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Abstract

The efficient packing of regular shaped two
dimensional objects is the core problem of
several kinds of industry such as steel. thin-
film and paper. This special kind of packing
problem consists in cutting small rectangular
stripes of different length and width from
bigger coiled rectangles of raw material by
combining them in such a way that trim loss
is as low as possible. Previous attempts to
apply  "exact"  discrete  optimization
techniques such as Simplex Partial Columns
Generation. were not able to produce good
cutting plans in large instances. We tackled
this Roll Cutting Problem developing a new
"dimension decomposition technique" that
has been successfully experimented in a big
steel industry first and then replicated in
other steel and thin-film factories. This
"unfolding" technique consists in splitting
the overall search for good cutting plans in
two separate graph search algorithms. one
for each physical dimension of the
rectangles. Secarching individually in each
dimension improves the overall search
strategy allowing the effective pruning of
useless combinations. Experimental evidence
of how dimensional splitting strengthens the
overall search strategy is given.

1. Introduction

The efficient packing of two dimensional objects
affects the core business of several kinds of
industry such as steel. thin film. paper and others.
Normally. they have to cut small stripes of
different length and width from bigger coiled

rectangles of raw material by combining them in
such a way that trim loss is as low as possible.
This activity is crucial to their productivity. and
thus highly relevant to their business. Dedicated
experienced people normally apply naive methods
to efficiently build sequences of cutting schema
able to cover the overall set of workable
commercial demands. Unfortunately. this packing
problem is known to be hugely combinatoriil
even with tens of prototype rectangles of different
sizes and the "stock cutting” industry suffers from
its intractability. The "exact" computer discrete
optimization techniques applied so far. such as
Simplex Partial Columins Generation. were not
able to deterministically produce good object
packings in a reasonable response time. We
tackled this Roll Cutting Problem devising a
"dimensional decomposition" technique. we
called 1D+1D heuristics, that has been
successfully experimented in a big steel industry
first (AST-ILVA) and then replicated in other
factories. The technique is based on the co-
operation of two separate graph search algorithms
each one dedicated to a single dimension of the
regularly shaped planar objects. Given m possible
rectangular objects to cut from » available coils,
then the "unfolding" of the two dimensions has
the positive consequence to reduce the average
time complexity of (he resulting solution
approach from an expected

Response-Time = CONST * (21+m,)
to a more attractive
Response-Time = CONST * (211 + 2)
where CCONST is a common constant factor

related to the speed of the machine. As a result,
even if the complexity of the devised dimensional
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unfolding approach remains exponential. it is
able to provide near optimal results in all real
world cases faced so far. With the term near
optimal we mean that epfimal cutting plans can
be exhaustively found in more that 95% of the
cases within a reasonable response time (less than
120 seconds on a Pentium). This result is
obtained through the dimensional unfolding
which permits to avoid useless search. We
practically demonstrated that the same basic
1D+1D technique applies to other kinds of cutting
stock industry and is even suitable for parallel
implementations whenever scale up factors
require it. In fact, we applied 1D+1D to thin film
industry (MANULI SpA) and also extended a
critical pilot customer installation (MARCORA
SpA) to exploit a parallel implementation. All
these systems have been written in Common Lisp
and now form a unique specialized platform
named ROLL-CUTTER. Within the rest of the
paper we will follow the steel industry study case
to introduce the problem and the proposed
solution. In section two. a precise description of
the Roll Cutting Problem (RCP) together with the
previously attempted Integer Linear
Programming approaches are presented in some
details. Section three introduces the 1D+ID
decomposition and its strength in comparison
with more classical 2D Implicit Enumeration
Techniques. Feedbacks concerning the
applications released so far are presented in
section four. Section five discusses some of the
implementation issues while section six gives an
idea of how the ROLL-CUTTER platform is now
going to be maintained and extended.

