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Abstract 

The efflcieut packiug of regular shaped two 
dimensional objects is the core problem of 
severill kiuds of industry such iis steel. thin- 
fib aud paper. This special kiud of pijckiug 
problem consists in cutting sulijll rectiulgrhr 
stripes of dif’fereut leugtll and width from 
bigger coiled rectangles of r;lw uliHeri;~l by 
combining then1 in SUCK iI \\lay that trim IOSS 
is iis low (7s possible. Previous attelnpts to 
apply “e?iilCt ” discrete optiinimtiou 
techniques Such ilS Siniples P4rtiill COlulnlls 
Generation. were not able to produce good 
cutting plans in large instances. We tackled 
this Roll Cutting Problem developiug 8 uew 
“dimension decomposition technique” that 
has beeu successfully experimented in iI big 
steel industry first and then replicated iu 
other steel and thin-film factories. This 
“unfolding” technique consists in splitting 
the overall seilrch for good cutting phlls in 
two SepilriW grilpll SeiWCll algorithms. one 
for esch physical dimension of the 
recti@es. Searclliug iudividui~lly in eilcll 
dimensioii improves the OWXidl SeilKll 
strategy illlOWillg the effective pruning of 
useless conlbiui~tions. Experimental evidence 
of how ditneusioual splitting strengthens the 
OwXi~Il SeiKCll Striltegy is given. 

1. Introduction 

The eff’cient pilckiug of two dimensioual objects 
&%ects the core business of sever:)1 kiuds of 
industry such x steel. thin film. paper and others. 
Normally. they hve to cut suliill stripes of 
different length and width from bigger coiled 

rectaugles of r;lw uliHeri:ll by colnbiuiug them in 
SUC~I a way thnt trim 10~s is ;Is 101~ as possible. 
This activity is crucii~l to their productivity. iuld 
thus highly rele\raut to their business. Dedicated 
experienced people tloruli~lly apply uihle lnethods 
to efficiently build sequences of cutting schenlit 
able to cover the overill set of workilble 
commercial dexniulds. Ul~fort~~l~iWly. this piickiug 
problem is known to be hugely colnbiui~toriill 
eveu with teus of prototype rectangles of differeut 
sizes iItld the “stock cutting” industry suffers from 
its iutri~ctilbility. The “esilct” computer discrete 
optiulizhou techniques applied SO far. sucl~ ijs 
Simplcs Piuhl CO~UI~W Geueratiou. were not 
able to deteru~iuistically produce good object 
pijckiugs in :i reasonable response time. We 
tackled this Roll Cuttiug Problem devising a 
“dinleusioual decomposition” technique. we 
called lD+lD heuristics, that hiis beeu 
successfillly experimeuted in ii big steel industry 
first (AST-TLVA) and then replicated in other 
fhctories. The technique is based ou the co- 
Operiltioll Of tW0 Sepilrilte grip11 SCiUCll i~lgoritllnis 
each oue dedicated to a single dimeusiou of the 
regularly shped plituijr objects. Giveu m possible 
rectiuguhr objects to CM from 11 ihlable coils, 
tlieu the “unfoldiug” of the hvo dimensions hiIs 
the positive cousequeuce to reduce the ilverilge 
time complexity of the resulting solution 
ilpproiich from au expected 

t0 il more iNtlXti\X 

where ( ‘04~‘A’T is i1 common cotlstilut fhctor 
related to the speed of the machine. AS il resuIt, 
eveu if the complexity of the devised dimensional 
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unfolding approach remains exponential. it is 
able to provide near optimal results in all real 
world cases faced so far. With the term near 
OptimiIl we mean tllilt optimal cutting plims can 
be e...haustivc~ f<wntf in more that 95’S of the 
cases within a reasonable response time (less than 
120 seconds on a Pentium). This result is 
obtained through the dimensional unfolding 
which permits to avoid useless search. We 
practically demonstrated that the same basic 
lD+lD technique applies to other kinds of cutting 
stock industry and is even suitable for parallel 
implementations whenever scale up factors 
require it. In fact, we applied lD+lD to thin film 
industry (MANULI SpA) and also extended a 
critical pilot customer installation (MARCORA 
SpA) to exploit a parallel implementation. All 
these systems have been written in Common Lisp 
and now form a unique specialized platform 
named ROLL-CUTTER. Within the rest of the 
paper we will follow the steel industry study case 
to introduce the problem and the proposed 
solution. In section hvo. a precise description of 
the Roll Cutting Problem (RCP) together with the 
previously attempted Integer Linear 
Programming approaches are presented in some 
details. Section three introduces the ID+ 1D 
decomposition and its strength in comparison 
with more classical 2D Implicit Enumeration 
Techniques. Feedbacks concerning the 
applications released so far are presented in 
section four. Section five discusses some of the 
implementation issues while section six gives an 
idea of how the ROLL-CUTTER platform is now 
going to be maintained and extended. 

