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Alwtract 
Inherent hatch to batch variability, ageing and 
contamination are major factors contributing to variability 
in oilfield cement slurry performance. Of particular 
concern are problems encountered when a slurry is 
formulated with one cement sample and used with a batch 
having different properties. Such variahility imposes a 
heavy burden on performance testing and is often a major 
factor in operational failure. 

We describe methods which allow the identification, 
characterisation and prediction of the variability of oilfield 
cements. Our approach involves predicting cement 
compositions, particle size distributions and thickening time 
curves from the diffuse reflectance infrared Fourier 
transform spectrum of neat cement powders. Predictions 
make use of artificial neural networks. Slurry formulation 
thickening times can he predicted with uncertainties of less 
than &lo%. Composition and particle size distrihutions can 
he predicted with uncertainties a little greater than 
measurement error hut general trends and differences 
between cements can be determined reliably. 

Our research shows that many key cement properties are 
captured within the Fourier transform infrared spectra of 
cement powders and can he predicted from these spectra 
using suitable neural network techniques. Several case 
studies are given to emphasise the use of these techniques 
which provide the basis for a valuable quality control tool 
now finding commercial use in the oilfield. 

Task Description 
Cements care among the most widely used and the least 
well understood of all materials. While cements are often 
viewed as simple “low-tech” materials, they are in fact 
inherently complex over many length scales. The st‘arting 
material, cement powder, is obtained by grinding cement 
clinker. The cement clinker is manufactured by firing 
limestone (providing calcium) and clay (providing silicon, 
aluminum and iron). Gypsum (calcium sulfate dilly&ate) 
is then added to moderate the subsequent hydration 
process. After grinding the clinker and gypsum, the 
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cement powder then consists of multi-size, multi-phase, 
irregukarly-shaped particles r‘anging in size from less than 
a micrometer to slightly more than one hundred 
micrometers. When this starting material is mixed with 
water, hydration reactions occur which ultimately convert 
the water-cement suspension into a rigid porous material, 
which serves as the matrix phase for concrete, a cement 
paste-sand-rock composite. 

The various chemical phases within the cement powder 
hydrate at different rates and interact with one another to 
form various reaction products. Some products deposit on 
the remaining unhydrated cement particle surfaces while 
others form as crystals in the water-filled pore space 
between cement particles. Moreover, some of the 
hydration products contain nanometer-sized pores, so that 
the size range of interest for these materials is from 
nanometers to hundreds of micrometers, or even 
centimeters if one includes the rock aggregates used in 
concrete. Due to these complexities, many questions 
remain unanswered in the science of cementitious 
materials. As with most materials of industrial 
importance, the key relationships between processing and 
underlying physicochernical properlies must be elucidated 
in order to obt‘ain better control over the materi‘d in use. 

The most common application of cement is, of course, 
in building construction, where it ha< been used since at 
least Roman times. However, the work described here is 
concerned with another important application of cement - 
in the oil industry, where about three per cent of the 
world’s armual cement output is deployed. Cement is used 
to line oil and gas wells, after drilling, by pumping a 
cement slurry between the well-bore and a steel casing 
inserted into the well, as slwwn in Figure 1. During 
placement, the cement displaces all the drilling fluid 
originally present from the drilling operation itself. The 
cement then sets to form a low-permeability annulus, 
which isolates the productive hydrocarbon-bearing zones 
of the well from the rest of the formations, from surplus 
water am.l from the surface. 

Cement is used almost exclusively for oilfield 
cementing despite the fact that its performance is variable 
and not completely understood. Cement v,ariability is 
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observed between cements from different manufacturers, 
between different cement batches from the same 
manufacturer, and between samples from the same batch 
of cement that may have aged differently during storage. 
Because of all these problems, well cementing has 
rem‘ained until now more a black art than a science. 

Various cement slurry properties, such as compressive 
strength development, permeability to oil and gas, and 
flow behavior need to be specified and controlled, taking 
into account the high temperature and pressure conditions 
prevailing downhole. For oilfield cement slurries, the 
thickening time plays a central role during slurry 
formulation since it is a measure of the time within which 
the cement is pumpable (American Petroleum Institute 
1082). Experimentally, it is the time taken to reach a 
specified consistency as measured under defined 
conditions. Longer than required thickening times are a 
potential waste of drilling time and an inefficient use of 
expensive chemical additives. Operational problems due to 
short thickening times are especially dmmatic since the 
cement may set prematurely in the casing or pumping 
equipment. Such ma&jr operating failures, or MOFs, may 
necessitate the complete redrilling of a many-thousands- 
of-feet well-bore, and can cost between $1-2 million; less 
severe MOFs in which a limited amount of redrilling is 
required typidly cost ‘around $0.6 million. Considerable 
and very time-consuming experimental effort is therefore 
devoted to precise control of slurry thickening times. 