2. The Roll Cutting Problem

The overall objective of the Roll Cutting Problem
(RCP) is to ensure the production of a sequence of
Jeasible and near optimal cutting plans given a
set of available coils and a set of workable
commercial orders. To explain what this means.
we will neglect any unnecessary detail concerning
the chemical requirements and instead we will
concentrate on the physical dimensions of the
objects which constitute the core of the debated
combinatorial problem. Figure 2.1 shows the
basic dimensional parameters which completely
describe all the involved entities: coils (hig coiled
rectangles) and commercial orders (small
rectangles or stripes).
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Figure 2.1 Geometry of Coils & Stripes

Generally speaking. we have to manage two
linear dimensions : Length and Width. However,
to express the first linear dimension. we will use
the weight ('; instead of length Z; since it render s
the overall modelling simpler to formalize and
closer to the way steel engineers describe the
problem. Given the constant v expressing the
unitary weight of a given raw material. then
length and weight are tied by the simple relation

G =LW v

The dimensional requirements of the rectangles,
either coils x; and orders ¢;. will be thus
completely defined through their weight (7; (c;)
and their width I¥; (w;). Conventionally, weight
and width will be considered respectively as the
first and the second dimension. Moreover,
without loss of generality. we will always assume
that all the coils have the same width IV :

Wy=W  i=123..n

In this way, each coil y; will be completely
characterized just by its weight ;.

Before describing what a feasible cuiting plan
is we have to explain first how orders must be cut
out from coils, given the operational constraints
of the cutting machines (slitters). Figure 2.2
shows an introductory example where three
orders (01_, 05 .63) are cut out from two coils ( Xi
+ X2 of different weight.
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Figure 2.2  An introductory Example

Notice how coils can be bonded to reach the
needed total weight while orders can be split in
an arbitrary number of identical stripes to fulfil
the available area H". This operational mode. is
not limited to the steel industry. On the contrary,
these "cutting rules" are quite common to all
kinds of industries which must cut out planar
objects of regular shape. In fact. these rules are
tied to the cutting technology which is always the
same no matter what the nature of the specific
material to be cut is (steel. thin-film. paper,
glass). Even when small sheets must be
eventually obtained. this stripes cutting step is an
unavoidable intermediate process Actually, there
are other constraints. like the maximum weight
allowed of each stripe, that discipline the
feasibility of a cutting plan. However, even if
these constraints are properly handled within our
applications. we will not discuss them in the
paper since they would inappropriately
complicate the overall explanation.

Within each cutting plan the particular stripes
configuration adopted is uniquely identified by
the so called cutting pattern. A given cutting
pattern determines the number of stripes for each
order. The cutting pattern adopted in the example
of figure 2.2 can be represented by the vector

Y = (023 =612

By analogy, it is worth defining a coils pattern
associated to a cutting plan. A coil pattern is
represented through a binary vector X having one
component for each available coil. A component's
value is equal to 1 if the corresponding coil is
used within the associated plan or 0 elsewhere.
The coils pattern of the example is represented by
the vector

X = (x7.x) =(1.1)

Normally. a plan involves just a subset of the total
available n coils and a subset of the total workable
m orders. This means that some of the x; and y;
will be equal to zero.

Tables 2.1, 2.2. show the weight and width
values of the coils and orders used within the
introductory example of figure 2.2

Coil Width Weight Pound per
(inches) (pounds) inch
%1 50 3500 70.0
Yy 50 6000 120.0
Tab. 2.1 Coil Values of the Introductory Example
Order | Demanded | Demanded | Resulting
Width Weight Weight
(inches) (pounds) (pounds)
01 5 2800 £2% 2850
09 16 3000 £2% 3040
O3 8 3000 £2% 3040

Tab. 2.2 Order Values of the Introductory Example

In this simple cutting plan the trim loss is three
inches (50 - /5 *3] + 16 + [8 * 2] = 3). This
means 570 pounds of wasted material and the
plan would probably be considered not so good.
Nevertheless. since human planners are normally
dealing with tens of orders and coils, the huge
number of combinations would have probably
rendered the search for better plans a strenuous
task.