2. The Roll Cutting Problem 

The overall objective of the Roll Cutting Problem 
(RCP) is to ensure the production of a sequence of 
, jkxsih/e and near optirnd cutting plans given a 
set of a\railable coils and a set of workable 
commercial orders. To explain what this means, 
we will neglect any unnecessary detail concerning 
the chemical requirements and instead we will 
concentrate on the physical dimensions of the 
objects which constitute the core of the debated 
combinatorial problem. Figure 2.1 shows the 
basic dimensional parameters which completely 
describe all the in\701ved entities: coils (big coiled 
rectmgks) and commercial orders (.SJdl 
r~ctfln,qI~s or stripes). 

Coil xi of length Li and width Wi - 

Wi 

Li 
1 

Order c) j of length Ij and width wj 

Figure 2.1 Geometry of Coils & Stripes 

Generally speaking. we have to manage two 
linear dimensions : Lengh and Width. However, 
to express the first linear dimension. we will use 
the weight (‘i instead of length Li since it renders 
the overall rnodelling simpler to formalize and 
closer to the \vay steel engineers describe the 
problem. Given the constant v expressing the 
unitary weight of a given KIW material, then 
length and weight are tied by the simple relation 

‘; =$Jy v 

The dimensional requirements of the rectangles, 
either coils xi and orders 8. will be thus .I’ completely defined through their weight () (c.) 
and their width IV/ (112). Coll\leIltiolli~ll3I. weig It i 
and width will be considered respectively as the 
first and the second dimension. Moreover, 
without loss of generality. we will always assume 
that all the coils have the same width It’ : 

wi = w i = 1,2,3 I..., n 

Ill this Wily, eiKl1 coil & will be completely 
characterized just by its weight ( ‘i. 

Before describing \vhat a $w.vih/~ cutting plan 
is we have to explain first how orders must be cut 
out from coils. given the OpWi~tiOIli~l constraints 
of the cutting machines (slitters). Figure 2.2 
S~IOIVS an introductory example where three 
orders (01,~ 62 , @J) are cut out from hvo coils (~2 
, ~2) of different weight. 
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I Order 83 

Figure 2.2 An introductory Exiuuple 

Notice how coils can be bonded to reach the 
needed total weight while orders can be split in 
an arbitra~ number of identical stripes to fulf8 
the available arca II’. This operational mode. is 
not limited to the steel illdustry. On the contrary, 
these “cutting rules” iltI2 quite conunon to ill1 
kinds of industries which xnust cut out planar 
objects of regular shape. In fact. these rules are 
tied to the cutting technology which is always the 
Silllle no llliltter tVllilt the lliitllre Of tllc specific 
nlaterial to be cut is (steel. thin-film. paper, 
glass). Even when snlall sheets must be 
eventually obtained. this stripes cutting step is an 
unavoidable interxnediate procesq Actually, there 
are other constraints. like the nliIsilnunl weight 
allowed of each stripe. that discipline the 
feasibility of a cutting plan. However. even if 
these constraints are properly handled within our 
~IppliCiltiO~lS. we will not discuss them in the 
paper since they would iIlilpprOpriiitely 
cOlllpliciite the O~rerilll eSplill~iltiO~l. 

Within eilCl1 cutting pIill the piltiiClllilr stripes 
configuration adopted is uniquely identified by 
the SO called cutting pattern. A given cutting 
pattern determines the number of stripes for each 
order. The cutting pattern adopted in the example 
of figure 2.2 can be represented by the vector 

Y = (Q* y2, y3) 5 (3, 1, 2) 

By analog, it is worth deliuing a coils pattern 
associated to a cutting plan. A coil pattern is 
represented through a binary vector X having one 
component for each a\~ailable coil. A component’s 
value is equal to 1 if the corresponding coil is 
used within the associated plan or 0 elsewhere. 
The coils pattern of the example is represented by 
the vector 

Nornlally. a plan involves just a subset of the total 
available M coils and a subset of the total workable 
m orders. This means that some of the Xi and yi 
will be equal to zero. 