Application Description: The FTIR Spectra of 
Cements 

In view of the overwhelming complexity of cement 
hydration, a valuable quality control tool would be a 
model predicting performance properties of a given 
cement sample prior to its use. However, the 
mathemati& modeling of cement hydration based upon 
mechanistic understanding is still in its infancy (but see 
Coveney & Humphries 1996). The novel approach taken 
here is to dispense with detailed physicochemical 
characterisation of the cement pcarticles in favour of 
methods based on a combination of statistics and cartif?cical 
intelligence. Using this approach, cement composition ‘and 
performance properties <are correlated with a judiciously 

Figure 1: Cementing an oil well. The main objective of 
such well cementing is to provide complete ‘and permanent 
isolation of the formation behind the steel casing 
previously placed in the borehole. The cement must be 
mixed to meet appropriate design p‘ammeters and is then 
pumped downhole, displacing all drilling mud from the 
annulus between casing and formation. Spacers or washes 
may be used along with top and bottom plugs to sep‘arate 
cement from drilling mud. Centralisers on the outside of 
the casing are used to keep the annular gap as even as 
possible. 

Cement head 
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chosen measurement which implicitly contains key 
information on cement composition, particle size 
distribution and surface chemistry. To gi;e the method 
any chance of commercial success, this measurement has 
also to be relatively inexpensive and easy to perform on a 
routine basis. 

The measurement chosen was based on the use of 
infrared spectroscopy, a common analytical technique used 
in the chemical sciences: it is well known that every 
chemical species has its own unique infrared spectrum. 
Indeed, chemists most commonly use this technique in a 
qualitative mode, by matching up spectral features in an 
unknown compound with previously recorded spectral 
data on known compounds available in look-up tables. An 
experienced chemist, working in a specified area of 
chemistry, can often identify a chemical by direct visu‘d 
inspection of its infrared spectrum. A more specialized yet 
equally well established application is quantitative amalysis 
of chemical mixtures, wherein measured spectra of 
unknown chemical composition (are regressed against 
line‘ar combinations of infmred spectra either of the pure 
chemical components or of mixtures of known chemical 
composition (Beebe & Kowalski 1987). 

The pcarticul,a.r variant used in this work is that of the 
Fourier Transform Infrared (FTIR) spectrum of dry cement 
powders, sometimes known as DRIFTS (Diffuse 
Reflectance Infrared Fourier Tmnsform Spectroscopy), for 
reasons which we shall now describe. III this technique, 
white light radiation from a Michelson interferometer is 
focused on a compacted s‘ample via a moving mirror. 
Radiation impinging on the sample undergoes two types of 
reflection. The first is spc~&r rc$!ectmce, where the 
radiation is reflected from the s‘ample surface as if from a 
mirror. The second is d&fuse r@i’ectancc~ whereby a 
proportion of the radiation penetrates the sample and is 
reflected from particle surface to particle surface. At each 
reflection a degree of energy absorption occurs as 
indicated in Figure 2. 

SPECULAR REFLECTANCE 

DlFFl 

Figure 2: Schematic of the diffuse reflect‘ance process 

Energy is absorbed due to the vibrat.ion and stretching of 
chemical bonds in the molecules of the powder. The 
reflected light re-emerges from the sample and is collected 
by a second ellipsoidal mirror. The Fourier transform 
technique is used to convert the emergent radiation into a 
spectrum of absorbance versus frequency. The 
experimental method for collecting FTIR spectra of 
cement powders has been dcscTibed elsewhere (Hughes et 

d. 1004, Hughes et al. 1995). The wavelength range of 
the mid infmred region of the electromagnetic spectrum is 
approximately 25xlO%m to 2.Sx10-4cm or 4000 to 400 
wavenumbers, where wavenumbers are reciprocal 
wavelength in units of cm-‘. 

Information Contained ithin Cement FT 
Spectra 

Particle Size. The extent of diffuse reflectance is 
inherently related to the p&article size of the sample, but in 
a generally unknown m,anner. Large coarse p~articles callow 
the incident radiation to penetrate deeply into the s<ample 
thus increasing absorption. However, 1,arge p‘articles show 
greater specukar reflectance which distorts the frequency 
spectrum. As the p‘article size of a sample is reduced the 
depth of penetration and therefore absorption is less since 
more p‘articles are present to reflect and limit the depth of 
penetration. Spectra ‘are therefore distorted as a function 
of particle size although sample dilution in KBr minirnises 
these effects. Accordingly, our spectral measurement is 
made with samples diluted to a concentration of 10% by 
weight in finely ground, infra-red inactive, potassium 
bromide. 

