
CCTIS: An. Expert ansaetions recessing System

Terrame Swift Callwin C. enderssn ichard olberger
Computer Science Department Systems Development and Systems Development and

SUNY at seony Brook Andysis Analysis
&swiftQcs.sunysb.edu P.0. Box $49, PnrcelIviIle Va, 22313%

John UVhY
DHD Systems, Inc.

2222 GaUovTs Rd. Dunn Eoring, Ma. 22027

Abstract
CCTIS, the Cargo Container Targeting Information
System, was developed for the U.S, Customs Service
to help monitor and control goods imported by ship.
As an expert system, CCTIS has a combination of
features which make it of interest to the applied A.I.
community. First of all, CCTIS interacts with a large
database - but unlike most data-oriented expert sys-
tems CCTIS is used in a transactions-oriented envi-
ronment and needs the speed of such a system. Sec-
ondly, there exists no single cognitive model for the
domain of import control, and it is unlikely that such
a model can be developed in the near future. To
address this problem CCTIS includes the ability for
users to weigh and parameterise rules. And thirdly,
the information CCTIS uses is often derived from free
text of Bow quality tRat must be corrected and ana-
lyzed through natural language analysis techniques,
The system uses a logic-based approach to solving
these problems, defining explicit algorithms to ex-
tract data from text, and logical rules to analyze
transactions. OuE experience shows that this ap-
proacb can produce a robust system. CCTIS has
been used every business day for over a year in the
two largest ports in the country, and has aided in the
seizure of a number of illicit goods. Design is un-
derway to merge CCTIS with another Customs A.H.
system and to deploy the resulting system nationally,
processing every sea-based import into the U.S.’

ntrsduction
The principle means of importing goods into the
United States is through containerized cargo. Over
9 million entries were filed for cargo imported into
the country in 1993, through about 50 ports of en-
try. Accurate accounting of imports is important for
three reasons. Firstly, cargo - whether it, is cocaine
or mongooses - may be illegal to import. Secondly,
even shipments of legal material are subject to quotas
and duties: in fact Customs is the second largest gen-
erator of federal revenue after the I.R.S. Finally, from
a more general perspective, the number and kind of
imports is valuable as economic data: vague or incon-
sistent, information about imports lessens the quality

‘This paper reflects the opinions of the authors only,
and does not represent policy of the U.S. Customs Service.

dward Nehami
Systems Development and

Ana9ysis

of thart data. While the U,S. Customs Service has
over 1600 seaport inspectors, it obviously cannot in-
spect each cargo shipment. The purpose of CCTHS is
both to aid inspectors in prioritizing what shipments
to inspect) and to facilitate passage of low-risk im-
ports into the country. It should be mentioned that
CCTHS is not the only A.H. system developed for cus-
tams: current work on CCTIS includes integration
with these systems.

I?rom the point of view of Customs, an importation
is represented as a bundle of information, coming pri-
marily from two different sources. Each carrier that
transpores cargo to the country mu& submit a man-
ifest %o Customs. This manifest contains a collection
of bill8 o$ lading each of which:
o States the port of lading of the commodi$y

o Contains information about the shipper, coresignee
and no-&&r party for all cargo.

CB Textually describes the cargo, its destination,
weight, etc.
Provides a transcription of shipping labels on each
container O
The manifest is usually delivered to Customs before

the arrival of the voyage it describes, While it con-
Itains a few formatted fields, information in the man-
ifest is mostly free text. Meanwhile, Customs is also
getting information about the cargo from importers.
A filer, usually a customs broker or agent, files an en-
try release form stating the nature of Lhe cargo and
that the consignee is ready to receive it. The entry
covers most of the information in the manifest, but
is compiled by different sources for different purposes.
The data quality in entry forms is better than in man-
ifests, although information from free text fields is still
needed. When the importer pays any duties on the
cargo it can be released, and then he or she also files an
entry summary form which presumably corrects any
mistakes in the entry release form and serves as the fi-
nal, official document of import. In general, there is a
many-to-many relationship between bills and entries,
which, when matched together are called a shipment.

TQ sum up, the data about cargo comes to Cus-
toms from different sources, asynchronously, is often

swift 131

From: IAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

free text, and there is a lot of it. Clearly, while a
range of computational techniques are needed to wade
through this morass of data, A.I. is crucial to extract-
ing and interpreting the information, and in determin-
ing whether the sources are consistent.