Tables 2.1, 2.2. show the weight and width 
values of the coils and orders used within the 
introductory exatnple of figure 2.2 

Tab. 2.1 Coil Values of the Introductory E?tanlple 

Tab. 2.2 Order Values of the Introductory Esanl iple 

In this simple cutting pIi the trim loss is three 
inches (SO - [S * 31 + 26 + [8 * .?] = 3). This 
nleans 570 pounds of wasted nlaterial and the 
plan would probably be considered not so good. 
Nevertheless. since hulnan planners are nornlally 
dealing with tens of orders and coils, the huge 
number of combinations would have probably 
rendered the search for better plans a strenuous 
task. 

2.1 Formal description of RCP 

We are now in the position to precisely define 
what a ,fkwih/e and gor~1 cutting plan is. Given n 
available coils and JJI workable orders then a 
feasible cutting plan P is defined b!. the couple 

? = {X.Y} 

where X E (xl, XT, . . . x,?) and U E (~1, ~2, . . . . 
s/r)]) are respectively a coils pattern and a cutting 
patter11 such thilt the fOllOWillg JJZ + 1 COIlStrililltS 
hold 
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c 
??I 
,i J’,jlY.j 5 W (2.2) 

To plan the owall production dcnmd. \\hich 
comprehends IJ! different conmcrcial orders. 
what we should really build is a set :P: of 
feasible plans able to co\‘er exactly the entire 
workload. This mwns KC should find II set of 
plans {P: obscniug the hlloning /u corlstrrhts 
dcri\rcd from (2. 1) for ,i I, 2, . . , III. 

(2.3) 

Howe\w. the problem of finding the o\u-all set of 
cowring plans is not of nw3 iirtcrest to the scope 
of the paper for a couple of rwsom. First of all. it 
must be nccessa-ily sol\*cd in different ways 
according to the particulx fcaturcs of each 
specific case (e.g. 10 ll’PJ”P tr.v/wc/ ti1 .vo/\‘c it 
trpp! virlg wl ordw priority rJI/e fiw n steel 
, jirctwy). Moreover. there is ;I practical reason 
that nukes this sort of global pl;mning quite 
superfluous. In fact. only the nest few goat/ plnns 
we really needed since the new incoming 
conmercinl orders and the new coiled nuteria~ 
alter the possible combinations rcndcring earlier 
produced plans soon obsolete. 

the solution of a single ,jiwsih/c~ and gootl plan 
which is the real core aspect of RCP. 111 this 
framework the starch for “the next” . jiwsihh~ and 
,ycm/ plan will start from a chosen pi\*ot order @. 
This phrot is the order that the lmnm planner 
wants to be ccrhin is inserted illto the nest plan. 
As already mentioned. the choice of the &\.ot 
order could be mtotnaticnlly done according to a 
priority rule (e.g. due-data) or through a more 
esliausti\~e strateg* which trim in tuni all the 
orders as candidate pi\,ots. Ncw-tl~cless. all these 
different mays to cl~oosc the nest pi\.ot cm affect 
the overall conlputational complexity at most 
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through 11 1illCilr filcIOr (JwJJJhc~r c~f’ordcw JJJ). The 
Rill sowcc of JioJ?-po!,noiJiicr/ complexity (2n+m) 
remains the search for ;I single ,fkxdh/c and ,qoo~J 
plan once au wbitrary phvot order has been 
chosen. 

Gi\m a pi\vot order (;3’ se\Teral &w~h/~ cutting 
plans exist. These fcasiblc plans are formed by all 
the couples {X.Y f obsening the two equations 
(2.1) and (2.2). Before defining when a $wsih/e 
pla11 P = [X.Y j is judged to bc ;I ,:ootJ plan we 
lM\XZ to prcciselJ* define the optimization 
objecti\vcs used as selection criteria. These 
optiluizi~t ion ob.jcctivcs are the following 

e Trim loss n~inimizntion : 
Min (TL (Y)). 