2.1 Formal description of RCP

We are now in the position to precisely define
what a feasible and good cutting plan is. Given n
available coils and m workable orders then a
feasible cutting plan P is defined by the couple

P = {X\Y}
where X = (x7, xp, .. xp) and Y = (v, va, ..,
) are respectively a coils pattern and a cutting

pattern such that the following m + I constraints
hold
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- xi(;
! yw:<c¢:+0 (j=1..m) 2.0
W .
m
zl YW <Ww 2.2)

2.1 ensures that for cach orderj — 1, 2, 3, ... m
the plzmncd “cig,hl docs not violate the max.
demand lu is the miax. allowed excee ums: Wwe IS._’HI
Jor the j-th order). 2.2 guarantees that the total
width /I"is never exceeded.

To plan the overall production demand. which
comprchends m diffcrent commercial orders.
what we should really build is a set {P} of

1 1 . ‘ e tha Antiva
feasible plans able to cover exactly the entire

workload. This means we should find a sct of
plans {P} observing the {ollowing m constraints

derived from (2.1) for j = 1,2, .., m.
> G
;< ywi<ci+6; (2.3)
J W Y=o

However. the problem of finding the overall sct of
covering plans is not of much interest to the scope
of the paper for a couple of reasons. First of all. it
must be nccessarily solved in different ways
according to the particular features of each
specific case (e.g. we were asked to solve it
applving an order priority rule for a steel
Jactory). Moreover. there is a practical reason
that makes this sort of global planning quite
superfluous. In fact. only the next few good plans
are really needed since the new incoming
commercial orders and the new coiled material
alter the possible combinations rendering earlier
produced plans soon obsolete.

Thus. we will now continue to concentrate on
the solution of a single feasible and good plan
which is the real core aspect of RCP. In this
framework the search for "the next" feasible and
good plan will start from a chosen pivot order &.
This pivot is the order that the human planner
wanfs fo be certain is inserted into the next plan.
As already mentioned. the choice of the pivot
order could be automatically done according to a
priority rule (e.g due-dates) or through a more
exhaustive strategy which tries in turn all the
orders as candidate pivots. Nevertheless. all these
different ways to choose the next pivot can affect
the overall computational complexity at most
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through a lincar factor (number of orders m). The
real source of non-polynomial complexity (277 711)
remains the search for a single feasible and good
plan once an arbitrary pivot order has been
chiosen.

Given a pivot order ¢ several feasible cutting
plans exist. These feasible plans are formed by all
the couples {X.Y} observing the two equations
(2.1) and (2.2). Before defining when a feasible
plan P = {X\Y) is judged to be a good plan we
have to precisely define the optimization
objectives used as selection criteria. These
optimization objectives are the following

e  Trim loss minimization :
Min (TL (Y)).

e Muximize the usage of a given cutting
pattern which is equivalent to minimize the
number of knives changes :

Max (KT (X)).

They can be formally expressed through the
following rclations

m

Min(TL(Y)) = Min(W - Z ylw]) 2.4)

"xv( v
Max(KU(X)) = Mux(;p—y—’——') 2.5)

The first objective (2.4) clearly expresses the
minimization of trim loss. The second objective
(2.5) is strongly tied to the minimization of the
numbcer of knife changes since maximizing the
usage of the same pattern (KU(X)). In fact,
according to the previous assumption. we are
working on the scarch for "the next" single plan
separately. so that pursuing the maximization of a
plan  weight. ie. plan duration. implicitly
minimize the frequency of knife changes.

We arc now in the position to define when a

Jeasible plan becomes a good plan, A candidate
SJeasible plan P = (XY} is a good plan if

another feasible plan P = {X'.Y'} does not
dominatc P through the following dominance
relationship

P' dominates P if and only if the following two
conditions are jointly verified

TL(X") < TL(X)
& (2.6)



KU(Y") > KU(Y)

As normally happens with the use of dominant
relationships. we have just identified a set of good
plans instead of giving a dcfinition of the unique
absolutely optimal plan. Tn fact. the presence of
multiple contrasting objectives  would  have
rendered quite unnatural the definition of "plan
optimality”. In other words. between a plan with
lower Trim Loss and a plan with lower Knife
Changes. we cannot say which one is the best.
Merging the two different objectives through a
linear function would be quite an arbitrary
decision. Anyway. the dominance relationship is
known to be a powerful tool able to drastically
prune ouiclassed  solutions  (Pcarl 1985).
Experimental results with rcal world data
revealed how the dominamt sct formed by the
resulting good plans has no more than five or six
members. There are other external reasons. like
overloading or underloading conditions affecting
the cutting machines workload. that can help in
making a more convenient selection amongst the
good plans.