In order to help inspectors survive in such an envi-
ronment, an expert system, CCTIS, which stands for
the Cargo Container Targeting Information System,
was developed for the US. Customs Service. CC-
TIS has a combination of features which make it of
interest to the applied A.I. community. First of all,
CCTIS interacts with the database of manifests and
entries in various ports. But given the requirement
that Customs expedite imports, CCTIS must fit into
a transactions-oriented environment. Secondly, CC-
TIS needs to apply rules over a domain, import con-
trol, in which there exists no single cognitive model,
and where it is unlikely that such a model can be
developed in the near future. To solve this problem
CCTIS includes the ability for users to weigh and pa-
rameterize rules. And thirdly, the information CC-
TIS uses is often derived from free text of low qual-
ity that must corrected and analyzed through natural
language techniques. Despite these challenges, CC-
TIS has been used every business day for over a year
in the two largest ports in the country, (where it pro-
cesses approximately 30% of sea-based imports), and
has aided in the seizure of a number of illicit goods.

The next sections present an overview of CCTIS,
and detail its use of A.I. techniques, particularly in
its natural language analysis and rule base, Later
sections describe the history of the system: its devel-
opment) deployment 9 and maintenance, paying partic-
ular attention to evaluating the A.I. techniques, and
indicating perceived strengths and weaknesses of the
underlying software: Prolog and Oracle. We conclude
with future plans for the project.

A User’s View of CCTIS

CCTIS is currently installed in Newark and Los An-
geles having processed about 1.5 million containers
in each port since its inception Both of these ports
process around 5-10,000 shipments a day, and each
have around 10 inspectors who use CCTIS for several
hours each day. It should be stressed that the present
deployment is being expanded to become available to
every sea port.

It should be noted that until very recently, inspec-
tors reviewed imports by flipping through paper man-
ifests, without the benefit of entry information” As a
first step in its deployment, inspectors used a cler-
ical prototype of CCTIS. The prototype had rudi-
mentary rules and standardization and contained only
bill information. Given their previous environment,
the users were glad to have the prototype, although
they quickly recognized its limitations. Just as impor-
tantly, the prototype became a vehicle for the users
to communicate their needs to the development team.

One of the most important points learned is that
users have different ways to think about a shipment.
This has implications for the structure of the rule set,
as discussed later but also for the user interface. Some
users start their session with a screen of manifests,
others with a screen of shipments. Accordingly, the
interface allows a user to filter and sort the set of
shipments he or she wishes to view in multiple ways.
For example, the user might filter out those ship-
ments which are most urgent to review - because they
haven’t been reviewed yet perhaps because they con-
tain perishable commodities. Alternately, they might
be reviewed on the basis of shipment weight, or be-
cause one of a set of rules fired for them. In any
case, when the user is done reviewing a shipment, it
is marked as reviewed in the data base, information
which is made available immediately to other users at
their next screen refresh,

Figure 1 presents a sanitized version of the screen
CCTIS uses for matching bills with entries, Charac-
teristics of the shipment, such as its vessel and voyage
number, and pertinent dates are written at the top of
the screen. Below this general information, bill infor-
mation is presented on the left, and entry information
on the right. The bottom of the screen contains a list
of rules which fired for the shipment.

Data presented to the user is hypertextual. Se-
lectable text is blue, non-selectable text is black. For
instance, clicking on a commodity presents a user with
a summary of the countries from which the commod-
ity has been recently imported, the value of the im-
ports, their total weight, and so on. This data is ob-
tained from profile tables maintained by the system
for each port, and which also contain information on
entities (shipper, notify, and consignee parties) and
their relationships. In all, each port has about 2 gi-
gabytes worth of profile information

CCTIS Architecture Overview
The architecture of CCTIS is best described through
a high-level data flow description Figure 2 shows a
high-level overview of CCTIS. Data can be conceptu-
alized as a stream of manifests and entries downloaded
from a central mainframe into ASCII files on the local
UNIX CCTIS server. (Represented in Figure 2 by the
topmost queue). The load organizer module of CC-
TIS polls for these files and, if it finds one, performs
three main tasks. First, it parses and analyzes any
free text information into an internal format. (This
will be discussed in more detail below). Next, be-
cause there is a many-to-many relation between bills
and entries and because they arrive asynchronously,
the load organizer searches a relational DBMS for the
any bills or entries which match the input. Finally,
certain components of the bills and entries are checked
against their profile information. The rule set might
use this information to determine that a shipment of
bananas from Finland was be suspicious. The full set
of standardized and collated data, along with relevant

132 IAAI-94

I’
rl

C
C

TI
S

~2
.2

Tr
an

sa
ct

io
n

De
ta

ils

(B
ills

&

En
tri

es
)

g ND

Re
vie

w
D

at
e:

01

/0
6/

94

N
W

K
W

t:
12

47

LA
LB

w

t:
83

1

Ex
it

Ve
ss

el
N

oy
ag

e:
H

YU
N

D
AI

AD

M
IR

AL
/l5

R

ev
ie

w
ed

by

:
C

C
TI

S2

Pm
ce

ss

D
at

e:

01
/1

2/
94

Tr
an

sa
ct

io
ns

B

ig
 #

:H
D

M
U

H
KH

A1
80

68
5

Fi
le

 D
t:

01
/0

5/
94

Ar

r
D

t:
01

/1
2/

94

PO
U

:
30

01

ctlt
:

2
of

58

R
ul

e
D

at
e:

01

/1
2/

94

Ta
rg

et

D
at

e:

01
/1

3/
94

En
try

#:

11

3/
06

61
03

01

Fi
le

 D
t:

01
/1

2/
94

&r

D

t:
01

/1
2/

94

PO
E:

 3
00

1

':F
IL

ER

11
3

:#
Bi

lls
:

1
En

try

Ty
pe

:0
1

AD
D

R
ES

S
LI

N
E

1
: Q

ty:

80
0

C
TN

S
AD

D
R

ES
S

LI
N

E
2

SE
AT

TL
E,

W

A,

98
15

8
i M

ad
e:

11

P

E
P

:
30

01

t P
ap

er

1 e
ss

D

at
e:

I : P

re
se

nt

D
at

e:

:
EN

TI
TY

14

06
2

8 I I
BN

:

AD
D

R
ES

S
LI

N
E

1
j I

TD
:

N
IT

:0

AD
D

R
ES

S
LI

N
E

2
i C

Te
rm

:
A

B
I

CD
ate

:
01

/1
2/

94

H
O

U
ST

O
N

,
TX

,
77

03
6

: S
Te

rm
:

A
B

I
SD

at
e:

01

/1
2/

94

Im
po

rte
r

ID
:

76
-0

33
10

01
00

:S

el

Ty
pe

:
1

:
EN

TI
TY

14

06
2

i H
BN

:

AD
D

R
ES

S
LI

N
E

1
I I S

BN
:

AD
D

R
ES

S
LI

N
E

2
iB

R
N

:
65

07
39

20

H
O

U
ST

O
N

,
TX

,
77

03
6

:L
G

ds
:

X1
17

V

al
:

12
00

00

U
lt

C
ns

g
ID

:
76

-0
33

10
01

00

iE
N

D
:

8
SU

R
:

M
an

ife
st

s
1

Su
m

m
ar

ie
s

1 1
Sp

ec
ific

!D

ps

Co
nt

ro
ls

Fi
lte

rs

1

so
rts

1

Re
vie

ws

1
Lis

ts

Ru
le

s
1

Da
ta

ba
se

s

TE
CS

IA
CS

1

1

TE
CS

lA
CS

2

1

Fo
rm

s
(&

j

D-
I-V

I

Ut
ilit

ie
s

1
Pr

in
t

Sc
re

en

Lo
ck

Sc

re
en

1

He
lp

j

S:
 E

N
TI

TY

23
65

9

SH
IP

PE
R

 A
D

D
R

 L
IN

E
1

SH
IP

PE
R

 A
D

D
R

 L
IN

E
2

SH
IP

PE
R

 A
D

D
R

 L
IN

E
3

SH
IP

PE
R

 A
D

D
R

 L
IN

E
4

C
:

EN
TI

TY

85
38

C
O

N
SI

G
 A

D
D

R
 L

IN
E

1

C
O

N
SI

G
 A

D
D

R
 L

IN
E

2

C
O

N
SI

G
 A

D
D

R
 L

IN
E

3
C

O
N

SI
G

 A
D

D
R

 L
IN

E
4

N
:

EN
TI

TY

85
38

N
O

TI
FY

AD

D
R

 L
IN

E
1

N
O

TI
FY

AD

D
R

 L
IN

E
2

N
O

TI
FY

AD

D
R

 L
IN

E
3

N
O

TI
FY

AD

D
R

 L
IN

E
4

_-
-_

__

__
__

__
__

Q
-n

dy

G
LA

R
E

M
O

N
IT

O
R

Su

m
m

:

: #
En

trie
s:

1
Kt

rs:

1
: Q

ty:

80
0

C
T

~F
PR

:
:

:P
O

L:

H
K:

H
O

N
G

 K
O

N
G

:L
D

P:

H
K:

H
O

N
G

KO

N
G

IIB

T:

IB
N

:

:IB
c:

/

: I
BU

:
;IB

F:

:
IIB

Va

lu
e:

j M

IB
:

H
BN

:
I 1 N

IS
:

N
ZS

:

iS
C

B
:

1 W
eig

ht
: 9

60
0

KG

I ’ V
olu

me
:

-’ -
 _

_ _
 - -

 -
- -

 _
 - -

 -
- -

 -
_ _

 _ _
 _

C
tr:

H

D
M

U
40

87
56

7
S

ea
l

1:

H
L-

R
-8

33
13

S

ea
l?