Composition. To a good first approximation the FTIR 
spectrum of any multicomponent mineral assembly is a 
linear superposition of the spectra of the pure mineral 
components. In the ca5e of oilfield cements, the American 
Petroleum Institute (API) lays down notional chemical 
composition specifications b:Lsed on the so-called “Bogue” 
clinker phases: alite (tridciurn silicate), belite (dicalcium 
silicate), aluminate (tricalciurn aluminate) and 
aluminoferrite (tetracalcium aluminoferrite). These Bogue 
phases, which themselves provide only an approximate 
chemical description, are traditionally by means of a linecar 
transformation of the chemical composition of the clinker 
expressed in terms of its major oxides, which can be 
directly detedned by other, more lengthy, non-infmred 
methods. Spectral features of the major Bogue cement 
chemical phases in the mid infrared are dominated by 
vibrations and stretching modes of water molecules which 
are located WI mineral surfaces, within the sulfate and 
carbonate minerals and/or in dciurn hydroxide. Within 
the mineral phases present, chemical bonds between 
silicon and oxygen, aluminium and oxygen, and iron and 
oxygen ‘are also active in the mid infrared region. Despite 
the aforementioned complexities due to p‘article size 
distributions and the occlusion of minerals, it is established 
that linear statistical techniques can be used to correlate 
spectral characteristics with cement chemical composition, 
provided due care is taken in the sample preparation 
(Hughes et (11. 1994, Hughes et crl. 1005). 
Other Spectral Attributes. Lack of crystallinity, 
impurities in minerals and pre-hydration have a more 
subtle effect on spectra, usually broadening absorbance 
peaks x~cl shifting the frequencies at which absorbance 
occurs. 
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We may therefore assert with confidence that diffuse 
reflectance infra red spectra of cements contain 
information on the composition, p‘article size distribution 
and surface chemistry of the material, all of which 
infuence cement hydration. 

Methods for Predicting Cement Properties 
from FTIR Spectra 

The Cement Properties Database 
The methods we use for m‘aking quantitative predictions 
are based on establishing statistical correlations between 
cement infrared spectra and selected cement 
physicochemical parameters. Specifically, we were 
interested in seeking to establish unambiguous 
relationships between the infrared spectra and cement 
properties such as chemical composition, p‘article size 
distribution and thickening time. This required the 
construction of a database containing data on 15X oilwell 
cements collected worldwide. Our database is one of the 
most comprehensive currently av,ailable on oilfield cement 
properties. It contains the following standard physical and 
chemical data on each of the 158 cements: 

cement mineral composition expressed in weight per 
cent (wt%) of the following minerals: alite, belite, 
aluminate, ferrite, gypsum, the sulfates bassanite and 
syngenite, calcium hydroxide <and c‘alcium carbonate; 

cement oxide composition expressed in wt% of the 
following oxides: S03, A&O+ Fe,&, MgO, Na@, GO, 
SiO,, P,O,, TiOZ, CrO,, Mn02, 2110 and 90,; 
binned p<article size distribution (PSD Bin), in volume 
fraction, and mean p~article diameter, in microns, as 
measured by Cilas gr~anulometry; 
weight loss on ignition, free lime content and insoluble 
residue; 
surface area as measured by Blaine’s method (cm2 g-l), 
which provides an estimate of the total surface area of 
cement particles; 
digitised thickening time curve for a neat cement slurry 
at SO “C <and solid /water ratio of 0.44; 
digitised thickening time curve for a slurry retitrded with 
0.2% D13 at 85 “C and solid/water ratio of 0.44; 

diffuse reflectance FTIR spectra recorded at 2 cm-’ 
resolution using a Nicolet SDX spectrometer. 

Modeling Techniques 
The primary objective of this research was to construct 
models to predict cement properties from FTIR spectra as 
the sole input data. The most important cement 
information that one would hope to extract from infrared 
spectra are: (i) chemical composition according to the 
Bogue and oxide representations, (ii) particle size 
distribution, and (iii) thickening time profiles for neat and 

retarded cement slurries. Accordingly, five independent 
statistic‘al models were constructed for the prediction from 
FTIR spectra of the following properties selected from the 
database: 
Model [a]: the concentrations of the four API-specified 
Bogue minerals plus gypsum, syngenite, bassanite, 
calcium hydroxide and calcium carbonate; 
Model [b]: the concentrations of the major oxides together 
with loss on ignition, free lime content and insoluble 
residue; 

Model [c]: p‘article size distributions plus mean p‘article 
diameter; 
Mcdel [d]: digitised neat thickening time curves; 
Mcdel [e]: digitised retarded thickening time curves. 
These models were subsequently used independently of 
one another. 

It has previously been demonstrated that cement mineral 
compositions (model [a]) can be predicted from FTIR 
using linear statistical techniques (Fierens & Verhagen 
1972, Hughes et crl. 1904). A suitable procedure, 
described elsewhere (Sharf, Illman 8r Kowalski 1086, 
Martens 8r Naes 1980, Beebe & Kowalski 1987), is based 
o11 ycrrtiul kwst syutrl-es (PLS). This technique is a v,ariant 
ou simple multiple linear regression which has the 
capacity to filter noise and redundant information from 
spectra prior to prediction. In this study PLS is used for 
the prediction of mineral compositions only. All other 
models make full use of artificial neural networks. 

TRANSFER FUNCTION 

COMPUTES 

1NPUTS 
Figure 3: Schematic of a single node 

The full relationships between the measurable properties 
of a cement powder and its slurry performance are not 
known ~xl are expected to be complex; that is, highly 
nonlinear (Hunt 1986, Billingham & Coveney 1093, 
Bensted & Beckett 1093, Fletcher 8r Coveney 1905, 
Fletcher et CJZ. 1995, Coveney & Humphries 1996). It is 
best, therefore, to choose a technique for finding such 
correlations which m‘akes as few assumptions as possible 
regarding their nature. Artificial neural networks (ANNs) 
offer the possibility of finding input/output correlations of 
essentially ,arbitmry complexity, and consequently formed 
the basis for the Cartificial intelligence methods we used in 
this work. The main feature of the neural network 
methodology is that input/output information is correlated 
via a system of interconnected nodes (Rumelh<art & 
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McClelland 1086, Lippmann 1987, Hush 8r Homee 1993). 
These nodes, also called neurons, care the computational 
analog of nerve cells in the human brain. A single node is 
a processing element which combines a set of inputs to 
produce a single numerical output (Figure 3). 

