
Yossi kichtenstein, Yossi alka, Aharm Aharon 

IBM Israel Science and Technology 
Haifa 31905, ISRAEL 

{laor, yossi, aharon}@haifasc3.vnet.ibm.com 

Abstract 

A few simple Expert-System techniques have 
been invaluable in developing a new test pro- 
gram generator for design verification of hard- 
ware processors. The new generator uses a for- 
mal declarative model of the processor architec- 
ture; it allows generation of test programs for a 
variety of processors without duplication of ef- 
fort. A heuristic knowledge base representing 
knowledge about testing techniques allows gener- 
ation of incisive tests. This knowledge base cap- 

tures information that until now has been kept by 
experts and has not been formally documented. 
Furthermore, the complexity, changeability and 
non-visibility of architectural details and testing 

Several architectures have been modelled by the 
system. They include a CISC processor, a float- 
ing point unit of an S/390 computer, a vector 
floating point unit, and four implementations of 
a PowerPC-like architecture. The j&-St silicon re- 
alizations of two of the designs have already been 
shown to comply with the architectural specifica- 
tion. Other designs are still under testing. There 
are also first indications that using the new tech- 
nology reduces verification period and decreases 
time to market: The verification of a high-end 
RISC processor required six calendar months, in 
contrast to fifteen months needed for verifying a 

simpler processor 
technology. 

using a previous test generation 

Introductisn 

The goal of processor verification is to ensure equiva- 
lence of a processor and its architectural specification. 
This goal can be achieved either by a formal proof 
or by exhaustive simulation. However, state of the 
art formal techniques and the complexity of processors 
render the formal approach incomplete for large indus- 
trial applications. Moreover exhaustive simulation is 

impossible as the test space is enormous. In practice, 
design verification is carried out by simulating a rel- 
atively small subset of selected test programs. These 
are run through the design simulation model, and the 
results are compared with the output predicted by the 
architecture simulation model. 

Systems that generate tests for processor verification 
(Aharon et ad. 1991), (Chandra & Iyengar 1992) typi- 
cally sustain a high degree of complexity and change- 
ability. The complexity of processor architectures - 
hundreds of instructions, dozens of functional units 
(Struble 1984),(0ehler & Groves 1990) - and their in- 
formal description are reflected on the generation sys- 
tem. Furthermore, design verification gets under way 
when the architecture is still evolving and a typical test 
generation system undergoes frequent changes. The 
architecture and testing knowledge are modelled pro- 
cedurally in the generation system and their visibility 
is low. This worsens the effects of the complexity and 
changeability. 

A new approach to test generation for design verifi- 
cation is proposed in this paper. It is termed Model- 
Based Test-Generation as its heart is a formal model 
of the architecture. The complexity, changeability and 
invisibility are tackled by separating logic from con- 
trol, or more specifically, separating the the architec- 
tural model from the architecture-independent genera- 
tion process. The complexity of the system is reduced 
by this separation; the architecture is more visible in 
the formal declarative model; and likewise, the change- 
ability problem is eased considerably by the new mod- 
elling approach. 

The Model-Based Test-Generation approach allows 
the incorporation of complex testing knowledge. A 
knowledge base is used in conjunction with the ar- 
chitectural model; it includes heuristics which repre- 
sent testing-engineers expertise. This knowledge base 
is employed to generate incisive or probing test cases 
and allows experts to add knowledge in a local and 
relatively simple way. 

The rest of this paper is organized as follows. Previ- 
ous techniques for automatic test generation for design 
verification are summarized in section Test Program 

Lichtenstein 83 

From: IAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved. 



Generation. We describe the problematic aspects of 
generation systems and the motivation for the Model- 
Based approach (section Motivation) and analyze man- 
ually written tests (section Knowledge Acquisition). 
The model and generation scheme are described in two 
stages, basics first (section Basic Modedling and Gen- 
eration) and the complete model then (section Further 
Modelling and Generation). An actual Model-Based 
Test-Generation system is described (section The Sys- 
tem), and the results of its usage concludes this paper 
(section Results). 

Test Program Generation 
Processor design verification is usually carried out by 
simulating a relatively small subset (as compared to 
the exhaustive set) of selected tests. These tests are 
run through the design simulation model, and the re- 
sults are compared with the output predicted by the 
architecture specification. A behavioral simulator rep- 
resents the architecture; it is normally written for soft- 
ware development purposes, prior to having the actual 
hardware. Following this approach, processor verifica- 
tion consists of two steps. The first is the selection or 
generation of tests. The second step is a comparison 
between results predicted by the two levels of simu- 
lation models. Both simulators are provided with the 
selected tests as stimuli, and the simulators final states 
are compared. 

Design verification by manually written tests is not 
cost effective. Typically, one to two thirds of a design 
effort are dedicated to verification (Pitter, Powers, & 
Schnabel 1982). Furthermore, many of these tests are 
simple, as test engineers find it difficult to define com- 
plex situations. The automation of test program gen- 
eration has increased productivity and in recent years 
has also provided better quality. Though being much 
more productive writing tests manually, early auto- 
matic test program generation was too limited (Tran, 
Forsberg, & Lee 1982), (Bellon 1982). The standard 
approach was to use pseudo random selection of in- 
structions and data from predefined (or static) tables. 
This yields a restricted space of test programs. 