M
ar

ks

an
d

N
um

be
rs

:

BI
C

:
1

D
&H

(

IN

TR
I)

EM
-1

43
9G

KE

N
T,

W

A
C

/N
O

.
l-8

00

M
A

D
E

 IN

C
H

IN
A

H
SU

SA
:

84
71

92
34

85

C
O

:C
N

:H
K

M
:E

N
TI

TY

73
94

7
1

D
IS

P
LA

Y

U
N

IT
S,

O

TH
 T

H
AN

 W
/C

R
T

r

I
I

1
1

Fm

di
ng

s:

11

N
W

K
45

0
LA

LB

3
R

U
LE

 N
um

be
r

30
02

N

W
K

30
0

LA
LB

15

R

U
LE

 N
um

be
r

30
01

N
W

K
30

0
LA

LB

8
R

U
LE

 N
um

be
r

31
02

N

W
K

50

LA
LB

8

R
U

LE
 N

um
be

r
35

14

El
W

K
50

LA

LB

2
R

U
LE

 N
um

be
r

33
12

N
W

K
45

LA

LB

2
R

U
LE

 N
um

be
r

20
18

N
W

K
20

LA

LB

10

R
U

LE
 N

um
be

r
33

31

I
M

ar
k

Re
vie

we
d1

Pr

in
t

I
oo

ne

]
1

1
Ne

xt
1

Pr
ev

iou
s

I

information from the profile tables is written out to
a transaction file. This file will be read by a rule
manager which executes the expert system rule base
against the shipment 0

The rule managers apply portions of a set of about
300 expert system rules to each shipment. The appli-
cability of each of the rules depends on attributes of
the shipment, including whether previous rules have
fired, Rules vary from simple checks of flags in the
shipment files, to data-driven database searches, to
complex checks of the consistency of the information
in a shipment. Because of the lack of formalization
of the domain of application, rules can be both pa-
rameterized and weighted. The parameterization is
through system parameters and match criteria both of
which can be thought of as user-defined logical pred-
icates. The weight of a rule which can also be user-
defined, The sum of the weights of all rules which fire
for a shipment (the weight of a shipment) is used to
help decide which shipments to investigate. A more
detailed explanation and analysis of the CCTIS ap-
proach to rules is presented in a later section.

The rule firings for a shipment are written into the
DBMS When a user wishes to view shipments, he or
she goes through the user interface, which accesses
the database of shipments and rule firings built in the
previous stages.

We have alluded to our actual implementation in
our data flow description, and we complete the high-
level description of our implementation here. CCTIS
has been implemented and deployed on a SUN 6‘70.
The sets of download files can be thought of as its
first queue, to be read by one of a group of load orga-
nizer processes. The set of transaction files, written
by the load organizers and read by one of a group
of rule managers can be thought of as another. Us-
ing formatted files and the database as an interface
between modules handles the asynchronous nature of
the input and provides for coarse multi-processing,
Accordingly the number of load organizers and rule
managers is adjustable, as are the times of their invo-
cation This multi-processing was motivated not only
by the underlying SUN architecture, but also by the
fact that transaction processing has a I/Q component
that is considerably reduced by the (somewhat gross)
multi-threading in Figure 2. Oracle was chosen for
the DBMS, the load organizer was written in C call-
ing standardizers written in Quintus Prolog, the rule
manager in Quintus Prolog. The user interface lay-
out was developed in Motif UIL using ICS’s Builder
Xccessory, and the user interface callback modules in
Motif and C.

CCTIS Standardization
Several types of free text fields must be standard-
ized and formatted before rules can use information in
them. Of particular difficulty is standardizing names
and addresses from bills of lading. The bills of lad-
ing purportedly contain names and addresses of enti-

134 IAAI-94

1 Mainframe

I I
Manifests Enties

QUEUE

I DBMS 1

. . . _ _____ _ . .

Interface Interface Interface

Local Site

Figure 2: Top-level architecture of CCTIS

ties involved in shipments. In practice they contain
misspellings, abbreviations, both domestic and for-
eign addresses, multiple entities and addresses with
their relationships, phone and fax numbers along with
extraneous information not necessarily of use to the
system and not necessarily in English. ‘IBecause of
these complications, commercial address standardiz-
ers were not deemed appropriate for the raw data. A
typical example is provided: 2
TO THE ORDER OF DATAWHACK DE
MEXICO S.A. DE C.V. CALZADA
VALLEJO 123, COL. IND. VALLEJO

Field separators are indicated by line breaks, which
here have no bearing on information in the address.
For this input the address standardizer produces
Entity: (base)

Name: DATAWHACK DE MEXICO
T%t$e: SA

Address:
Street: CALZ VALLEJO 123
Town: VALLEJO
Country: MX

erg-type = 1
extracting the proper entity name and address, and

inferring from the title, S .A. DE C .V e that it is an
organization rather than an individual. It should be
noted that because the organization name was made
up, the standardizer had to parse out the name and
address rather than doing a match against a database.
In general, this facility is needed to handle small-time
importers and badly misspelled names.