The strength of the output signal is given by a non- 
linear function called the transfer function. Commonly the 
transfer function is based on a weighted sum of the input 
sign,als. A complete neuml network is constructed from an 
arrangement of individual neurons which link input data to 
output data via a network of ‘arbitr‘ary complexity. Within 
any <architecture the strength of the signal received by any 
one node is a weighted sum of inputs sent by all the nodes 
to which it is connected. In the commonly used, 
supervised, feedforw‘ard, layered networks, nodes in an 
input layer first receive signals equal to the values of the 
external input data. This information is passed on in a 
non-line‘arly convolved fashion to nodes in an output layer 
representing output data (Figure 4). The network 
architectures and non-linear expressions are modified 
using a supervised training procedure such that input data 
is correlated with output data. In some networks there 
may be one or more layers of neurons connecting the input 
and output layers. These (hidden) layers add mathematid 
features to networks necessary to model complex 
relationships. 

A fully trained artificial neural network is effectively a 
non-linear map between specified vcariables which is 
capable of filtering noise in the input data and has a 
predictive capacity, that is it is capable of making 
predictions for situations not previously encountered. The 
procedures for optimising ,artificial neural networks Care 
described elsewhere (Masters 1903) and use goodness of 
fit criteria based on minimum residual prediction errors for 
test data. 

Neural networks have the following valuable features: 
a Respond with high speed to input signals 

.S Generalised mapping capabilities 

0 Filter noise from d&l 
e Can perform classification as well as function modelling 

e Can encode information by 
supervised leCarning 

regression or iterative 

Some drawbacks of neural network methods are: 

e They are data intensive 
e Training is computationally intensive and requires 

significant elapsed wall clock time 
0 They have a tendency to overtrain if the network 

topology is not optimised, resulting in their mapping 
calibration data extremely well but becoming unreliable 
in dealing with new data 

a Predictions <are unreliable if extrapolated beyond the 
boundcaries of the calibration data 

OUTPUTS 

IDDEN LAYER 

INPUT DATA 

Figure 4: Schematic of an ‘artificial neural network 

There are many different types of neural networks 
which can be implemented to solve a wide range of 
complex non-lineCar problems. We originally worked with 
multi-layer perceptrons (MLP), comprised of three layers 
in which the number of nodes in the input and output 
layers were fixed by virtue of the mapping sought. Thus, 
the number of nodes in the input layer is equal to the 
number of individual pieces of data in a single cement 
input data record (also called an input vector), while the 
number of nodes in the output layer is equal to the number 
of separate p‘ar‘ameters being predicted from the input 
vector. However, there are certain computational 
drawbacks to these MLP networks: finding the optimal 
number of nodes in the hidden layer is time consuming 
since network training by the backpropagation-of-errors 
algorithm is slow and, in addition, there is some possibility 
of the network becoming trapped in a local rather than the 
global error minimum. 

The network type we found to be the most suitable for 
predicting cement properties employed Gaussian radial 
basis functions (Moody & Darken 1988, 1989) in a single 
hidden layer. We preferred these networks because their 
underlying learnin g algorithms are fast and, being based 
on linear algebra, they are guaranteed to find global 
optima. In radial basis function networks - also sometimes 
referred to as localised receptive field networks - the nodes 
in the hidden layer <at-e of a different nature to those in a 
multi-layer perceptron: they are radial distribution 
functions which have centres and widths expressed in 
terms of the n dimensional space defined by the input data 
vectors. These Gaussian basis functions produce a non- 
zero response only when an input vector falls within a 
small, localised region of this n dimensional space centred 
on the mean and within the specified width of the basis 
function. 

The process of constructing and optimising such 
networks involves several stages. First, an ‘arbitrary 
number of Gaussian basis functions have to be selected. 
Their means and standard deviations (widths) are 
determined on the basis of the available data vectors to be 
used for tmining by a procedure such a!s n dimensional K- 
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means clustering. This standard statistical procedure 
exploits the natural clustering of the input data in order to 
locate the means (that is, the centers) of the selected 
number of nodes such that their average Euclidean 
distances from all the input data vectors are minimised. 
The outputs from this <arbitrarily chosen number of radial 
basis functions <are then linearly correlated to the supplied 
target (output) vectors. The final stage of network 
optimisation is performed by systematically varying the 
number of clusters and overlap pcarameters to achieve M 
optimum fit to the tmining data. 