Alternative approaches tie simulation and genera- 
tion to gain complex tests. The generation process is 
interleaved with the instruction execution, the inter- 
mediate processor state is used during the generation 
process, and decisions are made dynamically. The gen- 
eration employs pseudo random selection with bias to- 
wards boundary and exception conditions. A simple 
example is the generation of data for an ADD instruc- 
tion: these are biased to exercise frequently enough the 
condition sum-is-zero and the exception overflow. 
Biasing is similar to the partitioning of the input do- 
main suggested in (Weyuker & Ostrand 1980): the gen- 
eration is directed to select inputs (i.e., tests) from all 
partitions, in particular from small input classes. 

IBM’s Random Test Program Generation (RTPG) is 
the first example of a dynamic biased pseudo random 

generation for processor design verification (Aharon et 
al. 1991). More successful experience with similar sys- 
tems is reported by recent papers. For example, AVP- 
GEN (Chandra & Iyengar 1992) was used in verifying 
different IBM S/390 processors. Another example, is 
a static test generator augmented with dynamic model 
demons which was used in verifying DEC’s NVAX 
CPU (Anderson 1992). 

A typical generation system comprises an instruction 
level architectural simulator, an instruction generator 
which includes biasing capabilities, models and biased- 
generators for special functional units (e.g., storage 
control unit) and a user-interface software which al- 
lows users to direct the test generation. 

Motivation 
The development of random test program generators 
(as described in the previous section) is prone to 
the usual software development difficulties. Follow- 
ing Brooks (Brooks 1987), three (out of the four) es- 
sential difficulties may be identified in test generation 
projects: complexity, changeability, invisibility. 

Complexity: Computer architectures are complex. 
A typical architecture includes hundreds of instruc- 
tions, a few dozens of resources (main memory, general- 
purpose registers, special-purpose registers), and com- 
plex functional units (e.g., floating point, address 
translation , external interrupt mechanism). Architec- 
tures are defined informally (in English), and a typical 
description is a few hundred pages long. Furthermore, 
the procedures used to test architectures are another 
source of complexity. These are usually intricate proce- 
dural descriptions which involve resource initializations 
and instruction sequences. 

Changeability: Design verification starts when the 
architecture is still evolving. Changes in architecture 
specifications are quite frequent, usually described in- 
formally, and their consequences over the generation 
system are difficult to identify. Furthermore, many of 
the changes in the generators are due to the evolving 
testing knowledge accumulated through the validation 
process itself. New testing needs rise frequently as a 
consequence of previous testing results and uncovering 
of design errors. 

Invisibility: Both architecture and testing knowl- 
edge are modelled in generation systems. The architec- 
ture is modelled by both the simulation and generation 
blocks of the generator. Testing knowledge is embed- 
ded in the generation procedures of the systems. Mod- 
elling of both is procedural and tightly inter-connected. 
Its visibility is thus low. 

Our approach is to tackle the complexity, change- 
ability and invisibility by separating the knowledge 
from the control (following (Kowalski 1979)). The 
knowledge includes a formal description of the archi- 
tecture and a heuristic procedural representation of the 
testing knowledge; both reside on an external data- 
base. The control is the architecture-independent gen- 

a4 IAAI-94 



eration process; it may be viewed as an interpreter of 
the architectural model. The complexity problem is 
thus lessened by the strong separation between data- 
base and control. Furthermore, keeping the architec- 
tural simulator separate from the generator removes a 
major source of system’s complexity. The invisibility 
is decreased by the formal and declarative modelling of 
the architecture. Confining most changes to the data- 
base considerably alleviates the changeability problem. 

The fact that the architecture is represented only in 
the external data-base gives the proposed approach its 
name - model-based test-generation. To the best of our 
knowledge, this is the first system to use model-based 
techniques for design verification. Following model- 
based approaches in other domains (in particular in 
diagnosis, (Davis 1984), (Reiter 1987) and (De Kleer 
& Williams 1987)), t wo differences should be empha- 
sized: our model describes the architecture but does 
not include the structure of the implementation; we 
have neither identified nor used first principles of the 
generation domain. 

The external data-base contains also a heuristic 
knowledge base representing testing knowledge. It 
opens the generation system for users accumulative ex- 
perience, and enables the tool to follow the progress of 
the testing process. Furthermore, it allows migration 
of testing knowledge from one architecture and design 
to another. 

Knowledge Acquisition 
Hand written test programs have been analyzed as a 
basis for the design of our system. Experienced test 
engineers were asked to summarize hundreds of test 
programs. They provided us with descriptions of high 
level verification goals, detailed verification tasks and 
a dozen or so groups of test programs realizing these 
verification tasks. The detailed analysis of the data 
can be found in (Lichtenstein, Malka, & Aharon 1993); 
here, only some observations from that analysis are 
given. 

Verification tasks are described using terms from two 
domains. The first, the operation domain, is that of 
operands, instructions and sequences of instructions. 
The second, hardware domain, is the set of hardware 
facilities which include resources (e.g., register sets, 
memory) and functional units (e.g., address transla- 
tion, cache, pipeline). Some tasks specify instances 
in the operation domain; others associate between ele- 
ments of the operation domain and resources or events 
related to functional units. 