Parsing out names and addresses from free text is
an exercise of interest in its combination of informa-
tion retrieval techniques with natural language pro-
cessing, rather than because it stretches the limits
of natural language processing. As natural language
analysis, processing bills of lading does not lead to
questions of logical reference, say, or problems of be-
lief, They do have certain problems of logical ambi-
guity, though. To take one example, in the text ENTI.
CARE OF ENT2 ADDRESS, it is unclear to which entity
the address belongs. It turns out that the appositive
choice is not always the best, and determining the cor-
rect solution depends on knowledge such as whether
the second entity is a shipping line 3B

After an initial tokenization, standardization takes
place in three phases,

A bottom-up parse corrects misspelled tokens and
supes tokens, e.g. ‘SALT LAKE CITY’ from the
tokens ‘SALT’, ‘LAKE’, and ‘CITY’.
A top-down, frame-oriented parse which uses a
%9CG grammar to fill in slots of the frame.
A post process resolves inconsistencies, and fills in
missing information when possible.

2Tl& example was based on actual data. Tokens were
changed to ensure the privacy of the organization.

3The current standardizer assumes the address is ap-
positive, however.

The structure of the name-address standardizer re-
sembles the structure of many other natural language
parsers, and we focus our discussion on correcting to-
kens in each of the phases. Names and addresses are
notable for their prevalence of proper nouns, compli-
cating the problem, and have prevented us from de-
riving an accurate estimate of the percentage of mis-
spelled tokens. Our approaches center around min-
imum edit distance algorithms (Sankoff & Kruksal
P983), which define metrics between strings. These
algorithms usually define as the distance between two
strings the number of insertions, deletions or replace-
ments needed to transform one string into another.
The difficulty with such algorithms is their quadratic
complexity for fixed string size, so that they are un-
suitable for context-free searches (which must match
against many possible tokens). OUE approach to
context-free searches is closely related however. For
a list of crucial keywords, a set of tokens that have
edit distance of 1 from a keyword can be generated
and made into a table. l?or instance, if CHICAGO is de-
clared to be a keyword, a table of translation clauses
can be generated. This method substitutes space for
time, and is sometimes called a reverse minimum edit
distance algorithm (Kukich 1992). The tables vary
from the extremely simple token substitutions like
translate(‘CHICAAGOO,‘CHPCWGO~]O
to the slightly more complex
remove-spaces(9CHICAG9~9CHICAG09 9

c909 lRes%] ,Res%) B
The latter clause can be interpreted as stating that

if the token 9 CHICAGB is followed by the token %09 B
the token s CHICAGO 9 should be produced, but the rest
of the input stream should not change. In generating
misspellings, each misspelling must be checked against
a lexicon of keywords, cities, countries, and so on to
avoid inadvertent transformations.

More difficult correction occurs when tokens have
run together. In the following, 9 HAN JIB 9 is a legit-
imate shipping company that is sometimes abbrevi-
ated ‘HJ9 and both are taken to be prefixes which
should be split out of tokens. lt is not at all unusual
to receive tokens like
HANJINBUSAN
HJBUSAN
HANJINBUSN
all representations of the vessel Hanjin Busan. In the
third token, the abbreviation ‘BUSN’ cannot be cor-
rected by the above means unless the token is split
apart. CCTIS uses what we believe is a novel pro-
gramming technique to correct these tokens. From a
list of prefixes, a trie is generated which moves from
state to state as it reads the character list of each to-
ken. The trie itself can be generated as Prolog code
that looks much like the tables above. An example
provides a flavor of how the trie works. Assume the
trie is in the state where it has read an 9H9. The state
of the trie is terminal (in this example) and can be
represented by the clauses

swift 135

remove_prefixH(65,[78,74,73,781Suffix],
‘HANJINy,Suffix).

remove,prefixH(74,Suffix,9HJ’,Suffix).
In Quintus Prolog, the first argument, the charac-
ter representation of ‘A’ or 9J9 is used for index. If
the current character is ‘A’, the next states of the
trie, where 9N909J9,9190 and ‘N’ are recognized can be
folded into this state since it is deterministic at this
state. If the lookahead fails (as it would for the token
‘HANOVER’) no transformation is made. The trie
generator has proven robust even though it is only
about PO0 lines long. We believe examples like this il-
lustrate the power of Prolog for the general program-
ming techniques that always accompany A.I. applica-
tions 4.

Until now, context-sensitive transformations have
not been mentioned. They follow the same general
pattern as context free transformations, but here a
straight minimum edit distance algorithm can be used
without excessive cost. Bills often have text like

SAME AS CONSINGE
in the notify slot. Here consignee is badly misspelled.
In this case, after the (DCG or bottom-up) parser
has recognized SAME AS, it can call an edit dis-
tance predicate against a few selected tokens such as
3CONSIGNEEs and ‘LAST>,

Minimum edit distance algorithms are also used in
the post processing phase since this phase has a great
deal of contextual information to limit the search. For
instance, if the city field is ‘EDISNOE’ and the zip code
is 08817, the standardizer would use a minimum edit
distance algorithm of ‘EDISNOE’ against the proper
city for the zip to allow the transformation into the
correct city,) EDISON 9 D If the city determined from
the parse does not match the proper city for the zip
code, and its edit distance is greater than the specified
maximum, the address is inconsistent. At this stage,
no determination is made about whether it is the city
or the zip (or both) which is incorrect.

