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Abstract 
This paper describes an intelligent system which detects 

the location of troubles in a local telephone cable network. 
Such a task is very challenging, tedious, and requires 
human experts with years of experience and high analytical 
skills. Our system captures the expertise and knowledge 
required for this task, along with automated access to 
database systems, so that the system can help a human 
analyst to pin-point network trouble location more 
efficiently and accurately, ultimately reducing the cost of 
maintenance and repair. The system utilizes probabilistic 
reasoning techniques and logical operators to determine 
which plant component has the highest failure probability. 
This is achieved by building a topology of the local cable 
network, constructing a causal net which contains belief of 
failure for each plant component, given their current status, 
history data, cable pair distribution, and connectivity to 
other components. The Trouble Localization (TL) 
Module described in this paper is a crucial part of a larger 
system: Outside Plant Analysis System (OPAS) which has 
been deployed Statewide for over nine months at Pacific 
Bell PMAC centers. The TL system module utilizes AI and 
Object-Oriented technology. It is implemented in C++ on 
Unix workstations, and its graphical user interface is in an 
X Window environment. 

Background 
Pacific Bell has the largest and most complex tele- 

phone cable network in the state of California. The main- 
tenance of this network is divided into two primary areas: 
reactive and proactive/preventative maintenance. Reac- 
tive maintenance is customer driven. For example, when a 
customer is experiencing trouble, they call for assistance 
and a technician is immediately dispatched to resolve the 
problem in the quickest way possible, which is not neces- 
sarily the most cost effective. Preventative maintenance is 
the ongoing repair and upkeep of the network which 
occurs prior to affecting customers. The trigger for pre- 
ventative maintenance is based on several factors, but pri- 
marily recommendations from the technicians in the field 
and huge quantities of data regarding the maintenance and 
trouble history of each segment of the entire network. The 
ultimate goal of maintenance is to provide the customer 
with clear, continuous service and preventative mainte- 
nance is critical to achieve success. 

The task of preventative/proactive maintenance for 
the entire network is distributed over five PMACs (Pm- 
ventative Maintenance Analysis Centers) at various loca- 
tions throughout the State. Obviously the cost of 
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maintenance is very high and it is more effective to repair 
a troublesome network component once than to dispatch 
several technicians over time to patch and repatch the 
same trouble spot. Unfortunately, it isn’t always easy to 
identify the exact location and cause of a particular source 
of trouble. It is a very time intensive, laborious manual 
task. If we are able to detect a problem early and identify 
the faulty device precisely, we are able to cost effectively 
manage the repair of the network facility before the cus- 
tomer is impacted. 

The crucial task of a PMAC analyst is finding the 
exact location and root cause of telephone cable network 
troubles. Such a task is very challenging, tedious, and 
requires human experts with years of experience and ana- 
lytical skills. An automated system with efficiency and 
precision will sigticantly reduce the maintenance cost 
and enhance customer service. 

omain Description 
The goal of preventive maintenance is to identify 

potential troubles before they affect a customer’s 
telephone service. Indications of a degradation in the 
network are buried in several sources of information or 
databases. It is quite tedious and time consuming to 
retrieve this information, correlate potential symptoms, 
and derive a diagnosis. Even if this massive data mining 
task can be performed, one has to balance the cost of 
exhaustive diagnosis with the timeliness of identifying 
more serious troubles. In practice an analyst’s attention is 
drawn to trouble based on information in a report called 
Program Scan. Every night an automated testing machine 
(called Predictor) tests the telephone network and collects 
the results in the Program Scan morning report. 

Preventative maintenance often begins with a series 
of trouble indicators from Program Scan reports, in which 
trouble codes are associated with telephone cables and 
pairs. The type of trouble code represents the integrity of 
the line, ranging from Test OK, DC Fault, Open Circuit, 
Cross Talk, Ground, or Short. 