The verification tasks described above indicate that 
it is necessary to model resources and instructions. In 
addition, verification tasks use terms as the address of 
the operand and terms related to different aspects the 
computation carried out by the instruction. Therefore, 
an instruction should be modelled semantically rather 
than syntactically. This is a major deviation from pre- 
vious generation systems that emphasized the syntax 

of instructions. 
The tasks also unveil important attributes of the op- 

eration domain. In particular, length, address and data 
are essential for operands; exceptions, condition codes 
and special results are pertinent to instructions. Also, 
the notion of a data-type of the data values an operand 
can take is implied. Furthermore, some aspects of the 
verification tasks are complex and procedural; we con- 
cluded that this would be modeled in a procedural and 
open knowledge base. 

Finally, test programs can be classified by the in- 
terdependencies embedded in them. These dependen- 
cies can be ordered in increasing complexity as follows: 
within-operand, inter-operand and inter-instruction. 
The latter can in turn be ordered as short and long 
sequences. 

ask Modelling and Generation 

Test programs are sequences of instruction instances 
which use the architecture resources. This section 
describes by example the model of instructions and 
explains the basic generation scheme. The next sec- 
tion completes the modelling details and brings the 
full generation procedure. The full modelling scheme 
and its relation to processor modelling and compilation 
techniques appear in (Lichtenstein, Malka, & Aharon 
1993). Appendix A gives somewhat more formal de- 
scription of the syntax and semantics of the instruction 
model. 

Memory and register resources are described by 
an ISIS (Barbacci 1982) memory declaration; it 
includes the memory name, the size of memory 
cells, and the range of addresses. For example, a 
main memory may be 232 addressable bytes: Main- 
Memory [0x00000000:OxFFFFFFFF] (0:7). Word regis- 
ters, as a second example, may be an array of sixteen 
four-bytes storage units: Word-Register[O:15](0:31). 

Instructions are modeled as trees at the semantic 
level of the processor architecture. An instruction is 
described by a tree with a format and a semantic pro- 
cedure at the root, operands and sub-operands as in- 
ternal nodes and length, address and data expressions 
as leaves. The expressions use the instruction’s format 
as alphabet and represent the static relations between 
operands. These relations do not change; they are the 
same before and after the execution of an instruction. 
Thus, they are central to the automatic generation of 
tests and are modelled declaratively. Address expres- 
sions denote immediate fields, registers, and memory 
storage in various addressing modes. Length expres- 
sions denote the size of storage used by the operand. 
Data expressions are just literals denoting data-types. 
Declarative modelling of the full semantics would have 
made automatic generation too complex to be practi- 
cal. The approach employed here gives enough power 
to generate useful and revealing test programs whilst 
keeping the complexity of the generator and the model 
reasonable. Moreover, the time needed for generation 

Lichtenstein 85 



is kept within acceptable limits. 

Example: An Add Word Instruction Tree 

Add Word is one of the simplest instructions in a typi- 
cal CISC architecture. Informally, the meaning of this 
instruction is to add the second operand to the first 
one and to place the sum at the first operand’s loca- 
tion The instruction tree is depicted by figure 1 and by 
the subsequent list. The resources assumed are a main 
memory, base-registers and word-registers. 

Figure 1: Add-Word 

Instruction: Semantic procedure: Add-Word0 
Format: AW-OPCODE Wl, D2, B2 

First operand (represents the register used both as 
a source and target): 
Sub-operand: 

L: 4; 
A: register(W1); 
D: Signed-Binary. 

Second operand 
base register and 
operand): 

(represents the memory storage, 
displacement comprising the source 

Sub-operand: 

?: zbntents(register(B2))+value(D2); 
D: Signed-Binary. 

Sub-operand: 

k: ?A-field(D2). 
D: Displacement-Data-Type. 

Sub-operand: 

i: fkgister(BZ)* 
D: Address-Dais-Type. 

To further illustrate the inter-operand relationships 
and the complexity of instructions, a relatively com- 
plex CISC instruction is given in appendix B (Move 
Character Long). 

Generation 

An instruction tree describes a set of instruction- 
instances. The length, address and data expressions of 
the model are replaced by length, address, and data 
instances to form an instruction instance. This re- 
placement must be consistent with the relations de- 
scribed by the expressions. Namely, if fields and re- 
sources are shared by several sub-operands, the values 
selected for them must be identical. The following sec- 
tion describes consistent instances and the process of 
generating them from instruction trees. 

The generation scheme traverses the instruction tree 
in a depth first order. At the root and internal nodes, 
no action is taken. At the leaves, length, address and 
data instances are either already set by previous se- 
lections or are randomly selected from the semantics 
of the corresponding expressions. This scheme ensures 
consistency of the generated instruction instances. At 
this level of detail, the generation scheme is almost 
identical to a Prolog interpretation of the instruction 
tree. 

Example: An Add Word Instruction 
Instance 

The instruction tree (given in sectionEzampde: An Add 
Word Instruction Tree) is traversed in depth first order; 
the node labels of figure 1 denote this generation order. 
An instance of this Add Word instruction is depicted by 
figure 2. 

4 7 4 1 2 - 0100 

5F93A16B 15EA917c 

000010008100 000010008000 

Figure 2: Add-Word Instance 

This instruction instance sets both the syntax and 
the semantic entities of the Add Word instruction. The 
syntax is a format instance (AW 7, 0100, 9). The se- 
mantic domain includes the contents of word register 
number 7 (SF93Ai6B), the contents of base register 
number 9, (000010008000), and the contents of the 
main memory word 000010008100 (lSEAQl7C). 