* Masimize the rlsage of a given cutting 
piltkIXl which is equi\3lcnt to minimize the 
number of kni\a clwnges : 

Max (n’r ’ (X)). 

They c;m be formally 
following rCliIliOl1S 

cspresscd through the 

Mir.u( Klr( A’)) - Mm( c %, ri 
’ w 1 (2.5) 

Tlic first objccti\*c (2.1) clearly espresses the 
nhhizatiou of trim loss. The second objective 
(2.5) is strongly tied to the mi~limization of the 
number of knife changes since masin~izing the 
usage of the sme pattern (KU(X)). In fact, 
according to the previous assumption. we are 
working 011 the scwch for “the next” single plan 
sepmtely. so that pursuing the msiniization of a 
plan weight. i.e. plan duration. implicitly 
nhhizc t lw frequency of knife changes. 

We arc now in the position to define when a 
,fiwsih/e plan becomes a grlrm/ plan. A candidate 
jkwsih/~~ plan P E (X.Y ; is 3 g00~J plan if 
another ,fknih/c phn P’ G :X’.Y’; does not 
dominate P through the following dominance 
r&t ionsllip 

7x(X’) < X(X) 
I& (2.6) 



rw(Y’) “ Ku(y) 

AS normally 1lilppeIls with the USC of doIllitl;~tlt 
reht ionships. WC 11iI\vc jlst idctlt ificd iI set of .qr~~l 
pliltls itlstead of gi\*ing iI dofinitiorl of thtz w~i(p 
crhso/rrtcJ~lJ optiirurl plilll. Ill f&3. tllC prcscnce Of 
multiple coNr;hllg otjccti\*es would have 
rendered quite utltlihtr;ll the definition of “phtl 
OptiIlIiIliQ”. III other words. between ;I pliII1 with 
lower Trim LOSS i)lld iI phII with lower &life 
Chllges. we c;IIItlot sily nhicll one is the best. 
Merging the tm.0 different object ivcs through i1 
lixle;Jr filllctioxl \vollld be quite iI11 ;Irbitr;~~ 
decision. AXI!TV;I~. the dotllitli~llce rehtiohip is 
kno\vil to be 3 powerful tool able to dr;lstic;lll> 
prw1e OutcliIssed solut ioiis (PCiId 10X5). 

Experimental results with real world data 
re\re;Jled ho\\. the domin:wt set formed b\T the 
resulting ,~oot/ pli~llS 1lilS 110 more t11:111 fi\re or six 
menlbers. There ;Irc 0th cstcrllill rc;IsotK. like 
overloading or utlderloildillg conditions ;Iffecthg 
the cutting tlliJcl\itles \\~orklo;~d. that ci111 help in 
tllilkitlg ;I more comwicrlt sclcctiorl ;IlllolIgst the 
,CJOOC/ PlilllS. 

2.2 Revised Simplex approaches 

Getlerally speaking. the RCP problw is within 
the filnlily of t\\,o-dilrletlsiotl;II reghr shaped 
cutting stock problem which arc known to be 
NP-hrd (Dyckoff et ill. 1YX-l). This kind of 
problctn 1liIs ;Ilrei~d~ bee11 tackled through ILP 
partial CO~UIIIIIS general iotl :lppro;lcllcs. This 
Re\?iscd Simple\: nlctllod consists in gctler;Uitlg 
only the colut~~t~s wggcstcd by tllc proper 
;~u~ilii~~ kniipsilck problem sol\*ed iIt CiKlI Step Of 
the Simplex iteriltion (Gilmore & GOIIIO~ 1 Y66). 
While the method \\Torks fine for ID cutting stock 
problems. there ilre prilcticiil lixnit;Hions tht 
lll;lkes it diflicult to iIppl>r to 2D real-\vorld 
insti)Ilces (D>fckoff ct al. lYX4). Ill fXt. the 
ordin;uily number of coils iInd orders lo de;11 with 
are beyond the qu;~~lt i t ies 11or111;I 1 I>’ hiI tldled 
though pi)rtiiIl co1Itt1111 getler;Uioll. Moreo\rer. the 
presence of multiple otjcct iIves ;Illd very specific 
collstr;litlts render the problem difficult to lllodcl 
through ILP :IpprOiKlleS. 