2.2 Revised Simplex approaches

Generally speaking. the RCP problem is within
the family of two-dimensionai reguiar shaped
cutting stock problems which arc known to be
NP-hard (Dyckoff et al. 1984). This kind of
problem has alrcady been tackled through ILP
partial columns generation approaches.  This
Revised Simplex method consists in generating
only the columns suggested by the proper
auxiliary knapsack problem solved at cach step of
the Simplex iteration (Gilmore & Gomory 1966).
While the method works fince for 1D cutting stock
problems. there arc practical limitations that
makes it difficult to apply to 2D real-world
instances (Dvckoff et al. 1984). In fact. the
ordinarily number of coils and orders to deal with
are beyond the quantitics normally handled
though partial column generation. Moreover. the
presence of multiple objectives and very specific
constraints render the problem difficult to modcl
through ILP approaches.

A flavour concerning the size of the potential
search space is given considering the following
simple formula. Being m the average number of
available coils. » the average number of candidatc

orders and being & the average number of stripes
per order. the potential number of possible cutting
plans is proportional to the power-set of the coils
times the power-sct of the possible stripes. 1.e.:

2(/1+A_'m) 2.8)

MOt ol s wraliiae Far 22 z3a aad
Lypicdal averdage vaiucs ior 7. /m dila

respectively thirty. thirty and three.

3. ID + 1D Decomposition

As already recognized (Dyckoff et al. 1984). the
additional specific constraints and the particular
constitute a source of insuperable complexity for a
general ILP modclization. By contrast. within a
morc tailored approach. these problem features

can be exploited to render the modelization more
tractable (Scutella' et al. 1995). Not surprising, a
quitc simple heuristic approach. based on 1
specialized greedy procedure. already
demonstrated to produce fruitful results in a
specific  industrial  roll cutting application
(Ferreira 1990).

Pursuing the heuristic mainstream. we tackled
the problem exploiting its structure to simplify
the solution approach while avoiding degradation
of the soluiion quality. More precisely, we have
decomposed the overall two-dimensional cutting
stock problem into two one-dimensional knapsack
sub-problems we called first-dimension-
knapsack and second-dimension-knapsack. A
standard definition of the quitc popular 0/1
knapsack problem is the following (Martello &
Toth 1990).

Giiven n ohjects each one being defined through a
given cost ¢; and a given value v; maximize the
sum of v under the maximum capacity constraint
expressed by a real value O which limits the sum
of ¢’ .

We will see in which way both our sub-problems
can be easily mapped into the knapsack

modeclization and what are the benefits of this
straightforward decomposition.

3.1 First dimension sub-problem
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Given a pivot order @, the first-dimension-
Knapsack consists in the scarch for the possible
combinations of coils which provides a feasible
cutting plan just for this pivot order. disregarding
the computation of the cutting patterns 'Y which
would normally include other available orders to
minimize trim loss. This knapsack problem can
be formally stated as:

no,
Mtv(zi xi(i) 3.1
ax(—f—— 3.
w
ZI’I x,»(',- < cp +§p (3.2)
i w YpWp

Where 3.1. the knapsack value maximization,
maps the objective of finding a coils combination
X that maximizes the weight of the overall plan:
(MAX (KT'(X)) defined by 2.5.

Equation 3.2. the knapsack capacity constraint.
guarantces t(hat the coils combination X will
never excecd the weight of the pivot order 0,
Notice that this equation must be replicated for
each possible number of stripes v,. Since v,
ranges from 1| to (JI"/ w,) we have to actually
solve a_number of (II"/ wp,) knapsack instances.

Being & the average number of stripes. to solve
the first dimension sub-problem we have to solve
k knapsack instances on the average (as alrcady
mentioned. the value & is certainly contained
within the interval |1 . 20]. while its average
ranges from 2 to 5).