86 IAAI-94 



rther odelling and Generation 

The declarative architectural model lacks the ability 
to describe complex aspects of the architecture and to 
incorporate testing knowledge. Furthermore, the basic 
generation scheme does not clarify how consistency is 
kept in selecting length, address and data instances. 
The modelling of the heuristic procedural knowledge 
base, its relation to instruction trees and the full gen- 
eration details are described below. 

Testing nowledge - Generation and 
Validation Functions 

Generation and validation functions are used as ba- 
sic blocks of the generation scheme. These func- 
tions implement a generate-and-test strategy alongside 
the traversal of instruction trees. The testing knowl- 
edge model is procedural rather than declarative. We 
believe that the complexity and diversity of testing 
knowledge is such that declarative modelling is diffi- 
cult if not impossible. The classes and examples of 
testing knowledge given below are simplified for ease 
of exposition. 

Generation functions are used by the generation 
scheme, while traversing an instruction tree. When 
a node is traversed all the generation functions associ- 
ated with it are invoked. The outputs of these func- 
tions are used to generate the instances of the current 
sub-tree. Generation functions serve various purposes: 

Modelling Condition Codes (inter-operand verifica- 
tion tasks): 
An instruction execution may result in the setting of 
condition code bits. This effect is part of the instruc- 
tion’s specification and is modelled by the semantic 
procedure. Moreover, the condition codes partition 
the input domain of the instruction. As it is a com- 
mon testing knowledge to use this input partitioning, 
a generation function may bias the data of operands 
to exercise all condition codes. Program Exceptions 
are modeled in the same manner. 

Modelling Program Exceptions (inter-operand): 
Program exceptions are exceptional conditions 
raised by instruction execution. They are modelled 
by the semantic procedure and may be viewed as 
input partitioning. 

Modelling Procedural Aspects of Resources (inter- 
instruction): 
The modelling of resources as registers and memory 
ranges is too simplistic for an actual architecture. In 
particular address translation and cache mechanisms 
are common in computer architectures. Generation 
functions are used to incorporate inputs which test 
these mechanisms into test programs. 

Data Type Special Values (within operand): 
The domain of (typed) data instances may also be 
partitioned. Again, it is common to require that 
representatives of all data-type partitions be tested. 

0 Modelling Design Implementation: 
Various aspects of the hardware design are usually 
taken into consideration in the verification process. 
Although these aspects are not considered part of the 
architecture, their testing is considered essential. 

Validation functions are used by the generation 
scheme. After generating a sub-instance-tree, the val- 
idation functions associated with the corresponding 
sub-instruction-tree are invoked. If any of them returns 
a REJECT answer, the generation results of the sub- 
tree are retracted and the sub-tree is traversed again. 
Validation functions serve different purposes: 1) Im- 
posing restrictions that are not modeled by the length, 
address and data expressions on instruction instances. 
2) Preventing instruction instances from causing pro- 
gram exceptions. 3) Validating typed data instances. 

Generation and validation functions are the build- 
ing blocks of the heuristic knowledge base and pro- 
vide for an open system (section Motivation). The 
fact that generation functions are allowed to produce 
only simple data-types (i.e., length-instance, address- 
instance, data-instance), enables a knowledge engineer 
to express his (or her) testing knowledge in a natu- 
ral and local manner. Yet, the ability to generate 
sets of such instances and to associate functions with 
instructions, operands and sub-operands gives these 
functions the desired expressiveness. Had generation 
functions allowed to create full instruction-instances, 
they would have been too complex to be written by 
users. Their simplicity allows openness and make it 
possible to model the evolving testing knowledge. 

Example: Add Word Generation Functions 

The Add Word instruction tree is augmented with gen- 
eration functions. This should illustrate the various 
objectives which may be achieved by generation func- 
tions; for example: 

GenarteSumZeroForAw 

CheckHalfWordAdders 

1 GenerateHith4iss 

GencrateUnsignedBinExtremes 

Figure 3: Generation Functions for Add-Word 

Modelling Condition Codes: 
The execution of ADD WORD sets the condition 
code to SUM IS ZERO, SUM IS LESS THAN ZERO or 

Lichtenstein 87 



SUM IS GREATER THAN ZERO. The function GEN- 
ERATE SUM ZERO FOR AW is associated with the 
root of the instruction tree. It generates two (as ran- 
dom as possible) data-instances for the appropriate 
sub-operands, such that their sum is zero. 

Modelling Program Exceptions: 
ADD WORD may cause an EFFECTIVE ADDRESS 
OVERFLOW exception; this happens when the con- 
tents of the base register points to one memory seg- 
ment, while the address formed by the addition of 
that register and the displacement points to a dif- 
ferent segment. A generation function GENERATE 
EFFECTIVE ADDRESS OVERFLOW is associated with 
the second operand. It generates two data-instances 
for the appropriate sub-operands which cause an EF- 
FECTIVE ADDRESS OVERFLOW. 

Modelling Procedural Aspects of Resources: 
An address-instance may either be resident in the 
cache (HIT) or not (MISS). Likewise, the address and 
length instances of a sub-operand instance may ren- 
der its least-significant byte as either HIT or MISS. 
The function GENERATE HIT MISS includes knowl- 
edge about the cache mechanism and is associated 
with the memory address of the second operand. It 
generates address and length instances which ran- 
domly exercise one of the hit/miss combinations. 

Data Type Special Values: 
The function GENERATE UNSIGNED BINARY Ex- 
TREMES is associated with the two unsigned-binary 
data leaves. It generates data instances, which are 
selected randomly from the values OXFFFFFFFF, 
0~00000000 and near values . 