A fh~our concerning the size of the potehJ1 
se;Jrch space is gi\w considerhg the following 
simple forIIIIIliI. Being 111 the iI\‘cr;lge number of 
a\~i~ihble coils. II the ;l\~cri~gc twnlber of cillldidiUe 

- 
orders and being k the ;l\*er;lge number of slripes 
per order. the poteNi;ll number of possible cutting 
plilllS is pr0pOrti0~li~l to the power-set of the coils 
times the pojver-set of the possible stripes. i.e.: 

Typical ;I\rer:Ige \‘;ll~~es for Jl. JJJ alld kare 
respectively thirty. thirty ;lnd three. 

3. Decomposition 

AS alreildy rccognizcd (Dyckoff et al. lYX4). the 
;Jdditioll;Il specific cotlstrilirlts itIld the pi~rticular 
structure found in this sort of problem may 
constitute iI source of illsuperable complexity for a 
gener;ll ILP t~lodcliz;Jtio~~. By colltr;Ist. within ii 
more t;Jilored iipproilcll. these problem features 
ciIt1 be esploitcd to render the nlodelizr~tion more 
tr:Ict;lblc (Sctltelh’ et ill. 1YYS). Not swprising. :I 
quite sitnplc heuristic iIpproh. bilsed 011 11 
speci;Jlized greedy procedure. ;Jlreildy 
delllollstrNed to produce fruitful results in a 
specific itldmt riill roll cutting iIppliCiItiOI1 
(Fcrrcira 1 YYO). 

Pursuing tllc heuristic lllili~Nrei~~l1. we tackled 
the problem exploiting its structure to simplify 
the solution ;Ipproilcll while ;l\roiditlg degrildijtioll 
of the solution qu;lliQ. Marc precisely, we ll;Ive 
decomposed the o\.erilll t~vo-dilllensional cutting 
stock problctn into tlvo otlc-dimet~sional kniJpsiJck 
sub-problems WC CiIl led : first-dimen.~ion- 
knup.wc*k iI tld .~cB~~c,nrl-(limLDrIsion-ki~u~~.~a~ak. A 
stiItldi)rd definition of the quite pophr O/l 
ktlapsack problcnl is tllc following (M;Irtello & 
Tot11 IYYO). 

We will see in which way both our sub-problems 
ci111 be e;lsily IIIilpped into the klliJpsXk 
tllodeliz;ltioll ;Illd \Vllat iIre the benefits of this 
straightforward decomposition. 

3.1 First dimension sub-problem 
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Given i1 pi\vot orclcr C$, the first-~li~~lcDnsir/?- 

Knumwk consists in the sei~rch for the possible 
combinations of coils which provides a . jkwih/~ 
cutting plan just for this pi\,ot order. disregilrding 
the COIllpUtiltiOll Of the cutting PilttCIIlS Y which 
\vould norlnitll~ include other i~\~ilili~ble orders to 
minimize trim loss. This klIilpsi]ck problem cm 
be forn~i~lly stilted ils: 

c 
II 

MlX( i 

Xi{) 

W 
) 

c 
11 Xi( ) <. cp +sp 

i w - yp wp 

(3.1) 

(3.2) 

Where 3.1. the kllilps;lck \ViIltIe lll;lsinliziUion. 
nKIps the objccti\Tc of finding iI coils colrlbinntion 
X tklt nlasilllizes thC ncight Of tllC O\Wi~ll plilll: 
(MAX (KQX)) dclincd by 2.5. 

Eqllatioll 3.2. the kllilpsack capilcif\r coll~tri~il~t. 
gw-antces tllilt the coils coltlbin:Hioll X will 
newr escccd the weight of the pi\Tot order I) . 
Notice tllat this eqll;Hioll ltlrrst be rcpliwted or P 
each possible number of stripes .vP. Since .v , 
ranges froin 1 t0 (II’ / \I>,) MI! Ilil\‘C t0 ilCtllil1 3 i 
SO~X ;I number of (II’ / ,Ii,) kl~i~~>si~ck instances. 
Being k the a~wage number of stripes. to sol\ve 
the first dimension sub-problem \vc llia\7e to sol\rc 
k klliIpsi)ck illstilnces 011 the il\Terilge (iIs i~lrei~d~ 
mentioned. the \Titlue k is ccrt;linly colltained 
withill the illtf.2lT*ill [I . 201. while its il\Wilge 
rilllgCS from 2 t0 5). 