CCTIS Expert System Rules
The domain of CCTHS is import control. Unlike other
domains for which expert systems have been built,
such as chemistry, medicine or engineering, the im-
port control cannot be systematically studied: there
are no textbooks on smuggling. We claim that one
result of this lack of codified knowledge is that the
opinions of experts differ even more than they would
in scientific fields. Another, perhaps deeper differ-
ence is that predictions of illicit imports are reflezive
(Buck 1962) in the sense that successful predictions
of illegal behavior will cause a change in the behavior

‘Recent experiments in XSB(Sagonas? Swift, & Warren
1994) compilation illustrate the efficiency of techniques
Eke those mentioned. Using similar tries as an indexing
transformation can give significant speedups over naive
abstract machine code for many Prolog predicates.

136 MM-94

under study. These considerations imply that an ex-
pert system for import control must have rules which
are both easily configurable and changeable. This sec-
tion discusses CCTIS9s approach to rules along with
its advantages and disadvantages. For obvious rea-
sons, the discussion will need to be at a high level,
since the rules themselves are deemed sensitive.

Allowing users to write their own rules would pro-
vide the ultimate in a configurable system, but is
impractical from both a technical and a managerial
standpoint. Rather, CCTIS allows users to customize
rules through system parameteae. System parameters
reside in the DBMS, and are seen by Prolog as clauses
of the predicate sysparm/Z. They can be changed
either by the system administrator, in the case ofpa-
rameters which are shared throughout a site, or by
an individual user. Usually, parameters which ex-
press more general knowledge are decided by com-
mittee and shared throughout a site. More particular
information, may be represented by match criteria,
which allow a user to create a rule by specifying a
regular expression on a field of a shipment or on a
combination of fields. Match criteria can be added
by an individual user, and may be shared or, if spec-
ulative, may not be. The set of three hundred rules
use about 30 system parameters, and allow about 20
different types of match criteria,

A second means of changing the rule set is by
weighting rules. Rules can be classified as interme-
diate lemmas which describe benign characteristics of
a shipment, (such as the probable country of origin of
cargo), and weighted rules. As has been mentioned,
incoming shipments pass through a rule base and ac-
cumulate a weight, based on the weights of individ-
ual rules. The rules can have their weights modified
by individuals to reflect the rules usefulness. Rules
which are parameterized through match criteria may
be weighted after parameterization.

Because a weighted rule can have a weight of 0, the
distinction between weighted rules and lemmas is not
strict. Formally, the weights of the rules, if properly
scaled, can be seen as a likelihood ratio 5:

P(SuspiciousShipment 1 Rule)
P(SuspiciousShipment 1” Rule)

If the assumption is made that the rules are inde-
pendent of each other, then the likelihood ratios are
multiplicative. In this case, the likelihood ratio of a
suspicious shipment given a set of rules is the product
of the likelihood of the rules taken separately, or if logs
are taken the joint likelihood is the sum of the sep-
arate likelihoods. If logical combinations of weighted
rules are to be expressed the constituent rules must
have weight 0 for this interpretation to hold. For in-
stance if A and (B or C) have to hold in order for
a shipments weight to be substantially increased, the

‘We are indebted to P. Szolovits for originally suggest-
ing this interpretation.

weights of A, B, and C must all be set to 0. While
the independence assumption for CCTIS is not vio-
lated by the logical form of the rules - no clause of
any rule subsumes a clause of another - it is possi-
ble that certain rules could be statistically correlated
with one another.

The CCTIS team has found that users have been
generally satisfied by this model. Rules are changed
and reparameterized in response to intelligence infor-
mation and allow the different districts of Customs to
maintain their own corporate cultures. Reflecting this
organizational characteristic, weights often differ rad-
ically between field sites. In Figure ls which is a san-
itized version of an actual shipment, Newark weight-
ings assign the shipment a weight of 1247, while Los
Angeles/Long Beach weightings give 83. Discussions
of the differing weights and parameters would provide
an excellent vehicle for transferring knowledge among
field sites, but this has not yet proven possible.

Over the course of the deployment, we have noticed
three trends in the users9 response to weighted rules.
First, the range of weights for rules widened as users
discovered that certain rules fired relatively frequently
(or because the data was not standardized properly)
and consequently were weighted less. Likewise, as cer-
tain rules aided in seizures they were weighted more
heavily. Next, it turned out that certain shipments
would cause particular rules to fire repeatedly with
different values, and many requests were made to ag-
gregate the results of these rules. Finally, it was deter-
mined that while certain rules deserved low weighting
in themselves, they became more important in con-
junction with other rules, and combination rules were
developed.