Modelling Design Information: 
A generation function associated with the root, may 
test the carry-look-ahead mechanism (Ward & Hal- 
stead 1990). It produces data instances for the un- 
signed binary leaves that result in different carry 
patterns on the look-ahead boundaries. For ex- 
ample, in the case of two half-word adders, the 
data values OOOOFFFF and 00000001 exercise the 
carry passed between the two adders. The function 
CHECK HALF- WORD ADDERS represents knowledge 
about the implementation of the Arithmetic and 
Logic Unit. 

Generation 

Test generation is divided into two procedures: 
GENERATE-TEST (figure 4) and GENERATE (figure 5). 
The former uses a dynamic generation process (see sec- 
tion Test Program Generation), and the latter is an 
elaboration of a depth-first traversal of an instruction- 
tree with backtracking. 

A resource manager exists in the background of the 
generation process. It, manages the processor’s state 
which is essential for the dynamic GENERATE-TEST 
algorithm. It is also essential in GENERATE-TEST for 

Initialize the minimal processor state 
WHILE Number-of-instructions < N 

Select au instruction 
Denote its model by Instruction-Tree 
GEN : 
Instance = Generate(Instruction-Tree,Empty) 
Simulate Instance by its Semantic-Procedure 
IF Instance is executable 

THEN 
Write it to the test file 
Increment number-of-instructions 

ELSE 
Retract Instance 
Restore the processor’s previous state 

IF retry-limit not exceeded 
THEN go-to GEN 
ELSE Abort 

return Success 

Figure 4: Generate-Test(N) 

Invoke Node ' s generat ion functions 
Add their outputs to Kept-Outputs 

IF Node is internal 
THEN 
FOR each of Node’s immediate descendants 

Generate(Descendant, Kept-Outputs) 
IF Reject is returned 

THEN 
Restore Kept-Outputs 
IF retry limit not exceeded 

THEN 
GeneratecDescendaut, Kept-Outputs) 

ELSE Return Reject 
ELSE return Accept 

ELSE (Node is a leaf) 
Select one of Node’s Kept-Outputs 
IF there is no such output 

THEN 
Select randomly au instance from 

the Node’s expression semantics 
IF the instance does not 

satisfy this expression 
THEN return Reject 
ELSE return Accept 

Invoke Node ’ s validat ion functions 
IF any of them returns Reject 

THEN Return Reject 
ELSE Return Accept 

Figure 5: Generate(Node, Kept-Outputs) 

88 IAAI-94 



resolving address expressions. Generation and valida- 
tion functions query the resource manager about the 
allocation and contents of resources. This information 
is used to select resources and validate the instruction 
tree expressions. 

The System 
A Model-Based Test-Generator has been developed fol- 
lowing the techniques described in this paper. As de- 
scribed in figure 6, the system comprises an architec- 
tural model, simulator, architecture independent gen- 
erator and user-interface. The generator and user- 
interface have been implemented in C, each snanning 

1 

about 30,000 lines of code. A detailed description 
the system can be found in (Lichtenstein, Malka, 
Aharon 1993). 

. . . . . . . . . . . . . . * . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t . . . . . . . . . . . . . . . . . . . ... 

Test Programs 

Figure 6: System components and interrelations 

The architectural model contains a specification 

of 
& 

of 
instructions, resources and data types as defined in ap- 
pendix A. The heuristic knowledge base includes gener- 
ation and validation functions implemented in C (sec- 
tion Further Mode/ding and Generation). Both types 
of data are stored in a frames data-base where classes 
for instructions, operands, fields, resources, data types 
and functions are defined. A skeleton of the class hier- 
archy is given in figure 7. 

The population of the data-base is carried out by 
a knowledge engineer familiar with the specific archi- 
tecture. The knowledge engineer, uses the informal 
architecture books (written in English) as a source for 
the architecture model. The testing knowledge is ei- 
ther written by the knowledge engineer or by testing 
experts who are familiar with the modelling scheme. 

A Motif based user interface offers extensive con- 
trol over the generation process. Apart from the abil- 
ity to determine the number of instructions in each 
test and to initialize resources, the user can direct the 
generation at three levels: Global, Local and Specific. 
These levels are characterized by the scope of the con- 
trol they offer. Global selections pertain to the genera- 
tion process as a whole; local selections apply to every 
instance of an instruction whenever it is generated; fi- 

- 
INSl-RUCTION_DOMAINO 

INSTRUCTION(apco&fat,operandscond_c~s,e~eptio~~s~tio~, 
generation_functions) 

OPERAND(data_type~dss~eng~~so~,~g~en~ub_~r~~. 

generation-functions) 

FJlEL,D(mnemonics,data_type) 

DATA_DOMAINOength.~glignmentbounds.values,v~~tion_~~~o~, 

t 

generation_functions) 
ADDRESS0 

SCALAR0 

- RESOURCEl_DOMAJN(size) 

t 

REGISTER@ame.type,array_bounds,bit_bounds,synonyms) 

MBMORY(address_ranges) 

- PUNCTIONS_DOMGIN@rotatype,source_code) 

t 

GENJ3RATION(input_parameters,outputgaramet) 

VALIDATION0 

Figure 7: A class hierarchy skeleton 

nally, at the specific level selections bear on particular 
instances of generated instructions. The generator in- 
terprets many user directives as selection of generation 
functions and values for their input parameters. In this 
manner, the user controls the generation functions in- 
voked in the GENERATE procedure of section Further 
Modedling and Generation. Figure 8 is an example for 
the global selections window. 