According to 3.1 illId 3.2 i1 solution to the first 
dinlensiou sub-problem is identified by the tuple 
XS delilIed iis 

i.e. a coils pattern. its corresponding weight illId i1 
given number of stripes for the pi\,ot order. 
Actl~i~lly. we ilre intcrcstcd in all the feiisible 
patterns X obsening the collstr;)ilU 3.2. All these 
patterns will form the first dimension solutions 
set: :XSi. This set can be partitioned into .v/) 
different sub-sets formed through the partition 
reliltionsllip 

{XSir = ~AXS := xs s.t. J), = rf 

Moreover. each sub-set can be ordered by 
decreasing \Villllcs of wight. i.e. h-l ‘(X). The 
possibility to cstilblish SUC~I i1 partitioning and 

ordering is cnlciitl within the ID+ ID framework. 
In filet. it will illlOI\f to integrate the ovemll 
optin~imtion of both the h-l!(X) illId IX(Y) 
objectives simply through ijn efficient linear 
search as explained in 3.3. 

3.2 Second dimension sub-problem 

The goill of the second dimension sub-problem is 
to find it cutting pattern Y. corrrptihk with a 
given first dinmsion solution. that minimizes 
Trim LOSS. The term conrpntihk~~ nleilns that each 
cilndidiltc patter11 Y nlllst take into account the-~ 
stripes of the pi\*ot order $., that hiI\.e i)lreiI y cf 
been inserted. GilTen :I first dimension solution. 
identilicd by iI tuple (X. hT7(X). J),). the seem& 
climL~~?.siort-knrfp.snL~k problem cm then be 
formally stated ils: 

Min ( W - ypwI - C 
111- 1 
j ?iw.i ) (3.3) 

(3.4) 

Sil~lilnrly to the first dimension sub-problem. 
equ;Uioll 3.3 represents the ob-jecti\Te of finding a 
cutting piltterll Y which tniniinize the TL(Y) 
objxti\*e. Eqllat ioll 3.4 griarantees thilt the 
solution pilttcrns Y do not cscecd the total width 
II’. A solution to the second dinlension sub- 
problcnl is identilied through the tuple 

i.e. iI cutting pattern. its corresponding trim loss 
itnd iI gi\w number of stripes of the pivot order, 

Agilin. the set of feilsiblc solutions [YS; GUI be 
pilrtitioned into .1’, 

ci 
different sub-sets in the silnle 

nxwner wc ha\Te one for the : XS j set. Moreover. 
the objxti\*c TL(Y) illdrlccs iI significant partial 
ordering 011 the eilch solution sub-set {YS), . 

3.3 1 D+1 D Integration 

To set how the 1 D+ ID decomposition works on 
the introductory esi~ll~ple of figure 2.2. when the 
pi\.ot order is 01 and ~‘1 equals to three, let us 
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build the corresponding first dimcnsioll and 
second dimension solutions 

XS G (X . KU(X). ?‘I) = ((1.1). IW. 3) 

ys’ z (Y _ X(Y). 1’1) = ((3.1.2). 3 . 3) 

Suppose now tllilt the following t\vo IlC\\’ coils 
will become ;I\‘;] i hble : 

then we ciln ildd the follon-ing IEM\ solutions 

XS” z ((0. 0. 1. 1) . 1w . 3) 

yg E ((3. 0. 1). 2 . 3) 

The solution sets bccomc thus formed by: 

(X$3 - ((( 1. 1. 0. 0) . 190 . 3) 
((0. 0. 1. 1) . 190. 3)); 

(YQ = (((3. 1. 2). 3 . 3) 
((3. 0. 1). 2 . 3) 

Hereafter. \ve will SW ho\\. the il\~i~ililbilit~ of the 
sepilrated solutions sets {XS)r alld [YS) r allon 
to efflcientl!* build the set of tlw gootl cutting 
plans for the original entire RCP problem defined 
by eqtl:Gions 2.1. 2.2. 2.3. 2.4. 