Figure 1 depicts a sample telephone network, from an 
exchange (CO, the central office) to a customer’s 
neighborhood. depicted by the letters A through H. The 
network from CO to a customer’s house consists of many 
network elements such as the feeder cables (O6,36), cable 
splices in man holes (MH#2), a cross connect box (also 
called a B box, labeled X in Figure 1). distribution cable 
(0601), several splice points on the distribution cable, and 
terminal boxes A through H. When a Program Scan shows 
a trouble, in principle the trouble can be anywhere from 
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the CO to the wires connecting terminal boxes to a 
customer’s house. Much of this network is buried and not 
easily accessible for testing. The difficulty is to locate one 
cable pair (one line going to a customer’s house) or a small 
group of cable pairs from a potentially large set of cable 
pairs (usually 3600) requiring attention and furthermore, 
to find the location of the trouble along that pair or pairs. 
Using Program Scan data it is easy to narrow down the 
defective cable pair range. However, to provide 
redundancy or to support growth, a cable pair may appear 
in multiple locations (though the telephone connection is 
only active in a single location). In this situation it is 
common for a trouble at one location to manifest itself at 
another location. When a single trouble manifests itself in 
multiple locations, it further complicates the diagnosis. In 
summary, the problem is to find the physical location of 
the trouble and the associated cable pair. For example, in 
Figure 1, the physical location of a trouble can be any one 
or more of the following: serving terminals A through H, 
the distribution cable (bounded by cable pair count), the 
splice junctions, the B box, feeder cable, or the central 
office (CO). 

The analyst looks for patterns in the data and attempts 
to group the problems into network segments. He then 
retrieves related records from various legacy systems, 
such as an ACR report from LFACS (a type of cable 
record report from a legacy system which stores 
information about the physical outside plant), Repair 
History from MTAS (another legacy system which stores 
trouble repair history), and a Defective Pair report from 
LFACS. He may also search for related P3028 reports 
(which are written by technicians about observed 
conditions in the field), study the corresponding cable 
map, and even run other tests to gather further 
information. The goal is to pin-point the trouble location 
so that a technician can be dispatched for field testing. 
This process is slow, error-prone and tedious, requires 
special experience, knowledge, and analytical skills. 

The reasoning process of an expert analyst is quite 
interesting. Normally, the analyst does not have all the 
relevant information available up front to support a proper 
diagnosis. As the analysis progresses, the analyst is driven 
towards various plausible causes and decides to collect 
information from various sources. The quality of 
information is often poor, forcing the analyst to seek other 
sources of information or derive partial conclusions. 
Formulating plausible hypothesis and collecting data to 
substantiate the hypothesis goes hand-in-hand - often the 
new data can rule out an earlier hypothesis or point 
towards a more appropriate hypothesis that subsumes 
many possible causes. For example, if many sets of cable 
pair coming from a B box show trouble then it is a 
plausible conclusion that the trouble is in the B box and 
not in the individual cable pair sets. It is obvious that the 
reasoning is inherently non-monotonic and the traditional 
backward chaining techniques (as used in MYCIN) are not 
appropriate. What is needed is a truth maintenance system 
reasoning engine with the power to handle probabilistic 
reasoning. Causal networks combined with Bayesian 
inference provides an appropriate framework for non- 
monotonic reasoning coupled with probabilistic reamn.ing. 
Given the heavy emphasis on conditional reasoning by 
expert analysts, poor quality of information in databases, 
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and the non-monotonic nature of the reasoning, we found 
the Causal Network approach to be both elegant and 
scalable and selected it as a foundation for solving the 
trouble localization problem. 

Fig. I. An example of local telephone network. 

System Architecture 
The purpose of the Trouble Localization Module is to 

automate the physical and mental process of a PMAC 
expert, capture the expert’s knowledge, and provide a 
useful tool for both new and experienced analysts. TL 
provides a way for the PMAC analyst to locate cable 
network troubles more efficiently and accurately. 

The TL module utilizes Object-Oriented technology 
for knowledge representation and Artificial Intelligence 
methodology for reasoning and inference. 

The major components of the TL module and its 
connections with OPAS Data Server are depicted in Fi,oure 
2. The functionality of the Data Server is to access the 
OPAS database, interface with Pacific Bell’s legacy 
systems, and provide the TL module with its data retrieval 
and storage requirement. 