According to 3.1 and 3.2 a solution to the first
dimension sub-problem is identified by the tuple
XS defined as

XS = (X.KUX). yp)

i.e. a coils pattern. its corresponding weight and a
given number of stripes for the pivot order.
Actually. we arc interested in all the fcasible
patterns X obscrving the constraint 3.2. All these
patterns will form the first dimension solutions
set: {XS}. This set can be partitioned into y
different sub-sets formed through the partition
relationship

(XS} ={XS:=XSsty,=r}
Moreover. each sub-sct can be ordered by

decreasing values of weight. i.e. KU (X). The
possibility to establish such a partitioning and
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ordering is crucial within the 1D+1D framework.
In fact. it will allow to integrate the overall
optimization of both the KU/(X) and TL(Y)
objectives simply through an efficient linear
search as explained in 3.3,

3.2 Second dimension sub-problem

The goal of the second dimension sub-problem is
to find a cutting pattern Y. compatible with a
given first dimension solution. that minimizes
Trim Loss. The term compatihle means that each
candidate pattern Y must take into account the y
stripes of the pivot order 4, that have already
been inserted. Given a first dimension solution,
identificd by a tuple (X. KT'(X). _vp). the second-
dimension-knapsack problem can then be
formally stated as;

. m—1
Min(W -y wp— Z_,' yiwj) (3.3)

m-—1
ypw[,+z JymisW (3.4)

Similarly to the first dimension sub-problem,
equation 3.3 represents the objective of finding a
cutting pattern 'Y which minimize the 7TL(Y)
objective. Equation 3.4 guarantees that the
solution paticrns 'Y do not cxceed the total width
I A solution to the second dimension sub-
problem is identified through the tuple

YS = (Y.TI(Y). yp)

i.e. a cutting pattern. its corresponding trim loss
and a given number of stripes of the pivot order.
Again. the sct of feasible solutions {YS} can be
partitioned into y,, diffcrent sub-sets in the same
manner we have done for the { XS} set. Moreover.
the objective TL(Y) induces a significant partial
ordering on the cach solution sub-set {YS}, .

3.3 1D+1D Integration

To scc how the ID+1D decomposition works on
the introductory example of figure 2.2, when the
pivot order is #; and ¥; equals to three, let us



build the corresponding first dimension and
second dimension solutions

XS' = X.KUX). yp) = ((1.1). 190 .3)
YS' = (Y.TL(Y). y;) =((3.1.2).3.3)

Suppose now that the following two new coils
will become available :

Coil Width Weight Pound per
(inches) (pounds) inch
%3 25 1750 70.0
Xt 25 3000 120.0

then we can add the following new solutions
XS" = ((0.0.1.1).190.3)
YS" = ((3.0.1).2.3)

The solution sets become thus formed by:

(XS33 = {((1. 1.0.0).190.3)
((0. 0. L. 1) . 190 _3))}

(YS}3 = {((3.1.2).3.3)
((3.0.1).2.3)

Hereafter. we will sec how the availability of the
separated solutions sets {XS}, and {YS} allow
to efficiently build the sct of the good cutting
plans for the original entirc RCP problem defined
by equations 2.1. 2.2. 2.3. 2.4,

TL ()

L) (KTI(XSD.TILYS)

Figure 3.1 Dominance Frontier

According to the dominance relationship 2.6. to
build the sct of good cutting plans we have to find
all the dominant cutting plans. In other words. we
have to build the dominance frontier defined in
the plan (KT(XS).77(YS)) as shown in figure
3.1
The following pscudo-procedure (BUILD-D-
Figure 3.1 Dominance Frontier
FRONTIER) can build preciscly the dominance
frontier in linear time. The procedure has as
input the two collections of sets {XS;,. . {YS};
and the maximum number of stripes k/- of the
given pivot order 0. ‘