A disadvantage of this approach is that, because of
the close involvement of the user in determining the
weights of the rules, it is difficult to introduce uncer-
tainty measures among the intermediate concepts in
such a way that they affect the weights of the rules in
a sound manner and are also understandable by the
user,

Evaluation of CCTIS
Table 1 presents a rough estimate of the amount of
time needed to specify and code various parts of CC-
TIS along with the number of lines of code used in the
current version. While some of these modules, such
as the installation and administration scripts, do not
have a A.1, component, we provide them as a basis of
comparison. CCTIS was developed by a small group
of experienced programmers and designers. Together,
about 1.5 person years were spent in design, about
3.75 in coding and testing, and a little over a person
year in maintenance and documentation. The final
product has about 70,000 lines of code, not including
generated tables for the standardizers or UIL files gen-
erated by Builder Xccessory. Not surprisingly, design
of the rule manager and user interface comprise most
of the specification and knowledge acquisition time.

User Training and Support, including documenta-
tion, has taken a great deal of time, reflecting in
part efforts to introduce an A.I. system on a UNIX
platform into a corporate culture used only to main-
frames. As an instance, non-technical users do not
differentiate between various aspects of an applica-
tion system, especially when they are first introduced
to it, and the times in table 1 reflect this. Rowever,
much of the effort towards user acceptance, such as
writing user manuals, will not have to be repeated for
new ports.

One avoidable maintenance problem for CCTIS is
that much of the processing occurs in the local site (as
depicted in Figure 2), and is harder to maintain than
a centralized site. To lessen deployment and mainte-
nance costs, we are moving toward a centralized archi-
tecture for CCTIS and another Customs A.I. system,
In this architecture, the load organizer and rule man-
ager tasks would be run at headquarters, while the
user interfaces would run off local snapshots of the
CCTIS database. Of course, it is critical to continue
to provide users with the control they currently enjoy
in, for instance, parameterizing and weighting rules.

CCTIS has aided in a number of seizures, but we do
uot have hard statistics on the likelihood of a seizure
using CCTIS as opposed to the likelihood not using it.
Because of the difficulty in answering that question,
it is doubtful that enough resources will be spent to
answer it. Indeed, only a small fraction of inspected
containers are seized, whether or not an expert system
is used. Furthermore, experimenting in our domain,
say by intentionally trying to smuggle goods into the
country, is impractical. Because predictions are re-
flexive, it also begs a cognitive question: the pseudo-
smuggler may use his knowledge of the system to beat
it. On the other hand, users are now able to mark
as reviewed 60-70% of shipments a day, a far higher
number than could be reviewed using paper manifests.
This number is especially impressive given that unre-
viewed shipments are likely to be those weighted the
least suspicious by the expert system,

Evaluation of CCTHS tools
As mentioned above, the A.I. components of CCTIS
are written in Prolog, and the knowledge base is dis-
tributed between Prolog and Oracle. On one level,
these products were chosen because of the developers
familiarity with them, but there are deeper reasons
as well. It is well-known that the logic programming
paradigm is highly suitable for natural language anal-
ysis, both through DCG’s and because Prolog’s rela-
tional model allows a transparent access to knowledge
bases. (No doubt, the functional paradigm would of-
fer its own strengths).

Prolog’s strengths for writing rules are perhaps less
appreciated. Prolog clauses have an if-then formula-
tion and simple logical syntax which make them ap-
pear suitable for expert systems. It can be argued
though that a fundamental impedement to Prolog use

swift 137

User Training
User Support

Table 1: Development Effort of CCTIS

for expert systems is in its use of backward-chaining
SLD. Prolog can go into an infinite loop when eval-
uating recursive ‘feedback’ rules, or at the very least
perform redundant subcomputations prevented in a
bottom-up environment. As a result, Prolog alone is
not yet suitable for naive users or specifiers. Recent
experiments which add tabling to Prolog (see, for in-
stance (Sagonas, Swift, & Warren 1994) which uses
SLG evaluation), alleviate this problem, but may not
have the robustness of commercial Prologs.

However, when programmers in charge of a rule set
are not so naive, Prolog is an excellent choice since
it can provide facilities for coding atomic rules, their
control, their aggregation if necessary, and the glue
to interface with other modules. Expert system shells
usually provide these facilities through an escape to
some sort of procedural language, whereas in Prolog
a single language can be used.