The TL User Interface is an X Window based GUI, 
which allows the user to select a trouble list from legacy 
system reports, determine history range, run the trouble 
diagnosis, display the topology, causal net, and 
localization results, in addition to performing disk file 
manipulation tasks. 

The TL system module consists of three major 
components: 

1. Trouble Localization Specialist, which is responsible for 
generating the topology and the causal net, quantiza- 
tion of Program Scan and history data, and report 
creation. 



, 

Fig. 2. TL system components and its connections to QPAS 
Data Server. 

2. Bayesian Inference Specialist, whose function is pro- 
cessing the prior probability and likelihood of failure 
for each node and propagating the evidence through- 
out the causal net, and computing the final belief of 
failure for each plant component. 

3. Ranking Matrix Specialist. which is responsible for acti- 
vating logical operators and combining their results 
with the result from the Bayesian operator, and then 
generating the final trouble location ranking list. 

Trouble Localization Strategy 
The theoretical foundation of causal networks and its 

associated Bayesian operators is based on the book 
entitled Probabilistic Reasoning in Intelligent Systems: 
Networks of Plausible Inference, by Judea Pearl (Pearl 
1988). The trouble localization task starts with the 
generation of a local plant topology graph which is very 
much like the hard copy cable map the PMAC analyst 
uses. Then another graph, a causal network, is constructed 
based on the plant topology. This graph takes 
consideration of the causal relationships among the 
different types of plant components, their history data, and 
Program Scan data. 

The probability of failure is first calculated for each 
node, and mom importantly, the evidence (belief of failure 
or non-failure) is propagated throughout the causal 
network according to certain rules. The value of belief in 
each node is then updated. When the causal network 
reaches its equilibrium state, i.e., no more evidence 
propagation needs to be performed, then the node with the 
highest probability of failure is the most likely the source 
of trouble. 

The process starts with the creation of a trouble list 
which consists primarily of the Program Scan data. The 
cable and pair range of the data is determined by the user. 
Based on this input data, the TL module then requests 
several LFACS reports, parses them, and constructs a 
cable network topology. This network topology contains 
information on connectivity of the portion of the network 
of interest, as well as detailed information, including 
history, about each individual plant component. 

In the next step, the TL module applies six operators 
to the given data. The first is the probabilistic reasoning 
(Bayesian) operator, and the remaining five are logical 
operators. A Causal Network is built based on the 
topology for applying Bayesian operator. It is a network of 
nodes, where each node contains state information (belief 
of failure) of a plant node. Two nodes are connected 
through a causal link, which means, the state of one node 
is the cause of the state of the other. 

The belief of failure computed from the Causal 
Network is purely dependent on the Program Scan and 
history data, which is quantized to be used in the Bayesian 
inference procedure. Therefore, quantization of this data is 
also an important step of the process. 

There are other factors which will influence the 
decision of which plant component is the “guilty one”. 
Thus, in addition to the Bayesian Operator which is based 
on a probabilistic model, five logical operators are created 
to fine tune the trouble localization process. These are: 

(1) TDE (Total Damage Explained) operator, which 
calculates the percentage of total trouble coverage in a 
particular plant component; 

(2) DWTC (Damage Within Total Count) operator, 
which calculates the percentage of trouble indicators 
within a total cable pair count of a particular plant 
component; 

(3) Worker operator, which calculates the percentage 
of working lines within the total number of cable pairs in a 
serving terminal, 
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(3) Rule-based ordering, in which the order is 
determined using AI rule-based techniques. 

Prcgram Scan 

Reps 

(4) Failure Type operator, which calculates a weight 
factor for a particular plant component, using the weight 
table for failure type and the type of trouble indicators 
observed, and 

(5) Cluster operator, which calculates the number of 
clusters, cluster compactness, and overall cluster measure 
for Fl and F2 cables. 

The Failure Measurement Matrix is generated from 
the output of these six operators. These outputs, 
normalized to values between 0 and 1, form the columns 
of the matrix, and the plant components, identified in the 
network topology, form the rows of the matrix. An 
ordering procedure will be designed to generate a final 
ranking list for plant components based on the total failure 
belief. Several schemes are being considered: 

(1) Fixed ordering, in which the order of applying the 
operator’s output in the ranking process is fixed before 
run-time, 

(2) Dynamic ordering, in which the order is 
determined during the run-time with predetied rules, and 

\(-L)/ 
Generate Repi 

4.J 
RepVTrwiIe Ranking LISI 

The following subsections further describe the 
processes within the TL module. 