For all types of ANN architecture employed and models 
constructed ([a] to [e] above), the networks were trained 
using a subset of the full database ‘and their predictive 
capabilities ev‘aluated using a completely independent test 
data set - that is, one containing data which had not been 
previously used by the network during training - selected 
randomly from the database. The importance of network 
optimisation and training in the construction of reliable 
and robust ANN models cannot be over stressed. 

The extensive computation time for optimising even 
radial basis function neural networks becomes an issue 
when spectral data au-e used as input variables. A typical 
mid infra-red FTIR spectrum collected at 2 wavenumber 
resolution of the kind used here has approximately 2000 
digitised points. Thus, in order to use FTIR spectra as 
input data for neural networks it was found necessary to 
first reduce the number of vCariables representing any 
spectrum. This was performed using the principal 
component method based on spectral eigenvector analysis 
and led to the useful information content in each spectrum 
being reduced to 35 principal components which allows 
network c‘alibration and validation to be performed on PC’s 
and workstations. For each of the models [b] to [e], the 
spectra were always reduced to 35 principal components 
although the optimum architectures were different for each 
model. More details of the theoretical basis of the 
modeling procedure are given elsewhere (Fletcher & 
Coveney 1006). 

Predictive Capabilities of the Models 

Model [a]: Mineral Composition Pmiictions - PLS Model 
The expected uncertainties in mineral composition 

predictions have been described in detail elsewhere 
(Hughes et d. 1904, Hughes et ul. 1995). They are 
summ,arised in Table 1, which lists the various chemical 
phases present, as well as the concentration ranges and 

associated uncert;linties with which the phases are found 
(in weight per cent). As in all the models to be discussed, 
the quoted uncertainties refer to the imprecision of the 
model predictions compared with the known, 
experimentally measured values of the same quantities. 

The predictions of the sulfate minerals (gypsum, 
bassanite and syngenite), calcium hydroxide, calcium 
carbonate, aluminate and ferrite are generally good and 
can be used to detect ageing of cements, as our later case 
studies show. The m$or uncertrainties lie in the prediction 

of the individual silicate phases, although total silicates 
(alite + belite) is predicted well. 

Component Concentmtion Range Uncertuinty/2o 
in wt% in wt% 

Alite 42 - 70 +5 
Belite 4 - 3s +s 
Alite+Belite 70 - 82 +, 1.5 
Aluminate o- 15 +_l 
Ferrite 5 - 20 +1 
Syngenite o-3 + 0.6 
Gypsum O-6 2 0.6 
Bassanite O-6 + 0.6 
Ca(OH), O-3 kO.1 
ChCO, o-4 f 0.2 

Table 1: I-Jncertainties in Model [a] 

Table 2 displays the cement chemical analysis 
represented more fun&mentally in terms of the major 
oxides present, together with the concentration mnges and 
associated uncertainties with which these oxides occur. 

Cmzpcmcnt Concmtlwtion Rmgc~ Unc’ertuinty/2 0 
in wt% in wt% 

so, 1.5 - 4.0 rt 0.2 
Al,(.), 3.0 - 7.0 k 0.3 
Fe& I3 1.8 - 7.0 k 0.3 
MgO 0.5 - 3.0 k 0.3 
Total Alkalis 0.2 - 1 .s Ik 0.2 
c7:1u 61 -67 +1 
SK& 19.5 - 24 F!I 0.4 
Insol. Res. 0 - 0.9 f 0.3 
LO1 0.5 - 2.5 Ik 0.3 
Free Lime 0.4 - 2.1 z!I 0.3 

Taldt! 2: I.Jncertainties in Model [b] 

In all cases the oxides, weight loss on ignition (LOI), 
free lime and insoluble residue variables are predicted 
well, dthough the uncertainties are greater than expected 
errors on the mea!I;urements. The major uncertainties lie in 
the predictions of the concentrations of CaO and MgO. 
These arise from the fact that the variance in the levels of 
00 and MgO is known to be small and the errors in 
prediction are proportionately large. 

As with the mineral composition model [a], cement 
oxide compositions cm be estimated with errors a little 
greater than those of the direct composition measurement 
itself, but general trends in chemical composition can be 
determined readily from both models. 
Model [cl: Purticle Size Distribution Bins and Meun 
Diameter - ANN Model 

Figure 5 shows a typical particle size distribution 
prediction for an oilwell cement, while Table 3 lists its 
uncertainties. 
In all cases the prediction errors are greater than the 
expected measurement errors although general trends are 
predicted well. 
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Figure 5: Measured and predicted particle size for a 
typical oilfield cement 

Bin Diumeter Range /pm Uncertainty / 2 0 in O/O 
1 0 - 1 +1 
2 1 - 1.5 Ifil 
3 1.5 - 3 fl 
4 2 -3 +1 
5 3 -4 +1 
A 4 - 6 +1 
7 6 - 8 AI 1.2 
8 8 -1 z!I 1.2 
10 16 - 24 k 1.2 
11 24 - 32 +1 
12 32 - 48 rtl 
13 48 - a +1 
15 96 - 128 rtl 
16 128 - 192 _+l 
Err-ov- on Mecrn Particle Diameter 20 = f Ipnz 

Table 3: 1Jncertainties in Model [c] 

Models [d] and [e]: Thickenin,q Time Curve Prdictions - 
ANN Motiel 

Figure A shows predictions of the full digitised 
thickening time curves for the retarded and neat slurries 
for a typical oilfield cement. In this example the 
digitization simplifies the curve yet the general trends, 
including the point of dep,arture and the actual thickening 
time, can be seen clearly. 

