

The EMCS reasoning kernel can be invoked by the 
user directly from the application user interface 
(interactive or test mode) or invoked automatically 
at the start of a new business day (batch mode). 
The flow of control in the reasoning kernel is 
managed by a set of ruleset data structures. 
Each ruleset contains a set of rules which 
implement the detailed processing logic for each 
particular stage of the reasoning kernel 

processing. Just before it invokes the reasoning 
kernel, the calling c’ program asserts the ART-IM 
fact (li7itialile-EMCS). The presence of this fact 
causes certain initialization rules to fire in the 
li7itia//ie-EMCS ruleset. 

Once initialization is complete, the reasoning 

kernel repeatedly calls the get-case-summary 
function to retrieve the next case to process. 
Next, the reasoning kernel calls get-message- 
details to get the necessary data for each 
message on the case. Then, depending on the 
error code and other factors, other functions are 
called to collect data from the various mainframe 
systems. When there are no further cases to 
process, the reasoning kernel returns control to 
the calling C program. 

Representation of Declarative Knowledge 

EMCS data structures have been defined so that 
the application directly models, in a natural way, 
the underlying data and the key relationships 

78 IAAI-94 



among the data items. To the investigator, for 
example, it seems natural to view the data on 

each bill as a database record. Using an expert 
system approach, this maps into a bill object with 
an associated set of properties. In this approach, 
most of the main panel types for each host 
application map directly into objects. 

In ART-IM terminology, these panels map into 

schema definitions. A schema is a data structure 
which aggregates object properties into an 

associated set of slots and values. For each 

unbilled message, a message-detai/ schema is 
asserted at runtime. 

When EMCS decides upon appropriate 
corrective action for a particular message or set 
of messages in a case, an instance of the 
transaction-record class is generated which 
contains the details of the necessary corrective 
action. At the completion of case processing, a 
series of mainframe transactions are submitted, 
one for each transaction-record schema. 

Schemas are similarly constructed and 
dynamically asserted to hold the data returned by 
each of the different types of mainframe access 
functions. 

Rulesets 

In EMCS, collections of rules that implement a 
task are organized into rulesets (Figure 1). Each 
major stage in EMCS processing is defined as a 

ruleset: 

1 . initialize- EMCS ruleset performs 

miscellaneous initializations when EMCS is 
first invoked. 

2. categorize-new-problem ruleset retrieves a 
new case and message detail records, and 

performs certain tasks to categorize the 
problem. 

3. process-messages ruleset contains rules 
which deduce the corrective action for 

particular messages in the case. The rules in 
this ruleset pattern match against message- 
detail schemas and produce intermediate 

results, or they generate or update 
transaction-record schemas. Each of these 
schemas represent a particular corrective 
action to take and a list of the messages for 
which this corrective action is appropriate. 

4. send-transactions ruleset is invoked after 
the messages of a case have been processed. 
For each transaction-record schema created 

by the process-messages ruleset, a mainframe 
transaction is created and sent. 

5. cleanup-case ruleset contains a set of rules 
which perform cleanup actions at the end of 
processing an individual case. These cleanup 

actions re-initialize EMCS and prepare for 
processing the next case. 

6. cleanup-EMCS ruleset contains rules which 
perform final cleanup, host logoff, and other 
termination actions at the completion of case 
processing for that day’s workload. 

Processing Logic 

The process-messages ruleset contains the rules 
which perform the critical decision-making tasks. 
These rules 

0 decide which mainframe systems need to be 
accessed 

e examine 
transaction 

the fields from 

e analyze 
situation 

the information to understand the 

host 

e decide how to correct the problem. 

An initial set of mainframe data is always 
retrieved when processing a new case. In the 

process-messages ruleset, a set of analysis rules 
fire which pattern-match against the initially 

retrieved mainframe data. Collectively, these 

rules decide which of the several other mainframe 

systems must be accessed in order to process the 
case. Due to the volume of cases EMCS 

processes, a large amount of mainframe data 

must be accessed daily. These accesses are 

computationally expensive and without proper 
care could have degraded mainframe response 
times and other critical applications requiring 
mainframe access. Therefore, EMCS rules are 
structured so that, for each stage of processing, 
only mainframe data critical to the decision at 

hand is retrieved. Furthermore, the analysis rules 

decide which of the available data access 
methods to invoke in order to retrieve the required 
fields at minimal costs. 

The analysis rules express their decisions by 
asserting a set of ART-IM facts. As these rules 
assert facts specific to data needs, a set of data- 
gathering rules are invoked. These rules perform 
the necessary book-keeping to ensure that 
mainframe data is never retrieved more than once. 

IA? 79 



A set of ART-IM schemas have been defined 
which represent the various classes of mainframe 
system data. Each data retrieval, if successful, 
causes a schema to be created which is an 
instance of the appropriate mainframe system 
data class. 

As mainframe data becomes available in this 
form, decision-making rules become eligible to 
fire. These rules tend to be rather complex, 
typically with many pattern matches against the 
slots of different instances of mainframe system 
data schema. Frequently these decision-making 
rules invoke one or more sets of procedural calls 
which perform specific additional tests on the 
accessed data. If the data meets all of the 
conditions specified in the pattern-matching 
constraints, plus meets the conditions specified in 
the procedural logic, then EMCS has deduced the 
nature of the problem. EMCS then builds a 
transaction schema whose slots specify the 
particular details of the mainframe transaction 
that must be submitted to correct the problem. 