A. Construction qf Network Topology 
The goal of this procedure is to generate a network 

topology by issuing a request to the LFACS legacy 
system, receiving a report, parsing the report, and then 
building the topology. It is assumed that the PMAC 
analyst running the Trouble Localization module 
determines which wire center, cable, and pair range they 
want to examine. Using these as input data, several reports 
can be obtained to construct a network topology. Figure 4 
shows an example, which is based on Figure 1 shown in 
the first section. 

In the future we hope to streamline this process 
through direct access to the LFACS system. Currently we 
are constrained to parsing reports due to the proprietary 
nature of the LFACS database. 

Fig. 4. An example ofplant topology. 

B. Construction o_f Causal Network 
The Causal Network is built based on plant topology 

information. The graph nodes are classified into four 
categories: 

- History Bayesian Nodes 

- Plant Bayesian Nodes 

- Cable Bundle Bayesian Nodes 

- Program Scan Bayesian Nodes Fig. 3. TheJlow of control in TL module. 
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The information in History nodes comes from three 
SOLIPXS (from three databases): 

- PMAC history, 

- Repair history, and 

- Defective pairs. 

The information in Program Scan nodes comes from 
related program scan reports of corresponding cable and 
range. Processing is required to quantize, weight, and 
normalize this data so that an evidence vector may be 
computed for each node. The information in Plant and 
Cable bundle nodes is inherited from their counter parts in 
the plant topology. 

The Causal Network (or sometimes referred as 
Bayesian Network) is constructed as a directed acyclic 
graph (DAG). The arrows in the graph represent causal 
influences of one node upon to another (Figure 5). 

The functionality of the four different types of nodes 
(shown in Figure 6) in the Causal Network graph are: 

- History Node 
This node contains the probability of repeated history 
failure of a particular plant component. 

- Program Scan Node 
This node contains the evidence of current failure 
observed through Program Scan data, on a cable 
bundle. 

- Cable Bundle Node 

This node contains the probability of failure within a 
specified range of the cable bundle. 

- Plant Component Node 

This node contains the belief of failure regarding the 
particular plant component. 

ScemrioI: Chnd Network 

In directed acyclic graphs, the relationship between 
any two nodes is defined as a parent-child relation. This is 
illustrated in Figure 7. The parent node is the one with a 
link arrow pointing away from it, and the child node is the 
one with a link arrow pointing towards it. 

A Bayesian node x is characterized by its belief 
BEL(x), the prior probability, p, and the likelihood 
parameter, 1. New information regarding a node is 
communicated to it by either changing the prior 
probability or the likelihood parameter. After receiving the 
new information, new values of appropriate parameter are 
computed and the evidence is propagated to other 
neighboring nodes. 

Basic Types of Nodes in Causal Network 

Histay Node i 1 

Plant Component Node : ; 

Cable Bundle 

. . .._ 

Node : -. ___. .. 

Program Scan Node 

Causal Link 

0 

Fig. 6. Basic types of graph nodes. 

The flow of propagation of evidence between a parent 
node and a child node is that the prior probability, 71, is 
passed from the parent to the child, and likelihood, h , is 
passed from the child to the parent. 

In case of a network of nodes, the flow of propagation 
for each node becomes: 

- Compute n: 

- Compute a 

- Compute BEL (belief’) 

- Propagate n to its child nodes 
Fig. 5. The corresponding Causal Network to Figure 4. 
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- Propagate h to its parent nodes 

where BEL (x) = a0 lx(x) @h(x) 

a is a scaling factor, 

n (x) = J-w ‘quv 

h (4 = Myp. h (Y> 9 

and 

is the conditional probability matrix. 

The conditional probability matrix is especially useful 
when there are multiple parent and child nodes. 

Further details on the computation of the parameters 
of a Bayesian node and propagation rules can be found in 
Ref. [l] (Pearl 1988). 