The expected error limits for thickening time predictions 
for both neat <and retarded formulations Lare shown in Table 
4. These uncertainties are typically less than experimental 
thickening time measurement errors and thus support the 
use of FTIR as a rapid, quantitative predictor of cement 
slury thickening times. 

Nelrt Sluv-v-y Retwdd Slurv-y 
Mean Errors / Minutes dZ16.0 +19.5 
20 / Minutes* +31 +37 
Mean % Error k9.S +10.6 
Range of Fit / Minutes so - 350 so - 450 
zk2a indiccrtes upper muximum expected ev-i-w-s 

Table 4: IJncertainties for Thickening Time Predictions 

Retarded Slurry (Measured) 

Neat Slurry (Measured) 

Modal Redictims 

00 
0 50 100 150 200 250 

Time / Minutes 

Figure 6: Measured ‘and predicted thickening time curves 
for a typical oillield cement. The upper continuous curve 
displays the ANN predictions for a neat slurry, while the 
continuous lower curve shows similar predictions for a 
retarded slurry. 

Application Case Studies 
The application offers two basic levels of interpretation. 
One is the qualitative assessment of cement FTIR spectral 
features. The other is the interpretation of quantitative 
predictions from the models. In this section, we provide a 
few exiunples of how this AI-b;ksed application works in 
commercial operations, where it has been deployed for 
more than 12 months. 

Qualitative Interpretation 
Qualitative interpretation involves identifying and 
comparing relevant features of cement spectra, without 
any reference to the AI-system. The simplest qualitative 
method is direct visual inspection of the spectra. This 
involves identifying the presence of specific components 
by the presence of characteristic absorbance bands and 
reference to the spectra of pure components provided in 
pre-existing look-up tables (Hughes et (11. 1994, Hughes et 

111. 1905) . . The relative spectral changes may give 
indicators to changes in performance between batches. An 
altenlative qualitative technique is spectral subtraction 
where one FTIR spectrum is subtracted from a second to 
leave a so-called residual spectrum which is used to 
identify differences in the spectra. This is particul‘arly 
useful in the detection of contaminants. 

Quantitative Interpretation 

Quantitative interpretation involves predicting the 
composition, particle size distribution and performance 
properties of the cement using the artificial neural network 
based prediction modules. Most applications involve 
comparing the properties of one cement with another 
possibly suspect batch, using the cement FTIR spectra 
passed through our predictive models. Any statistically 
significant differences in composition or p‘article size 
distribution will indicate differences in performance. In 
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some cases, such as the detection of aged cements, the 
changes in mineral compositions can indicate changes in 
performance. The performance predictions themselves ccan 
be used to support or confirm the qualitative 
interpretations. In some cases the compositional 
differences between cements are subtle and not easily 
interpreted. In these cases direct prediction of 
performance is informative. 

Case A: Detecting a Burite Contuvninatecl Cevnent 
A cement sample was observed to yield an unexpectedly 

long thickening time compared with a normal cement 
taken from a different storage silo. A residual FTIR 
spectrum was obtained by subtracting the spectrum of the 
normcal cement from that of the rogue cement. Figure 7 
shows the residual spectrum comp‘ared with the spectrum 
of pure b‘arite; the barite ch‘aracteristics care confirmed by 
table look-up from existing databases. (No use of the AI- 
system is necessary for this application). The 
correspondence of spectral features confirmed the 
presence of barite in the rogue sample. Barite 
contcamination leads to the slurry being over-retded when 
the cement is used in a slurry formulated on the b;Lsis of an 
uncontaminated cement. 

ure Barite Spectrum 

Residual Spectrum 
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Figure 7: A B,arite-Contaminated Cement 
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Case B: lktecting an Aged Cmzent 
A cement from one storage silo was observed to show 

mixing and pumping problems and to yield a short 
thickening time compared to cement samples from other 
silos. The spectrum of the problem cement is shown in 
Figure 8, where it is compared with the spectrum of a 
normal cement. Enhanced syngenite features are visible in 
the spectrum of the problem cement; as in the case of the 
barite-contaminated sample, the spectral features 
characteristic of syngenite are confirmed by table look-up 
from existing databases. 

The linear p‘artial least squares composition model [a] 
predicted the syngenite content of the problem cement to 
be 2.7wt% compared with O.<)wt% for the normal cement. 
Ageing to form syngenite is consistent with the observed 
shortening of thickening times and pumping problems. 
The retded slutry performance ANN model predicted the 

thickening time for the aged cement to be SO minutes 
shorter th,an for the norm‘al cement. 