- -- 
i 1 

TI, (Y) 

(Kl J( XS I ).TT ,( YS 1)) 

Kl J(XS2).TL(YS?N 

KTJ(XS3).TI,(YS3)) 

,( YSS)) 
-4 __.__ ---;..-.. - 

I I I I 

Kl J(X) 
___ -.~ ---__-~- - 

Figure 3.1 Dothnilltce Frontier 

According to the doIllitli]nce rehtionship 2.6. to 
build the set of gorltl cutting plans we llil\~e to find 
all the drmrimmt cutting plans. 111 other words. we 
11m~ to build the dolllill;lllce frontier defined in 
the plilll (KJ ‘(XS).TI.(YS)) i1S shown in figure 
3.1. 

Tlx following pseudo-procedure (BUILD-D- 
Figure 3.1 Dolllillilnce Frontier 

FR~Pi’W’E’I?) ci111 build precisely the dominance 
frontier in line;lr time. The procedure has IIS 
input the tW0 collections Of SCtS {XS; r . (YS’ 
:llld tllc l11i1sillllllll nwbcr of stripes L-i of tlIE 
gi\zn pivot order (8. 

TlIiIltks to the partitionitlg illld to the ordering of 
the pilrtiill sohtions sets [XS; i)ltd ;YSi the 
BWLD-IbFRONTIER ciI11 cffcctively build the 
doGlli]llcc frollticr ill litIe;lr time. Being the 
number of steps \\ithin the BUILD-D- 
FRONTIER body CqlliIl to number of stripes $. 
its il\rcrilge the conlplesity is eqlli)l to 0( ki ). TO 

sutlIIII;~rizc. tllc complete set [P) fortned by the 
.fhYhk illId gootl solutions to the original RCP 
problem nil1 bc famed by Q/J the couples 

P= (Y .x; 

belonging to the dolG1li)nce set. With the lD+lD 
lwwistic decomposition. we lliI\re pritcticillly 
reduced the complcsi~ of the problem front iln 
expected 
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to a more affordable 

0(2* + 21im) 

In fact, the solution is composed of two sequential 
steps : . jir,~t-dimension-knapsack and wcond- 
diirnension-lincc~. Time complexity of the first 
step is proportional to the power-set of the coils 

(4 2*) while for the second step the time 
complexity is proportional to the power-set of the 

possible stripes (4 2’“). 

4. Application payoff 

Three applications based ~111 the lD+ 1D heuristic 
have been already released to three different 
customers. Other customer projects are in 
progress. Table 3.1 shows 15 examples produced 
during one of the customer acceptance tests. 
Notice how ROLL-CUTTER produced expert 
level cutting plans in less than 120 seconds 
compared to the 1000 seconds taken by human 
experts. 

The payoff of the released applications can be 
summarized by the following two results: 

1) The quality of the cutting plans produced by 
the applications are comparable or even better 
than the cutting plans produced by experienced 
human beings. Particularly, the dominance set 
always includes the cutting plans that would have 
been produced by the top level experts. 

2) The average processing time taken by the 
system to produce a set of dominant cutting plans 
is in the order of thirty seconds. Usually, human 
experts need from ten to sixty minutes to produce 
a good cutting plan. 

ROLL-CUTTER is currently installed in three 
different factories : 

0 A service center whose main activity consists 
in cutting snlall coils from bigger ones. The 
system is integrated with the Manufacturing 
Inforniatioii System which supplies the 
inforniation concerning the commercial 
demands and the coils to program. The 
cutting programs formulated by the systel:l 
arc returned to the MIS once validated by the 
liuniaii operator. This kind of system 
integration applies to the other two ROLL- 
CUTTER installations as well. 

Tab. 3.1 Results takeu from ;I Customer Acceptance Test 
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features of SUC~I DFTS heuristics are the 
following 

* A steel industry which direclty produces 
coils cutting them into smaller stripes. 
Within this context the ausiliary facilities 
provided by the system that allows fast 
selection / ordering of both coils and 
commercial demands have been particularly 
appreciated. 

8 The third site is concerned with thin-film 
production. In this case the performance of 
the system has been specifically stressed for 
a couple of reasons. First of all. the 
combinatorial facet of the problem was 
particularly relelrant. Secondly. the system 
had to knock out a software program already 
used for several years from the human 
operators. 