Relationships among Nodes in Causal Network 

Fig. 7. Inter-node relationships. 

C. Quantization qf Program Scan Data 
The goal of this procedure is to compute the values of 

likelihood in the Program Scan nodes of the Causal 
Network (Figure 8). The input data is obtained by running 
Program Scan, given the cable and its pair range, which 

provides the ver code, trouble message, and telephone 
number for each cable pair. The ver code is then mapped 
to a number between 0 and 1 based on a table look-up. The 
Program Scan data is divided into groups according to the 
cable pair range of Cable Bundle node, to which a 
Program Scan node is connected. Within a group, all 
values of mapped ver codes are summarized and 
normalized to calculate the likelihood vector for a 
particular Program Scan node. 

D. Ouantization of-History Data 
The history information related to a particular plant 

component is classified into three categories: 

- PMAC History 

- Repair History 

- Defective Pair History 

The information in each category is retrieved and 
processed, and a number between 0 and 10 is assigned. 
The number then is multiplied by a predetermined weight 
factor for that category. The resulting values from the 
three categories are summarized and normalized to a 
single value which is used to compute the prior (evidence) 
vector (Figure 9). This vector is stored in the 
corresponding History node in the Causal Network. 

, I t 

prl 
I 

Table to&-Up 4 
I 
I 

1 
I Proc8s.s Progrmn Scan Dde i 
I~~~~....-.~~~~~~~~~..---~~~~~~~..----~~~~.~...--.~~~~~~~, 

Fig. 8 Program Scan data quantization. 

D.1 Quantize PMAC History 
The source of PMAC History will be mainly from 

P3028 reports. These reports are classified into six 
different bins: 

- Input file 

- Closed; Construction job 

- Pending status; No work needed but 

trouble found 

- Closed; No trouble found 

- Work in progress 

- Closed; Work completed 

The value of quantized PMAC history is then selected 
from a table. 
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Fig. 9. History data quantization. 

0.2 Quantize Repair History 
The quantization method of repair history is based on 

predicting the behavior of repair needs of a particular plant 
component from its past records. By fitting a line or curve 
to a set of points located within time and percentage of 
repair axes, the future time at which the percentage of 
repair will exceed a certain fixed value (e.g., 10 %), can be 
determined (Figure 10). Using this tune value, the 
quantization value is then computed based on a predefined 
function (Figure 11). 

0.3 Quantize Defective Pair History 
The quantization value for defective pairs is determined 
based on a simple function (Figure 12). The input data is 
expressed as a percentage within a cable. For example, if 
the following mapping function is used, then 20 % of 
defective pairs will result in value of 5 for the 
quantization. 

0.4 Combine The Quantized Histories 
The overall value of history quantization is calculated 

by multiplying each individual value by its corresponding 
weight factor, adding them together and then dividing by 
the sum of the weight factors. 

-12 10 4 6 2 8 IO 12 14 16 18 20 22 24 Modh 

Fig. 10. Fitting a line to a set of points representing repair 
history. 

I I I I I I I I I I I I I I I I I I* 
12 IO 8 6 d 2 2 4 6 8 IO I2 14 I6 18 20 22 26 Month 

Fig. 11. Calculating the quantization value for repair 
history. 

0 
I 

10 
I 

20 
I 

30 
I 

40 
I 

4) 

Fig. 12. Calculating the quantization value for defective 
pair history. 

The final value of combined quantization is computed 
aS: 

Overall Value = (a* Rt b * Dt c* P)/(at b t c) 
where 

a = Weight Factor of Repair History 

b = Weight Factor of Defective Pair 

History 

c = Weight Factor of PMAC History 

R = Quantized Value of Repair History 

D = Quantized Value of Defective Pair 

History 

P = Quantized Value of PMAC History 

System Implementation 
The OPAS system is deployed in two centralized data 
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centers for use throughout the State of California by the 
five PMAC centers. Each data center contains all the com- 
munications links to the legacy systems and the data stor- 
age required for the OPAS system and the ‘IL module. In 
essence, the OPAS database, which has been extended to 
support TL, acts as part of the knowledge base for the TL 
Module. 