Syngenite Featur 
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Figure 8: A Syngenite Aged Cement 

500 

Figure 9 shows a retarded thickening time curve for an 
oilwell cement as predicted from its FTIR spectrum using 
our ANN model. The predicted data are compared to can 
average thickening time curve obt‘ained from experimenM 
measurements on five different batches of the same 
cement. An indication of the normal batch-to-batch 
variation due to storage is given by the two stand‘ard 
deviations limit. The rogue batch is identified as having a 
very short thickening time compared to the expected range 
for this cement and an unusually high initial consistency. 
This was subsequently confirmed experimentally. This 
example makes criticial use of the ANN-based 
performance prediction capability to identify a rogue 
cement without recourse to interpreting cement 
composition or particle size distribution which, on their 
own, are likely to provide ‘ambiguous results. It will be 
recalled that premature setting of the slurry, as is the case 
here, would very likely lead to a costly major operating 
fdure if such a cement were pumped in the field. 
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Figure 9: Thickening time curve predictions for a rogue 
oilfield cement 
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These case studies indicate the scope and power of 
prediction afforded by artificial neural networks. There 
remains the intriguing issue as to how these ANNs actually 
succeed in making correct composition and performance 
predictions from the compressed and convolved 
representation of cement FT’IR spectra. 

ANNs have been criticized at times since they appeCar to 
work like black boxes. However, the subst,antial quantity 
of knowledge they encode is available for more detailed 
interrogation and can be turned to very effective use in its 
own right. As an illustration, we mention in passing that 
we have constructed other ANN models which map 
chemical compositions and particle size distributions 
directly onto slurry thickening time curves (Fletcher & 
Coveney 1996). These networks may be used to 
inves$gate the sensitivity of, for example, changes in 
thickening time to changes in the values of input 
p‘arameters, such as the camount of aluminum or iron in the 
cement, and so on. In some cases, these models have 
confirmed previously established qualitative trends known 
within the cementing community, such as the observation 
that increasing the iron content increases thickening times, 
while at the same time making these relationships more 
quantitative. But in many other instances, including for 
ex‘ample the dependence on composition variables of the 
kick-off time and the subsequent rapidity of thickening 
following the usual quiescent period during which there is 
essentially constant slurry consistency (see Figures 6 and 
9), no previous knowledge - either qualitative or 
quantitative - existed. Moreover, we have shown that a 
genetic algorithm can be used to invert the nonlinear 
forward mapping provided by such an ANN so as to 
furnish the precise physicochemical composition of a 
cement needed to deliver specified performance properties. 
This is pcarticulCa.rly remarkable, since it implies that, in 
principle at least, it may one day be possible to tailor-make 
a cement to suite any particular application. 

The cement yuality assurance tool that we have 
described here is the result of the powerful combination of 
a modem AI technique (artificial neural networks) and the 
established laboratory measurement technique of FTIR 
spectroscopy. The integration of these two methodologies 
is achieved in routine use by passing the digitised output 
from an FTIR spectrometer into a 4X6 PC on which the 
trained ANNs reside. In this way, a single cement powder 
FTIR spectrum provides information simultaneously on 
cement chemical composition, particle size distribution 
and setting profile (including thickening time), together 
with a ltlag indicating the degree of statistical reliability to 
be expected from the predictions emanating from the AI 
device. This flag indicates whether or not a cement being 
analysed lies within the p‘art of infrared p‘arameter space on 
which the ANNs have been trained: if the former, the 
predictions are classified a!% reliable; if the latter, they are 
described as unreliable. As a consequence, one can record 
the FTIR spectrum of a cement powder and reliably 
predict its setting time in about fifteen minutes of real 
time, rather than waiting for more than four hours to 
observe when the slurry will actually set. 

Our radial basis function neural network and other 
codes were home made, and were developed on LJnix 
platforms. At the time when the method wxs tmnsferred 
from Schlumberger Gambridge Rese‘arch (SCR), where it 
had been developed, to Schlumberger Dowell’s Europe- 
Africa Technology Center in Aberdeen, a decision was 
taken to port aI codes to the Matlab commercial package, 
which is platform independent and was thus immediately 
accessible on a PC, the latter being the type of machine 
available in the field. This reduced the coding 
requirements of the commercial product to a minimum. It 
sl~ould be noted that our ‘artificial neural network codes 
made no special use of Matlab’s intrinsic features, nor did 
Matlab influence in any way our choice of network 
architecture: our work was completed prior to the 
availability of the Neural Network Toolbox within this 
package. 

Application Use and Payoff 
The cement quality control technique described here 
proved so successful in our research laboratories that a 
decision was made to turn it into a commercial product, 
called CemQlJEST (for cement quality estimation). The 
technique is now being used in our Aberdeen regional field 
laboratories to detect and avoid cementing problems 
normally associated with cement quality and variability. 
The CemQI.JEST software cm predict composition, 
particle size distribution and thickening times for certain 
cement slurry formulations directly from the FTIR 
spectrum. 

The advantages of using CemQUEST compared with 
previous cementing practise are manifold. Obviously, 
there is the l:u-ge time ml manpower saving that accrues 
from predicting cement setting properties in this way. 
()tlier benefits include: (i) the avoidance of operational 
cementing failures due to batch to batch variation, ageing 
or cement contamination: (ii) improved efficiency of 
cement slurry formulation design through the 
identification of import ant slurry performance 
characteristics. 