Mainframe System Access 

Several external database systems must be 
consulted during case processing. Information 
extracted from these databases governs decisions 
concerning billing of case messages. Connection 
with external systems is made at EMCS 
initialization, and is maintained for the duration of 
system processing. The EMCS application runs 
on an HP 9000 and requires data from several 
different applications which reside on IBM 
mainframe computers. 

For some of the above systems, mainframe 
connectivity is provided via UIA software from 
Apertus Technologies Incorporated. A total of 17 
transactions were built which provide all the 
necessary data from these mainframe systems. 
The EMCS application can be running either on 
the same machine as UIA or on another 
networked workstation. 

The UIA does not currently provide interfaces 
to two of the mainframe applications, so EMCS 
utilizes a second communications pathway to 
access data from these systems. This second 
pathway is based on the high-level applications 
programming interface (HLLAPI), which was 
originally defined by IBM and is now a de facto 
industry standard for mainframe connectivity 
using 3270-type screens. Inference’s ART”SNA 
package was utilized to provide a higher-level 

80 PAAI-94 

interface for the EMCS application to access the 
various IBM hosts via HLLAPI calls. 

Application History 

The project encompassed a two-year timeframe 
from its initial conception at the end of 1991 to 
its deployment at the end of 1993. Approximate 
dates for the 
include: 

Dec91 -Jan92 

Jan92-Mar92 

Apr92-Ju192 

Aug92-Apr93 

May93-Sep93 

Oct93 

Nov93 

various phases of the project 

Initial discussions on knowledge- 
based application 

Requirements analysis/high-level 
design/project planning 

Return on investment analysis 

Detailed design & development 

Integration testing 

Acceptance testing 

Initial deployment 

Of great benefit was a testbed of cases 
supplied by the user during the development 
phase to provide an on-going testing 
environment. Unit testing could be performed on 
selected cases to verify code modules. This 
testbed included representative cases 
encompassing the full range of cases that EMCS 
was required to process, As such, it served as 
the initial test suite for integration testing. In 
addition, other previously unseen cases were 
added to the test suite for further integration 
testing and acceptance testing. 

During the system integration and deployment 
phases, Pacific Bell software specialists joined the 
development team to become fully knowledgeable 
in the EMCS design and code. The original 
system developers continued to be involved in 
any bug fixes during the warranty period. 

EMCS Benefits 

There are many substantial business benefits 
obtained from the EMCS system: 

e Productivity Improvements: EMCS is 
designed to improve the productivity of the 
billing group through a more efficient 
application of investigation procedures. Much 
of the effort involved in message investigation 
is tedious and time consuming, suitable for an 
automated approach. 



0 Consistent y and Completeness: 
Investigation procedures can be quite 
complex. EMCS provides a consistent 
application of policy to errors within its scope, 
providing detailed case information for future 
audit or manual investigation requirements. 

8 Improved Responsiveness: Efficient EMCS 
processing of unidentified messages 
ultimately translates into improved 
responsiveness. 

* Additional Revenue Protection: The most 
significant benefit of the system is the 
avoidance of lost revenues due to message 
expiry. Based on the first three months of 
production, the additional revenue billed from 
prevented message expiry is projected to be 
more than a million dollars a year. 

Summary 

EMCS provides an innovative architecture which 
allows multiple expert system processes on each 
workstation to simultaneously investigate and 
recover telecommunications charges. The 
processes are spawned and monitored by a 
parent expert system process. This high degree 
of parallelism was necessary to handle the overall 
processing workload, given the inherent speed 
limitations of the mainframe connections. EMCS 
incorporates a robust architecture that allowed 
the system to automatically schedule its own 
operations and provide automatic recovery from 
common mainframe connectivity problems. 

In addition to this multi-process architecture, 
EMCS provides new uses of Al technology in the 
telecommunications industry, particularly in the 
areas of billing and investigative procedures. 
Rule-based processing was used to capture the 
expertise of human investigators. A process that 
had been done manually has been automated. 

Acknowledgments 

EMCS was a team effort involving many groups 
and individuals. Pacific Bell’s Strategic 
Information Systems (SIS) provided overall project 
management and technical monitoring. SIS head 
Eric Firdman helped launch the project; Rebecca 
Barfknecht supervised the development and 
integration process; Craig Cottrell provided 
ongoing project management; and Hieu Le was 
the technical monitor. From CBS, Paula Bentley 

headed the user community; Judy Rogers and 
Cathy Flores headed the northern and southern 
regions, respectively, and Marilee Yamarone, 
Delpha Stutznegger and Susan Jenkins provided 
the expertise on investigative procedures. Other 
important team members included Joseph Tung 
from UNIX system software support and Terry 
Rosfeld for user application software 
development. From Inference, Dave Coles 
provided the upfront requirements analysis and 
project initiation, Gary Vrooman and Mike Stoler 
were the principal developers with support from 
Sugandh Mehta, and Phil Klahr provided EMCS 
project management. Apertus, who provided the 
mainframe application transactions, was 
represented by Elizabeth Converse-Wilson, Shawn 
Hunter, Craig Cameron, Dan Riesland, and Dave 
Fisher. 