The TL Module is accessed by the PMACs through 
their workstations and is used primarily by analysts and 
engineers. The system is used on as-needed basis depend- 
ing on the analysis requirements of the particular PMAC. 
As time progresses, we would expect that the TL Module 
would be used on a daily basis to help identify specific 
trouble areas of the network. 

The expected payoff from the addition of TL to the 
OPAS system is tremendous. The primary purpose of TL 
is to locate the source of network trouble. By identifying 
the correct source of the problem without a site visit from 
a technician is a considerable cost savings. Prior to the 
develop of this system multiple site visits were required 
before a trouble could be identified and then repaired. 
Often the location of a trouble had been guessed and a 
technician dispatched only to discover that the trouble was 
elsewhere and the technician in the field was not qualified 
for that type of repair. With the addition of TL to OPAS we 
are able to dispatch the required resources to the site with 
the proper equipment and get the problem resolved before 
the customer is affected. In addition, since more network 
problems can be accurately located, the analysts and engi- 
neers in the PMAC are better able to plan for the repairs 
(i.e. schedule digging crews, allocate funding). 

Scenario II: Plant Topology 

Fig. 13. Another example of local telephone cable 
network. 

The other primary source of payoff is the reduction of 
the work load on the PMAC analysts. By providing the ‘IL 
module, the PMAC analysts are able to bypass the horren- 
dously tedious manual process of trouble localization 
analysis. Because the TL module is an automated process, 
the manual work is no longer necessary thereby speeding 
up the analysis process and freeing the PMAC analysts to 

work on larger projects. In addition, TL is of great benefit 
in several of the PMACs where the current staff do not 
have the extensive outside plant knowledge and analytical 
skills required to do trouble localization. ‘I’L provides 
them with expert analysis where none is currently avail- 
able. Also, because it is fully automated, TL can provide 
the PMAC users with fully documented support for their 
analysis decisions, which can be reviewed by the PMAC 
staff for accuracy and training. 

Overtime, we expect that the use of TL within the 
PMAC will build the knowledge of the existing staff in 
analysis and localization process. With the future develop- 
ment of an explanation facility for each step in the analysis 
process, users will learn the analysis steps required and 
will readily apply their knowledge. And as the knowledge 
of the user team increases they will be able to manipulate 
the current weights and operators to better suit their partic- 
ular environment. And of course, since we are replacing a 
manual process with a primarily automated process, we 
yzxro;the current work will be accomplished in a timely 

. 

WC 

BBoxl 

BBox2 

Fl CBLOl 

F2CBLOl F2 cable 0101, 
01 l-600 

F2CBLOl 
02 

ServTerm 
1 

ServTerm 
8 

ServTerm 
10 

ServTerm 
20 

ServTerm 
30 

ServTerm 
50 

x connect 

Fl cable 

01, l-400 0102, 175 
1400 Apple St. 

01, 
l-1 000 

F2 cable 0102, 
1400 

terminal FIXED 0101, #l Elm 
l-200 st. 

terminal RA 0101, #8 Elm 
l-100 st. 

terminal FIXED 0101, #lo Elm 
l-25 st. 

terminal 
I Fu4 I sk?!ko I I #5:t!1m I 
I I I I I 

Table I. Plant component information. 

Development of the underlying TL system was under- 
taken by three individuals and took approximately 36 
man-months. Currently a team of five is completing the 
work through full-deployment which is expected within 
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six months. The development team relied heavily on their 
knowledge of AI, C++, database programming, user inter- 
face and system design. In addition, considerable effort 
has been spent with the domain experts to help the team 
understand the domain and to ensure that the system under 
construction would suit the needs of the users. The cost 
for the entire development of TL is estimated at $1.4 mil- 
lion. 

Cable Pair Ver Serving co Side 
Code Terminal Cable 

0101 5 11 servTerml0 01:l 

0101 6 11 servTenn8 01:2 

0101 7 14 servTerm1 01:3 

0101 12 14 senrTerm8 01:4 

0101 20 21 servTerm1 01:5 

0101 21 21 sewTerm 01:6 

0101 22 21 servTerm8 01:7 

0101 23 21 servTerm1 01:8 

0101 24 21 servTerm1 01:9 

0101 25 11 servTem11 01:lO 

0101 26 14 servTerm8 0l:ll 

0101 27 21 servTerm8 01:12 

0101 28 11 servTerm1 01:13 

0101 50 11 servTerm1 01:14 

0101 60 11 servTerm8 01:15 

0101 75 11 servTerm1 01:16 

0101 79 11 servTen1 01:17 

Table 2. The trouble list from Program Scan. 