Since early 1995, CemQIJEST has been in routine use 
within Schlumberger Dowel1 where it is part of the ovemll 
set of techniques employed for achieving improved cement 
slurry design md reliability on a daily basis. It has Cdso 
Wracted the attention of cement manufacturers and clients 
(oil companies) for whom cement quality control work is 
also 11ow being done on a regular basis. CernQIJEST is 
able to save around $3-5 million per year per client 
through its ability to detect potential major operating 
failures (MOFs) before they arise. The costs of slurry 
formulation are also reduced by CemQl JEST: rapid 
screening and elimination of bad cements saves around 
10% of the time taken by the lengthy process of 
formulation optimization. This translates to a savings of 
about .$lOOO per week per formulation in routine 
laboratory testing. 
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We expect additional benefits to arise with the passage 
of time for at least two rerzc;c)ns. The first will be due to the 
build up of a larger cement database, extending the domain 
of validity of the existing neural network models (which 
will require periodic retraining). A second reason will be 
due to an enhanced reputation for Schlumberger Dowel1 
based on increasing reliability of its cementing jobs 
through use of the current product on a day-to-day basis. 

Application Development and 
The development of the CemQT_JEST prototype at 
Schlumberger Cambridge Research was the result 
approximately 12 person-years’ effort, which commenced 
in 1991 and ended in mid- 1993. The work involved 
coordinating a vast cement data collection exercise, with 
s‘amples being sent from all <areas of the world in which 
Dowel1 has cementing operations. This led to 
approximately 160 distinct cements, whose v‘arious 
physicochemical properties - chemical composition, 
particle size distribution, FTIR spectra, slurry thickening 
curves, etc. - had to be recorded. The reproducibility of all 
these measurements had to be investigated. This in itself 
required the cooperation of colleagues in our product 
center (then in St Etienne, France) aud in Aberdeen. In 
addition, some of the chemical analysis work was 
performed externally at low cost. The szunples needed 
careful storage in the absence of moisture and ccarbon 
dioxide to prevent alteration of cement properties with 
time, as these substances are readily absorbed by cement 
powders. The end result was a substantial cement 
database which was used for developing the final neural 
network models. 

While data were being acquired, approximately three 
person-yeCars of effort was devoted to an investigation of 
the feasibility of cement quality estimation using FTIR 
spectra linked to thickening time curves. The initial aim 
was to establish whether any of the cement data could be 
reliably used for such predictive purposes. When this was 
answered in the affirmative during late 1901 and early 
1992, the target was to demonstrate that the same could be 
achieved on the basis of the single and easily performed 
FTIR powder measurement. The feasibility of doing this, 
fully confirmed durin g late 1992, opened the way to a 
commercially viable product. During 199.7, about one 
person-year’s effort was assigned to the development of 
the basic Matlab code for transfer to Aberdeen in mid 
1993. One of the authors (PF) was transferred to 
Aberdeen, in part to ensure correct technical 
implementation of the product and to prepare for its 
commercialisation. This was seen to be important to 
guarantee a successful future for the product, since at that 
site there was previously only very limited expertise i:: the 
recording and interpretation of FTIR spectra. 

aintenance 
Experience in the transfer of this product from rese<arch to 
operations showed that the key limitation is associated 
with the recording of FTIR spectra in field laboratories. 
Owing to the barge size of the database and the technical 
issues involved in producing accurate predictive models, 
all of these models were developed in the research 
laboratory during 199243, using FTIR spectra recorded 
there. It W:LS thus of pCar,amount importLance to ensure that 
FTIR cement spectra recorded in the field center on 
different spectrometers were closely coincident with the 
database spectra recorded in research. Clear guidelines 
for ensuring reproducible spectra had to be laid down by 
the research group. 

Maintenance of the softw,are and the database is now the 
responsibility of Aberdeen. To date, it has not proved 
necessary to update this knowledge base, owing to the 
rather wide representative coverage of the original cement 
data. However, data are being kept on all significant 
outlier cements detected by the reliability flag within the 
current AI system. Predictions of the physicochemical and 
performance properties of such outlier cements cannot be 
made reliably using the existing database and so at a future 
stage their measured FTIR spectra and performance 
properties will be added to supplement the dataset. When 
this is done, new ANN <and other models will also need to 
be constructed and validated. This activity will be carried 
out entirely in Aberdeen, on ;I periodic basis. 

Summary and Conclusions 

Using artificial neural networks and conventional 
statistical methods, we have shown that the information in 
the FTIR powder spectra of cements can be used to predict 
composition, particle size distributions, am.l thickening 
time curves for simple slurries. This has established the 
FTIR measurement as a ‘signature’ for cement 
performance. The measurement can be used as a rapid 
technique for estimating cement quality and to detect batch 
to b:dl variability in cements. Specific case studies have 
demonstrated that the product can detect batch to batch 
variability between manufacturers as well as ageing and 
cont:unination of a given cement. It is thus capable of 
preventing the occurrence of very costly major operating 
failures in oilfield cementing operations. I.Jnder the mame 
of CemQI JEST, the :tpplication is finding successful 
commercial application within the oilfield. 
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