Great importance is attributed to the efficiency of 
automatic test generation. Therefore, modifications 
had to be applied to the instruction generator in or- 
der to make it efficient. Constraint solvers have been 
introduced to avoid superfluous backtracking, due to 
violation of relations between values of leaves in the 
instruction tree (as specified by length and address ex- 
pressions). A solver is activated at appropriate inter- 
nal nodes of the instruction tree and simultaneously 
assigns values to the leaves such that the relations are 
not violated. 

Results 

IBM has invested several million dollars in develop- 
ing the Model-Based Test-Generation system. Most 
of the investment went into testing-knowledge acquisi- 
tion and development; the rest was put in developing 
the test generator itself. There are first indications 
that using the new technology reduces verification pe- 
riod and decreases time to market. In particular, the 
verification of a high-end RISC processor required six 
calendar months, in contrast to fifteen months needed 
for verifying a simpler processor using a previous test 
generation technology (Aharon et al. 1991). 

The test generation system has been used to model 

Lichtenstein 89 



Figure 8: Global Selections Window 

several processor architectures and verify their imple- 
mentations. Table 1 summarizes current verification 
experience. 

The Processor column indicates architecture type: 
PowerPCis a state of the a.rt architecture of a Reduced 
Instruction Set Computer (RISC). The PowerPC pro- 
cessors implement, a super-set of this architecture and 
the plus signs indicate the complexity of the design. 
Two of the processors are Float’ing Point Units (FPU); 
CISC st,ands for Complex Instruction Set Computer. 

The Defects and Stage columns indicate the actual 
results. The number of design defects is a very rough 
measure of the complexity of the design and its verifi- 
cation. The ultimate measure of success is the number 
of silicon realizations needed to achieve a fully func- 
tional processor. For the two verification processes 
which have been already completed, the first silicon 
realizations are fully functional. For complex proces- 
sors, t,his was a practical impossibility using manual 
test production. It is considered a major achievement 

when automatic test generation is used. 
The architectures modelled differ by their instruc- 

tions repertoire and structure, inter-operand relations, 
resources and functional units. Each architecture con- 
sist of hundreds of instructions, is specified in a multi- 
volume architecture-book, and requires costly and in- 
tricate verification scheme. The most complex archi- 
tecture modelled to date includes about 650 instruc- 
tions, over 120,000 lines of C procedures representing 
testing knowledge, and resides in an 8 megabyte data- 
base. 

The diversity of the architectures modelled has ne- 
cessitated changes in the modelling described by this 
paper. For example: the length and address expression 
languages have been expanded; a class containing se- 
quences of instructions has been introduced to express 
pre and post-conditions for the generation of certain 
instruction instances; validation functions can be ac- 
tivated either before or after simulating the generated 
instruction instance. All in all, it seems that the ba- 

90 IAAI-94 



Table 1: Results 

I System I Processor I Defects I Stage I 
1 AS 400 PowerPC+ 
2 AS/400 PowerPC++ 
3 AS 400 PowerPC+++ 
4 S/6000 PowerPC+++ 

450 First silicon fully functional 
480 First silicon being tested 
600 First silicon fully functional 

- Verification in process 
5 *- 

I 
Vector FPU - Preliminary verification 

6 s/390 FPU - Modelling only 
7 AS/400 CISC - Modelline: onlv 

I 1 , I I I v Y I 

sic modelling technique has coped well with the differ- liminary results indicate that it reduces the verification 
ent architectures and testing knowledge. In particular, costs. Figure 9 provides the defect distributions for two 
the generate and test technique embodied by the gen- designs during the processor level verification phase. 
eration and validation functions has been very useful One verification process used a previous test genera- 
in handling subtle architectural features while keeping tion technology (Processor-A) and the other utilized 
the explicit modelling not too complex. the new generator (Processor-B). 

Complex test programs corresponding to the verifi- 
cation tasks described in section Knowledge Acquisition 
have been generated for the architectures modelled. 
Verification tasks at the instruction and operand levels 
(e.g., representative data instances, different operand 
lengths, all program exceptions) are fulfilled through 
generation functions. Register and memory alloca- 
tion policies produce complex dependencies between 
instructions. Using these functions in conjunction 
with the allocation policies to generate long instruc- 
tion streams, accomplishes inter-instruction verifica- 
tion tasks. 

The testing knowledge base is used to specify test- 
ing expertise which was previously informal and diffi- 
cult to reuse. For example, during the verification of 
the first PowerPC design, a suite of testing knowledge 
was defined. It included about 900 generation func- 
tions and less than 100 validation functions, totalling 
120,000 lines of C code. All subsequent PowerPC pro- 
cessors (of table 1) have been verified using this knowl- 
edge. Another example is the testing expertise for the 
ANSI/IEEE standard for binary floating point arith- 
metic (ANSI 1985). It has been accumulated dur- 
ing the verification of three different implementations 
spanning five years. This expertise has been incorpo- 
rated into the knowledge base and is used to generate 
tests for current implementations of the same standard. 
In both examples, the data-base serves as a knowledge 
repository capturing the expertise of the organization 
making it formal and reusable. 