Application Results 
The testing of TL module was conducted in two 

stages. The first one involved individual component 
testing, especially of the Bayesian Inference Specialist. 
Over sixty different scenarios were designed to verify the 
response and behavior of the causal net. 

A point worth mentioning is that the object-oriented 
design approach allowed us to easily manipulate the input 
values and observe the output of each system component. 
The second testing stage involved the entire system. 
Figure 13 shows one of the scenarios. 

Table 1 shows the plant information retrieved from 
the database. 

Trouble Description: Table 2 shows that battery cross and 
ground trouble indicators occur on Cable 0101 between 

the pair range 1 to 100, in a random fashion. However, the 
troubles are mapped back to CO side cable, 01, from pair 
range 1 to 17, consecutively. 

Desired Result from PMAC Analyst: Fl cable 01 is the 
most likely cause of the trouble, because of the cluster 
observed. 

Actual Resultfiom TL Module: It is displayed in Table 3, 
which shows a ranked list of plant components. 

Reasoning by TL Module: Component [f IcableOl] ranks 
the highest because it covers lOO.% of troubles, and it has 
the highest value in Category [Cluster] of the Failure 
Matrix. 

The above reasoning is generated by the Ranking 
Matrix Specialist. This result is consistent with the 
expectation of PMAC experts. 

Rank Name TDE Belief D\KTC Worker Cluster 

1 flcable0 1.000 0.000003 0.017 0.000 0.680 
1 

2 servTerm 1.000 0.000895 0.085 0.529 0.091 
1 

3 sewTerm 1.000 0.001960 0.170 0.353 0.086 
8 

Fail 
Type 

0.014 

0.043 

0.086 

0.000 

0.000 

0.000 

0.232 

0.000 

0.000 

0.000 

0.000 

Table 3. Ranking matrix generated by the TL module. 

System Maintenance 
Currently the TL Module and the OPAS system are 

being maintained by the developers and we are currently 
working on plans and procedures for moving the mainte- 
nance of the entire system to a maintenance organization 
within the company. The largest portion of the TL knowl- 
edge base is in the form of a large Oracle database which 
is within the OPAS system. The database draws data from 
the specified legacy systems as scheduled. Several of the 
legacy systems provide daily/hourly update and for others, 
data is requested on demand from the legacy system and 
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the database is updated at that time. 

Since the OPAS system is applied to the current cop- 
per cable network, the knowledge about the structure of 
the plant components will remain virtually unchanged. 
Thus the knowledge related to the plant itself does not 
need updating once it is established. Updates are required 
for the decision rules that govern the determination of 
ranking of faulty plant devices or components. In this 
regard, the system is expandable because the design of 
Ranking Matrix Specialist allows more operators to be 
added to the matrix. 

5. Chuxin Chen and Teresa Hollidge, OPAS Trouble 
Localization Module, Final Report, Pacific Bell inter- 
ml documents, January 1996. 

Concluding Remarks 
We have presented an intelligent system which 

utilizes object-oriented technology and a Bayesian 
network inference approach to solve real world problems. 
The system was designed to assist PMAC analysts but not 
to replace them; the system is to release the analysts from 
boring, tedious work and let people do their job in a more 
effective and accurate way. The system generates a ranked 
list of faulty components, but the 8nal decision is made by 
the analyst. It is a decision support system where the user 
can change various parameters, try different scenarios, and 
compare different results to reach his conclusion. 

Future development includes enabling the system 
with learning capability and diagnosis explanation 
capability. We hope to provide enhanced graphical output, 
so that the dispatched technician will have an annotated 
cable map to aid the repair and maintenance of the faulty 
component. 

While this system was intended for the copper 
telephone cable network, we believe that the technology 
used here could be enhanced to support broadband 
networks. 
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