To implemeno the ROLL-CUTTER basic 
platform it took us two man yc’ars using Gold- 
Hill Commonr Lisp Developer nmning under 
Windows 3.1 1. WC found the Lisp language 
specially helpfill during the tutling of the 
knapsack search algorithms. 

A variety of well studied exact and 
approximate algorithms to solve one- 
dimensional knapsack problems exist (Martcllo 
& Tot11 1990). The two different one- 
dimensional knapsack problems. can be seen as 
two special illStilllceS Of the gellerill “VillUC- 
independcllt-knilpsack-problem” (also known :IS 
subset Slllll problem) where n oejects 
characterized by different cost values ci and a 
constant profit value v must be put into a 
knapsack without exceeding its capacity ( ‘. 
Toth’s book deyoted to O/l knapsack problems 
presents the well studied MTS algorithm which 
is based on tree search and dynamic 
programming techniques. In our iilipleilieritation 
we followed this approach augmenting the basic 
tree search 111eC11itni.5111 with heuristic criteria we 
derived from the specific nature of the problem. 

Two different depth-first tree-search 
algorithms (DFTS) have been implemented. The 
two algorithms have a common depth-first 
strategy which provides the implicit emm~eration 
mechanism on top of which two specialized 
heuristic search policy have been imposed. T11e 

0 First-dimension-DFTS features: 

Q Coils. which represents the knapsack 
objects. arc pre-ordered by decreasing size 
(we verified how this ordering increases 
the pnming power). 
* Lower values of .yi for the “pivot” order 
are tried first. 

0 Second-dimension-DFTS features: 

8 For each candidate order fi the mmlber 
Of stripes V’. which illlO\VS t0 CXilCtly IlliltCll 
the deman’ ed weight are tried first. This (5 
means to select first a nurnber of stripes-v.) 
SllCll t hilt 

c 
n 
. xi<) 1 

c.< l ’ 
J W Y,j”J 

I c.j + s . 
J 

In this way the splitting of an order in 
different lots is avoided as much as 
possible. 

Extensions 

ROLL-CUTTER is in cent inuous evolution since 
its first customer installation which happened to 
be in Jauua~ IYOS. Within this evolution lve are 
pursuing two l~lilill objectives: 

0 Continue to inipro\Te the pCrfor~llil~lce of the 
basic 1 D+ 1 D decomposition techmque 

m Extend the application of the ID+ID 
technique to other different cutting sltock 
domains. 

In the first direction we are currently developing. 
for a ROLL-CUTTER customer :I parallel 
implenlentatio~l of the lD+ID algorithms. The 
inlplementatio~~ is based on a chaster of 580 PC’s 
which co-operate during the building of the 
feasible solutions sets IXS:. i I’S:. This 
improvement will allow US to tackle the 
production of cutting plans optimized throughout 
the overall orders portfolio. 
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Concerning the extension of the application 
domains we already successfully applied the 
lD+lD technique to a different kind of industry : 
thin-film. Even if the basic technique is the 
same, this attempt generated some modilication 
to the original ROLL-CUTTER platform. These 
needed modifications will bring us to generalize 
the overall ROLL-CUTTER shell. The idea is to 
have a unique platform providing the basic 
lD+ 1D different decomposition mechanisms 
from which several more specialized platforms 
can be built. Other than Thin-film, another 
specialized platform is going to be derived for 
paper industry (glass industry is a good 
candidate too). Moreover, in the near term we 
intend to experiment the 1 D+ ID “unfolding” 
technique even with 3D placement problems 
(e.g. ships loading and unloading). 

7 Conclusions 

The lD+lD problem decomposition allowed us 
to face a complex two dimensional cutting stock 
problem (RCP) reaching expert level 
performance. The method has produced 
exemplary results within several released 
applications. So far. we already demonstrated 
that the method is able to discover the complete 
set of dominant optimal solutions, 95% of the 
time, in a few seconds. It takes 15 minutes or 
more to build the “next” near optimal cutting 
plan to experienced human beings. 

The ROLL-CUTTER platform on which all the 
released applications are based is now evolving 
in different directions. A parallel 
implementation of the lD+ 1D technique to solve 
the global optimization of the overall cutting 
shop-floor is in progress. Moreover, we are 
generalizing the platform to facilitate the 
development of different applications addressing 
other industry sectors. 
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