(Function BUILD-D-FRONTIER ({XS) {15} kj)
; Compute Dominance Frontier in D-flontier’
; Init the Dominance Frontier
(setq D-frontier nil)
: Cyele for each number of stripes i of
; the given pivot order
(Dotimes (r k;)
; find coil pattern X with max KU
(setq best-Y
(get-first-X' 1 {XS).))
; find cutting pattern with min TL
(setq bels-Y
(faet-first-Y r best-X' {YS}. )
; store the current solution
(push (list best-X best-Y)
D-frontier)))

Thanks to the partitioning and to the ordering of
the partial solutions scts {XS} and {YS} the
BUILD-D-FRONTIER can cffectively build the
dominance fronticr in lincar time. Being the
number of steps within  the BUILD-D-
FRONTIER body cqual to number of stripes k]-.
its average time complexity is equal to O(k i) To

summarize. the complete set {P} formed by the

Jfeasible and good solutions to the original RCP

problem will be formed by a// the couples
P=1{Y.X}

belonging to the dominance set. With the 1D+1D

heuristic decomposition. we have practically

reduced the complexity of the problem from an

expected

()(2(/7""/—\-:’"))
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to a more affordable
02" +2Fm)

In fact, the solution is composed of two sequential
steps : first-dimension-knapsack and second-
dimension-knapsack. Time complexity of the first
step is proportional to the power-set of the coils

0O2") while for the second step the time
complexity is proportional to the power-set of the

possible stripes ()(2km ).

4. Application payoff

Three applications based on the 1D+1D heuristic
have been already released to three different
customers. Other customer projects are in
progress. Table 3.1 shows 15 examples produced
during one of the customer acceptance tests.
Notice how ROLL-CUTTER produced expert
level cutting plans in less than 120 seconds
compared to the 1000 seconds taken by human
experts.

1) The quality of the cutting plans produced by
the applications are comparable or even better
than the cutting plans produced by experienced
human beings. Particularly, the dominance set
always includes the cutting plans that would have
been produced by the top level experts.

2) The average processing time taken by the
system to produce a set of dominant cutting plans
is in the order of thirty seconds. Usually. human
experts need from ten to sixty minutes to produce
a good cutting plan.

ROLL-CUTTER is currently installed in three
different factories :

e A service center whose main activity consists
in cutting small coils from bigger ones. The
system is integrated with the Manufacturing
Information System which supplics the
information concerning the commercial

demands and the coils to nrooram The
aemangs ang e cous ¢ program. i1ne

cutting programs formulated by the systern
are returned to the MIS once validated by the
human operator. This kind of system

The payoff of the released applications can be
summarized by the following two results:

integration applies to the other two ROLL-
CUTTER installations as well.

Cutting] # Of | Total # Of % TIME # Of % TIME
Plan # | orders | weight | knives Trim (SECO) knives Trim (SEC)
inserted changes | Loss changes Loss
into the
Plan HUMAN|HUMAN|HUMAN| ROLL | ROLL | ROLL
EXPERT|EXPERT|EXPERT|CUTTER|CUTTER|CUTTER
1 4 6797 4 2.64 > 1000 2 2.64 <30
2 7 38924 6 0.89 > 1000 4 0.67 < 60)
3 5 25000 3 1.33 > 1000 3 1.33 <60
4 4 21000 3 2.30 > 1000 3 1.33 <60
5 10 38000 5 0.76 > 1000 4 0.83 < 30
(4} 17 16300 (§} 0.82 > 1000 5 1.52 <60
7 5 7700 2 4.79 > 1000 2 3.00 < 6()_
8 4 2600 2 2.00 > 1000 2 1.71 < 60
9 10 43100 6 0.76 > 1000 5 0.96 <30
10 7 2280 2 1.33 > 1000 2 1.33 < 120
11 5 4620 2 0.75 > 1000 2 0.75 <30
12 7 9000 3 3.27 | > 1000 3 3.17 < 120
13 5 13300 5 3.62 > 1000 3 3.99 <120
14 10 43100 6 0.76 > 1000 () 0.76 <60
15 8 12100 4 1.15 > 1000 3 1.00 <60
| Tab. 3.1 Results taken from a Customer Acceptance Test |
1440 TAAI-96



o A steel industry which direclty produces
coils cutting them into smaller stripes.
Within this context the auxiliary facilities
provided by the system that allows fast
selection / ordering of both coils and
commercial demands have been particularly
appreciated.

e The third site is concerned with thin-film
production. In this case the performance of
the system has been specifically stressed for
a couple of reasons. First of all. the
combinatorial facet of the problem was
particularly reievant. Secondly, the system
had to knock out a software program already
used for several years from the human
operators.