Other improvements to Prolog that would have pay-
offs for systems like CCTIS are better facilities for
determinacy and better access to knowledge bases
Determinacy detection is important because realistic
Prolog programs nearly always include cuts or condi-
tionals to control evaluation. These constructs make
the code less declarative, and if mishandled, can make
the code slower as well. Automatically detecting de-
terminacy through a compiler is undecidable in gen-
eral: incorporation of analysis techniques to detect it
in certain cases is an open research topic (Dawson et
al. 1993). At the same time compilation techniques
for deterministic logic programming languages such as
FGWC are well known (Ueda 1987). The addition of
optional guards to Prolog would allow the program-
mer to obtain the speeds of deterministic execution
when possible, and the flexibility of non-determinism
when required.

Another issue of importance to expert systems in
general is how to access and update a knowledge base.
Prolog is often efficient at accessing small knowledge
bases of roughly the size of main memory ’ - as long

‘The CCTIS developers were involved in an develop-
ment effort which developed a Prolog expert database sys-
tem whose r unning size was 1/2 gigabyte. The system,
which was unrelated to CCTIS, lasted for three years in

138 IAAI-94

as the data is in memory and properly indexed. A
simple call to an external database takes about 10,000
times longer than a call to another Prolog predicate.
When it comes to updating a knowledge base, how-
ever, most Prologs fail to provide even the most rudi-
mentary functionality. In Quintus, code can be either
static or dynamic. Static code can be saved into or
loaded from object files, at roughly the bandwidth of
reading from a file system, but the static code can-
not be updated, Dynamic code can be updated, but
it cannot be loaded through object files, and instead
must be read and compiled from ASCII files, Creating
object files for dynamic code would allow a knowledge
base suitably updatable for a lexicon with the access
speeds required for one.

Given its ambitious functionality and the relatively
small amount of programming time that has gone into
it, it is not surprising major elements and tasks re-
main undone. Some of this work will take place when
CCTIS is merged with the Targeting Information
Management System (TIMS), a separate A.H. project
which has also been successful in the field. While
sharing certain of the CCTIS functionality, TIMS is a
complementary system in many respects, especially in
its use of probabilistic neural nets in its rules. We be-
lieve the neural approach of TIMS and the logic-based
approach of CCTIS will balance each other and their
juxtaposition will lead to better validation of each ap-
proach 7. The resulting system, called the Automated
Targeting System (ATS) will be national in scope and

rectify some missing elements of CCTIS. We discuss
some of these from an A.I. (and CCTIS’s) point of
view.

One major extension is the use of data and knowl-
edge base information not available heretofore. As-
pects of the ATS/CCTIS domain, such as locations
and names are shallow but data-intensive. We are cur-
rently evaluating commercial address standardizers

the field.
‘It should be mentioned that TIMS offers some logic-

based rules not covered by CCTIS, as well

which can be used as a post process stage to the CC-
TIS/ATS standardizer and which contain information
that will allow validation of street addresses, apart-
ment numbers, certain firm names, and so on. We are
also trying to obtain geographic data which will be
useful in visualization and in rules themselves. Fur-
thermore, we will be refining our parsing techniques
on fields like cargo description and on the shipping
label transcriptions.

Not less important is extending the rule validation
process beyond its present state. As mentioned above,
rule validation is difficult in our domain. The follow-
ing techniques may be of use however.
8 FOE seizures that are made without the use of an

expert system, run the shipment through the rule
set in each port to determine which factors are ef-
fective and which are not. This technique can also
help identify rule sets in particular sites which may
be ineffective.

o Build a correlation matrix for the different rules.
When rules are strongly correlated their weights
may electively be higher than anticipated, and the
weights may be Powered or the ruled disabled.

Acknowledgements
The authors would foremost like to thank our users,
whose ideas have improved CCTIS in every aspect
and Tim Hawes and Tony Maresca who have sup-
ported our efforts in developing the system. David Al-
berts was instrumental in getting the project started,
Carl Krebs wrote and designed much of the original
rule manager, and Ed Jenkins much of the user inter-
face code. On a technical level, this paper has ben-
efitted from comments by W. Dougherity, T. Ewing,
I?. Szolovits, and J. Hill. We also thank O.N.D.C.P.
which has partially funded this project,

References
Buck, R. 1962. Reflexive predictions.
Dawson, S.; Ramakrishnan, C.; Ramakrishnan, 1.;
and Sekar, R. 1993. Extracting determinacy in logic
programs. In Proc. of the Int 1 Conf. on Logic Pro-
gramming.
Kukich, K, 1992. Techniques for automattically cor-
recting words in text. A CM Computing Surveys 377-
441.
Sagonas, K.; Swift, T,; and Warren, D. 1994. XSB
as an efficient dednctive database engine. In Paoc.
Q$SIGMQD 1994 Con$. ACM.
Sankoff? D., and Kruksal, J. 1983. Time Wraps,
String Edits and Macromolecules: The Theory and
Practice of Sequence Comparison. Addison-Wesley.
Ueda, K. 1987. Guarded horn clauses. In Concurrent
Prolog: Collected Papers, 356-375.

swift 139