The number of design defects is plotted against 
the number of billions of simulation cycles which cor- 
respond to the number and size of generated tests. 
Processor-B is a high-end RISC processor (number 3 in 
table 1); Processor-A is one of the RISC System/6000 
earlier processors. The verification of Processor-A re- 
quired five times as much simulation cycles as needed 
for Processor-B. The simulation period has been re- 
duced from fifteen months (Processor-A) to six months 
(Processor-B). These factors translate into cost: sim- 
ulation of a huge number of cycles requires hundreds 
of computers running continuously; tieing design and 
testing teams for long periods is expensive. 

The above numbers and graph may indicate that 
the possibility to employ testing knowledge gives tests 
of better quality; fewer simulation cycles are then 
needed to uncover the design defects. The verification 
of Processor-A used a close generation system, mod- 
elling only some testing knowledge. It relied heavily 
on random test generation and giga-cycles of simula- 
tion. In contrast, the possibility to direct the gen- 
eration by user-defined testing knowledge emphasized 
quality throughout the verification of Processor-B. 

To conclude, there are first indications that the 
new test generation technology may be used to obtain 
higher quality and reduce time to market. 

A major weakness of the new technology is its per- 
formance. A previous generator produces about 50 in- 
structions per second on an S/6000 workstation. The 
Model-Based test generator produces about 10 instruc- 
tions per second in similar conditions. We feel that 
this slow-down factor is compensated for by the better 
quality of the tests as discussed below. 

We wish to thank the Rochester and Haifa teams par- 
ticipating in the model-based test generation project. 
In particular we wish to thank Andy Schram for su- 
pervising the cooperation, Dave Goodman, Charlotte 
Metzger, Bill Oswald, Moshe Molcho, Gil Shurek and 
Moshe Levinger . 

An analysis of the return on investment of the new 
technology is yet to be performed. However, some pre- 

Lichtenstein 91 



Design defects 
300 

250 

6 8 10 12 14 
Billions of simulation cycles 

Figure 9: Defect Distribution 

Appendix A: Instruction Trees 

A set of unique literals (or identifiers) is assumed; lit- 
erals are used as resource, field and data-type names, 
as well as to denote field values. 

Definitions: A field is a triplet ( Name, Values, Regis- 

ter ), where Name is a literal (referred to as the field’s 
name), Values is a set of literals, and Register is either 
the reserved literal N one or a register name. 
A format is a finite set of field names. 

Using formats as alphabets, two languages repre- 
senting the possible addresses and lengths of operands 
are defined as follows: 

Definitions: An address expression over a format F 

is described syntactically by the following grammar: 
(1) address-expression := in-field(field-namel) 

(2) value(field-namel) 

(3) register(field-name2) 

(4) specific-register(register-name,integer) 

(5) contents( address-expression) 

(6) address-expression + address-expression 

Restrictions: 

(1) field-namel, and field-name2 are in F; 

(2) for ( field-namel, Values, Register ) Register is None; 

(3) for ( field-name2, Values, Register ) Register is not None. 

(4) register-name as is a resource name. 

The semantic domain of address expressions consists 
of memory addresses. Rule (1) denotes data which re- 
sides directly in the corresponding field (also known as 
an immediate field). Rules (2) and (3) denotes the 
values of the corresponding fields: rule (2) denotes 

the field values which are interpreted as memory ad- 
dresses. Rule (3) denotes the field values which are 
interpreted as registers. Rule (4) denotes a specific 
register (e.g., word register number 9 is denoted by 
specific-register( Word-Register,S)) . Rule (5) denotes the con- 
tents of the address indicated by the (inner) address- 
expression. The semantics of rule (6) is the standard 
one. 

Definition: A length expression over a format F is 
described syntactically by the following grammar: 
(1) length-expression := integer 

(2) maximum(integer) 

(3) value(field-namel) 

(4) contents(address-expression) 

(5) length-expression + length-expression 

(6) length-expression * length-expression 

Such that: 

(1) field-name1 is in F; 

(2) for ( field-name1 , Values, Register ) Register is None; 

The semantic domain of length expressions consists 
of the positive integers. The meaning of rules (l), (5) 
and (6) is the standard one. Rule (2) denotes any 
length smaller or equal to the given integer. Rule (3) 
denotes the values of the corresponding field. Rule (4) 
denotes the contents of the addresses denoted by the 
address-expression. 

Definition: A data expression is a literal denoting 
a data-type. 

The semantic domain of data expressions is strings of 
data. A data-type describes such a set of data strings 

92 IAAI-94 



by their length (either fixed or variable under limits) 
and structure. 

Address, length and data expressions collectively 
model the basic semantic entity of our model, the sub- 
operand. Sub-operands are grouped into operands. 
Formats, semantic procedures and operands form the 
instruction model. 

Definition: A sub-operand over a format F is a 
triplet holding a length expression over F, an address 
expression over F and a data expression. 
An operand over format F is a finite set of sub-operands 
over F. 
A semantic procedure is a procedure which manipulates 
the architecture resources and represents the operation 
performed by the instruction. 
An instruction tree is triplet holding a format F, a se- 
mantic procedure, and a finite set of operands over F. 

The input to the generation process is an instruction 
tree and the output is a set of instruction instances: 

Definitions: A field instance of a field (Name, values, 
Register) is a literal V, such that v is in Values. 

A format instance of format (FIELDS, ,FIELD,), is 
(INST1, . . . . INST,), such that for all i, INST, is a field- 
instance of FIELD,. 