S. Implementations Issues

To implement the ROLL-CUTTER basic
platform it took us two man years using Gold-
Hill Common Lisp Developer running under
Windows 3.11. We found the Lisp language
specially helpful during the tuning of the
knapsack search algorithms.

A variety of well studied exact and
approximate  algorithms to  solve one-
dimensional knapsack problems exist (Martello
& Toth 1990). The two different one-
dimensional knapsack problems. can be seen as
two special instances of the general "value-
independent-knapsack-problem” (also known as
subset sum problem) where # objects
characterized by different cost values ¢; and a
constant profit value v must be put into a
knapsack without exceeding its capacity (.
Toth's book devoted to (/1 knapsack problems
presents the well studied MTS algorithm which
is based on tree search and dynamic
programming techniques. In our implementation
we followed this approach augmenting the basic
trec search mechanism with heuristic criteria we
derived from the specific nature of the problem.

Two different depth-first tree-search
algorithms (DFTS) have been implemented. The
two algorithms have a common depth-first
strategy which provides the implicit enumeration
mechanism on top of which two specialized
heuristic search policy have been imposed. The

features of such DFTS Theuristics are the
following

0 First-dimension-DFTS features:

o Coils. which represents the knapsack
objects. arc pre-ordered by decreasing size
(we verified how this ordering increases
the pruning power).

e Lower values of y; for the "pivot" order
are tried first.

0 Second-dimension-DFTS features:

e For each candidate order 6; the number
of stripes v'; which allows to exactly match
the demanded weight are tried first. This
means to select first a number of stripes y’j
such that

n_ .,
i x,-(,~ ' N

In this way the splitting of an order in
different lots is avoided as much as
possible.

6. Maintenance & Extensions

ROLL-CUTTER is in continuous evolution since
its first customer installation which happened to
be in January 1995. Within this evolution we are
pursuing (wo main objectives:

e Continue to improve the performance of the
basic 1D+1D decomposition technique

o Extend the application of the 1D+ID
technique to other different cutting stock
domains.

In the first direction we are currently developing.
for a ROLL-CUTTER customer a parallel
implementation of the I1D+1D algorithms. The
implementation is based on a cluster of 586 PC's
which co-operate during the building of the
feasible solutions sets {XS!. {YS}. This
improvement will allow us to tackle the
production of cuitting plans optimized throughout
the overall orders portfolio.

Case Studies 1441



Concerning the extension of the application
domains we already successfully applied the
1D+1D technique to a different kind of industry :
thin-film. Even if the basic technique is the
same, this attempt generated some modification
to the original ROLL-CUTTER platform. These
needed modifications will bring us to generalize
the overall ROLL-CUTTER shell. The idea is to
have a unique platform providing the basic
ID+1D different decomposition mechanisis
from which several more specialized platforms
can be built. Other than Thin-film, another
specialized platform is going to be derived for
paper industry (glass industry is a good
candidate t00). Moreover, in the near term we
intend to experiment the ID+ID "unfolding"
technique even with 3D placement problems
(e.g. ships loading and unloading).

7 Conclusions

The ID+1D problem decomposition allowed us
to face a complex two dimensional cutting stock
problem (RCP) reaching expert level
performance. The method has produced
cxemplary results within  several released
applications. So far, we already demonstrated
that the method is able to discover the complete
set of dominant optimal solutions, 95% of the
time, in a few seconds. It takes 15 minutes or
more to build the "next" near optimal cutting
plan to experienced human beings.

The ROLL-CUTTER platform on which all the
released applications are based is now evolving
in different directions. A parallel
implementation of the 1D+1D technique 1o solve
the global optimization of the overall cutting
shop-floor is in progress. Moreover, we are
generalizing the platform to facilitate the
development of different applications addressing
other industry sectors.
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