Definitions: An address instance of an Address Ex- 
pression AE is a resource address in the semantics of AE. 
A length instance of a Length Expression LE is an in- 
teger in the semantics of LE. 
A data instance of a Data Expression DE is data of the 
data-type denoted by DE. 

Definitions: A sub-operand instance of the sub- 
operand (LE,AE,DE) is a triplet (LI,AI,DI), such that LI 

is a Length Instance of LE, AI is an Address Instance 
of AE, and DI is a Data Instance of DE. 
An operand instance of the operand (SUBI, ,SUB,), is 
(INST1, . . . . INST,), such that for all ), INST, is a consis- 
tent sub-operand-instance of SUB,. 
An instruction instance of the instruction tree (FOR- 
MAT, SEMANTICS, OPERANDS) iS a pair (FORMAT-INST, 

OPERAND-INST~) such that FORMAT-INST is an instance 
of FORMAT and all OPERAND-INST~ are consistent in- 
ShnCeS Of OPERANDS. 

Appendix : A Move Character Long 
Instruction Tree 

The effect of this instruction is to place the contents of 
the second operand in the storage location of the first 
one. If the second operand is shorter than the first, the 
data of the third operand will be appended to fill in the 
storage of the first operand. The addresses and lengths 
of the first and second operands are given in storage 
locations. These indirection-structures are pointed to 
by base registers and displacement fields. The instruc- 
tion operation may be interrupted; if so, the address 
and length representing the partial operation will be 
recorded in the indirection structures. 
The resources assumed are a main memory, and base- 
registers. 

Instruction: Semantic procedure: Move-Character- 

Long0 
Format: MVCL-OPCODE Dl,Bl,D2,B2,13. 

First operand: 
Sub-operand: 

L: contents(contents(register(Bl))+value(Dl)); 
A: contents(contents(register(Bl))+value(Dl)+2); 
D: Unsigned-Binary. 

Sub-operand: 

k: 8cbntents(register(Bl))+value(DI); 
D: MVCL-Indirection-Data-Type. 

Sub-operand: 

L ?n-field(D1); 
D: Displacement-Data-Type. 

Sub-operand: 
L: 6; 
A: register( B 1) 
D: Address-Data-Type. 

Second operand: similar to the first one, with B2 
and D2 

Third operand: 
Sub-operand: 

?: th-field(I3); 
D: Unsigned-Binary. 

Note that both length and address of the first , _ \ 
sub-operand are related to the contents (or data) of 
the second sub-operand. The address of the second 
sub-operand is related to the data of the remaining 
sub-operands. Move Character Long exemplifies a 
CISC instruction: its structure is relatively complex; 
some of its data obeys nonstandard data-types (e.g., 
MVCL-Indirection-Data-Type); its execution may be 
long and is interruptible. 

References 

Aharon, A.; Bar-David, A.; Dorfman, B.; Gofman, 
E.; Leibowitz, M.; and Schwatzburd, V. 1991. Veri- 
fication of the IBM Rise System/6000 by a dynamic 
biased pseudo-random test program generator. IBM 
Systems Journal 30(4). 

Anderson, W. 1992. Logical verification of the nvax 
cpu chip design. In International Conference on Com- 
puter Design (ICCD). 

ANSI. 1985. ANSI and IEEE standard for binary 
floating point arithmetic. 

Barbacci, M. R. 1982. An introduction to instruction- 
set processor specification. In Siewiorek, D. P.; Bell, 
C. G.; and Newell, A., eds., Computer Structures: 
Principles and Examples. McGraw-Hill. 

Bellon, C. 1982. Automatic generation of micropro- 
cessor test programs. In ACM/IEEE .29th Design Au- 
tomation Conference Proceedings. 

Lichtenstein 93 



Brooks, F. P. 1987. No silver bullet, essence and 
accidents of software engineering. IEEE Computer. 

Chandra, A., and Iyengar, V. 1992. Constraint solv- 
ing for test case generation - a technique of high level 
design verification. In IEEE International Conference 
on Computer Design (ICCD). 

Davis, R. 1984. Diagnostic reasoning based on struc- 
ture and behavior. Artificial Intelligence (24). 

De Kleer, J., and Williams, B. C. 1987. Diagnosing 
multiple faults. Artificial Intelligence (32). 

Kowalski, R. A. 1979. Logic For Problem Solving. 
North Holland. 

Lichtenstein, Y.; Malka, Y.; and Aharon, A. 1993. 
Model-based test generation for processor design ver- 
ification. Technical Report TR 88.337, IBM Israel. 

Oehler, R. R., and Groves, R. D. 1990. Ibm rise 
system/6000 processor architecture. IBM Journal of 
Research and Development. 

Pitter, M. S.; Powers, D. M.; and Schnabel, D. L. 
1982. Development of the 3081 complex. IBM Re- 
search and Development Journal. 

Reiter, R. 1987. A theory of diagnosis from first 
principles. Artificial Intelligence (32). 

Struble, G. 1984. Assembler Language Programming: 
The IBM System/370 Family. Addison-Wesley. 

Tran, A. S.; Forsberg, R. A.; and Lee, J. C. 1982. 
A vlsi design verification strategy. 
Research and Development. 

IBM Journal of 

Ward, S. A., and Halstead, R. H. J. 1990. Computa- 
tion Structures. MIT Press. 

Weyuker, E. J., and Ostrand, T. J. 1980. Theories 
of program testing and the application of revealing 
subdomains. IEEE Transactions on Software Engi- 
neering. 

94 IAAI-94 


